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Impact of Protein Binding on Receptor Occupancy:

a Two-Compartment Model

Lambertus A. Peletier 1 , Neil Benson 2 and Piet H. van der Graaf 3

Abstract

In this paper we analyse the impact of protein- and lipid- and receptor-binding on
receptor occupancy in a two-compartment system, with proteins in both compartments
and lipids and receptors in the peripheral compartment only. We do this for two
manners of drug administration: a bolus administration and a constant rate infusion,
both into the central compartment. We derive explicit approximations for the time-
curves of the different compounds valid for a wide range of realistic values of rate
constants and initial concentrations of proteins, lipids, receptors and the drug. These
approximations are used to obtain both qualitative and quantitative insight into such
critical properties as the distribution of the drug over the two compartments, the
maximum receptor occupancy and the area under the drug-receptor complex curve.
In particular we focus on assessing the impact of the dissociation constants, KP , KL

and KR of the drug with, respectively, the proteins, the lipids and the receptors, the
permeability and the surface area of the membrane between compartments, and the
rate the drug is eliminated from the system.

1 Introduction

Drugs are typically designed to bind to a given molecular target or subset of targets.
However, the same drugs often also bind to lipids and proteins and need to cross biolog-
ical membranes to access the target. Developing a better quantitative understanding of
the impact of these phenomena on drug interaction with a target is highly desirable (cf.
Berezhkovskiy (2010) and Schmidt (2010)).

Against this background, we investigate the impact of proteins and lipids on the ef-
fectiveness of drugs, measured by the area under the curve of the receptor occupancy
(AUCRO) by the drug. In an earlier study by Peletier, Benson and Van der Graaf (2009),
hereafter referred to as PBG, this issue was taken up in the context of a simple situation:
a one-compartment system and a single protein. We demonstrated that a certain amount
of protein binding could be beneficial rather than deleterious to receptor binding when
measured over time, such as by the AUCRO over a 12 or 24 hour period. Specifically, for
realistic rate constants and concentrations, we obtained sharp estimates for the optimal
value of the protein binding KP = kPb/kPf in terms of the AUCRO, where kPf and kPb

are the forward and the backward rate constants of the protein binding.
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In the present paper we extend this analysis to a more complex and realistic situation.
(i) We consider a system distributed over two compartments, a central compartment, here
referred to as the plasma compartment, and a peripheral compartment, called the brain

compartment, and (ii) we assume that the plasma compartment contains proteins and
that the brain compartment contains the same proteins, but also receptors and lipids.
We assume that the binding to the proteins and the receptors is reversible and that in
both compartments the rate constants of the drug with respect to the proteins are the
same. The binding kinetics of the drugs to target receptors and proteins can be measured
using a range of well developed techniques such as surface plasmon resonance (Rich et al.,
(2001)) and competition assays (Motulsky et al., (1984)) as discussed in PBG. Methods
for accounting for the binding of drugs to lipids in the body have been reported in the
literature (cf. Poulin et al, (2000)), assuming that drug binds to lipids according to a
simple one-step reversible reaction (as shown in Figure 1).

The physico-chemical properties of a drug (for example a moderate to strong base)
and the existence of different lipids such as acidic and neutral phospholipid and neutral
lipid can be accounted for by using equations that estimate ionised and un-ionised con-
centrations (cf. Rodgers et al., (2005)). The binding of a particular drug to lipid, in
non-adipose tissues, is typically estimated using the logP of the drug (i.e. the logarithm
of the water:octanol partition coefficient for the non-ionised drug), with typical values for
drugs lying in the range −0.4 to +5.6 (cf. Ghose et al., (1999)). Estimates of tissue lipid
composition are available in the literature.

We consider the situation in which the drug is supplied to the plasma compartment and
can enter the brain compartment through the membrane separating these compartments.
We assume that either the drug cannot leave the brain except through the membrane, or

there exists an additional route along which drug can flow from the brain to the plasma
compartment. We are interested in the receptor occupancy in the brain compartment,
and the way it is impacted by the proteins and the lipids. We shall mainly focus on the
drug being administered through a bolus dose, although we shall obtain some results for
when drug is administered through a constant-rate infusion.

In Figure 1 we give a schematic description of the first model, when between the
compartments, drug is only exchanged through the membrane. The schematic description
of the second model is the same, except that an arrow from the brain compartment into
the plasma compartment is added, indicating uni-directional flow of free drug.

The resulting models lead to systems of 10 nonlinear ordinary differential equations
(ode’s). Thanks to the conservation of proteins, receptors and lipids in the individual
compartments this system can be reduced to a system of 6 ode’s. The resulting nonlinear
systems are still complex. However, as in PBG, thanks to the considerable differences
between different concentrations and rate constants, it is possible to distinguish distinct
time scales over which sub-systems are in quasi-equilibrium and the full 6-equation system
can be simplified to systems, which, as it turns out, can often be solved explicitly.

Using these models we shall explore the complex interplay of drug permeability and
drug binding to receptors, lipids and proteins; in this context we shall show how binding to
lipids and protein influences time to equilibrium, explore the consequences of steady state
dosing and evaluate the impact of any clearance processes from the brain. In addition,
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Figure 1: Schematic description of the model. Compartment 1 is the central compartment
(e.g. the plasma) and compartment 2 the peripheral (e.g. the central nervous system). D1

and P1 are, respectively, the drug and protein concentration in the central compartment;
DP1 is the concentration of the drug-protein complex. D2, P2, R2 and L2 are the concen-
trations of drug, protein, receptor, and lipid in the peripheral compartment; DP2, DR2

and DL2 are the concentrations of the respective complexes of drug and protein, receptor
or lipid. PS is the permeability-surface area product (see Eq. (2.13)) and kout is the rate
constant for removal of the drug from the plasma. Typical parameter values are given in
Table 1.

the importance of on- and off-rates for binding to receptor will be explored, addressing
an interesting drug discovery question as to whether the values of the individual rate
constants have a strong influence on receptor occupancy, rather than the affinities.

In this paper we use volumes, concentrations and rate constants which are inspired by
applications to the plasma-brain system.

2 The basic model

In the model shown in Figure 1, the drug D1 in the plasma compartment and D2 in
the brain compartment4, binds reversibly to, respectively, the proteins P1 in the plasma
compartment and P2 in the brain compartment. In the latter compartment it also binds
reversibly to the lipids L2 and the receptors R2 in that compartment. Thus, the drug forms
complexes with the proteins, DP1 and DP2, and with the lipids DL2 and the receptors
DR2. It is assumed that proteins, lipids and receptors, and their complexes, cannot cross
the membrane between the two compartments.

The drug is assumed to be introduced into the plasma compartment through an iv
bolus administration, passes through the membrane that separates the two compartments
and distributes itself over the two compartments. Finally, it flows out of the plasma
compartment according to a first order process.

Assuming equilibrium reactions between the different species, the two-compartment

4The subscripts 1 and 2 refer to respectively, the plasma and the brain compartment
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model shown in Figure 1 is described by the following set of reaction equations:

Di + Pi

kPf

−→

←−

kPb

DPi, KP =
kPb

kPf
, i = 1, 2 (2.1)

where we assume that the on- and off-rates are the same in both compartments, and

D2 +R2

kRf

−→

←−

kRb

DR2, KR =
kRb

kRf
(2.2)

D2 + L2

kLf

−→

←−

kLb

DL2, KL =
kLb

kLf
(2.3)

In addition, drug is eliminated from the plasma compartment through a first order process:

D1
kout−→ −koutD1. (2.4)

In Table 1 we give typical values of the rate constants:

Table 1: Rate constants and PS

kPf kPb kRf kRb kLf kLb kout PS

10 1000 10 10−2 10 100 2× 10−2 1/sec 10 L/h = 1/360 L/sec

where the forward rate constants are measured in μM−1sec−1 and the backward rate
constants in sec−1. The values of kPf and kPb correspond to typical values for human

serum albumin (HSA) (cf. Rich et al. (2001) and Karlsson et. al. (2000)) and we simplify
by assuming one binding site per HSA molecule. For the values of kLf and kLb we refer to
Gohse et al. (1999) and the values of kRf and kRb are typical for drug binding to receptor
(cf. Tummino and Copeland (2008)). Finally, in conjunction with the parameter values
from Tables 1 and 2, the value of kout is associated with a half-life of 15 hours. Note that
for the values listed in Table 1,

KP = 100 μM, KR = 10−3 μM and KL = 10 μM. (2.5)

Typical values of the permeability-surface area product PS of the membrane range from 0.2
to 22 L/h in man (see below near equation (2.12) and the Discussion). In our simulations
we have chosen a permeability in the middle of this range. In the discussion we shall
briefly dwell on the impact of a low and high permeability-surface area product.

For the volumes V1 and V2 of, respectively, the plasma and the brain compartment we
take the values pertaining to plasma and brain volume in man, i.e., V1 = 5 L and V2 = 1.4
L.

We denote the initial concentrations by

Pi(0) = Pi,0, R2(0) = R2,0, L2(0) = L2,0, Di(0) = Di,0,

DPi(0) = 0, DR2(0) = 0, DL2(0) = 0 (i = 1, 2)
(2.6)

In Table 2 we give values of the initial concentrations used in our simulations.

Table 2: Initial concentrations (in μM)
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P1,0 P2,0 R2,0 L2,0 D1,0 D2,0

750 3 10−3 1000 10 0

These data are taken from the following sources: for P1,0 we refer to Guyton et al. (1996),
for P2,0 to Felgenhauer (1974), R2,0 is a typical value for a low receptor concentration, and
for L2,0 we refer to Rouser et al. (1968). In our simulations we assume that there are no
lipids or receptors in the plasma compartment.

The dynamics of this complex of chemical reactions and mass transfer between com-
partments is described by the following set of differential equations in which P1, P2, DP1,
DP2, R2, DR2, L2, DL2, D1 and D2 now denote the concentrations of these compounds
(i.e., Pi = [Pi], DPi = [DPi] etc.).

Proteins in the plasma:

⎧⎪⎨
⎪⎩
dP1

dt
= −kPfD1 · P1 + kPbDP1

dDP1

dt
= +kPfD1 · P1 − kPbDP1

(2.7)

and in the brain ⎧⎪⎨
⎪⎩
dP2

dt
= −kPfD2 · P2 + kPbDP2

dDP2

dt
= +kPfD2 · P2 − kPbDP2

(2.8)

Receptors in the brain

⎧⎪⎨
⎪⎩
dR2

dt
= −kRfD2 ·R2 + kRbDR2

dDR2

dt
= +kRfD2 ·R2 − kRbDR2

(2.9)

Lipids in the brain: ⎧⎪⎨
⎪⎩
dL2

dt
= −kLfD2 · L2 + kLbDL2

dDL2

dt
= +kLfD2 · L2 − kLbDL2

(2.10)

Drug in the plasma and the brain:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dD1

dt
= k+(D2 −D1)− kPfD1 · P1 + kPbDP1 − koutD1

dD2

dt
= −k−(D2 −D1)− kPfD2 · P2 + kPbDP2

− kRfD2 · R2 + kRbDR2 − kLfD2 · L2 + kLbDL2

(2.11)

where k+ and k− are related to the drug transfer between the two compartments. They
are given by the expressions

k+ =
PS

V1
and k− =

PS

V2
(2.12)
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where PS denotes the permeability-surface area product which is used to describe clearance
between biological compartments such as the plasma and the brain. It is given by

PS = P × S (2.13)

where P denotes the permeability (cm/sec) and S the surface area of the membrane (cm2)
(see Berezhkovskiy, (2004)). Estimates for PS can be obtained experimentally in vivo in
laboratory animals or in vitro systems (cf. Lundquist et al. (2002)).

Since we assume that proteins, lipids and receptors and their complexes do not cross
the membrane, we have four conservation laws:

Conservation of proteins, receptors and lipids:

Pi +DPi = Pi,0 (i = 1, 2), R2 +DR2 = R2,0, L2 +DL2 = L2,0 (2.14)

In addition if no drug is eliminated, we obtain a fifth conservation law:

Conservation of drug if kout = 0:

V1(D1 +DP1) + V2(D2 +DP2 +DR2 +DL2) = V1D1,0 + V2D2,0 = Atot (2.15)

where Atot is the total amount of drug in the two compartments.
The four conservation laws (2.14) make it possible to reduce the full system (2.7)

- (2.11) to one of six equations (see Section 4). When there is no elimination of drug
(kout = 0) so that (2.15) holds as well, then a further reduction is possible resulting in a
system of five equations.

3 Simulations

In order to acquire a first idea of the dynamics of this system with the parameter values
listed in Tables 1 and 2 we present a few numerical simulations of concentration graphs
of the drug and the drug-protein complex in both compartments, and the drug-lipid com-
plex and the drug-receptor complex in the brain compartment. These simulations have
been made using the software package MatLab R2009b and the stiff ordinary differential
equation solvers, ode 23s and ode15s (The Math Works, Natick, MA, USA).

Since an important objective will be to understand the impact of the affinities KP

and KL of the drug with respect to the proteins and the lipids on the receptor occupancy
we begin in Figure 2 with an overall set of graphs of DR2 versus time. In changing the
affinities, we change the off-rates, since in practice the on-rates do not vary a great deal
(see also the Discussion in Section 9).

We make the following observations:

• The drug-receptor complex DR2 in the brain compartment shows an initial rise over a
brief period of time and then decreases at a much slower rate to zero.

• The initial increase as well as the subsequent decrease of DR2 take longer asKP decreases
and as KL decreases.

• The maximum value of DR2 over time drops as KP decreases and as KL decreases.
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Figure 2: Graphs of DR2(t) of the system (2.7) - (2.11) over a period of about 110 hours
(12 hours = 43200 sec). On the left: kPb ranges from 1000 (black), 100 (red), 10 (blue), 1
(green), and on the right kLb ranges over 500 (red), 100 (blue), 20 (green). The other rate
constants are taken from Table 1; initial concentrations are given by Table 2. Note that
the blue curves in the figures on the left and the right are the same.

3.1 Concentrations in the plasma compartment

In the first two figures we investigate the behaviour of the concentration of the drug D1

and of the drug-protein complex DP1 in the plasma compartment after an iv bolus dose
has been administered. This is done in Figures 3 and 4.

0 0.2 0.4 0.6 0.8 1
x 10−3

0

2

4

6

8

10

Time

D
1

0 0.2 0.4 0.6 0.8 1
x 10−3

0

0.5

1

1.5

Time

D
1

Figure 3: Graphs of drug concentration in the plasma compartment D1(t) of the system
(2.7) - (2.11) over an initial period of one micro second. The rate constants and initial
data given by Tables 1 and 2, for kPb=1000 (black), 100 (red), 10 (blue), 1 (green).

We see that the concentration of the drug drops very rapidly to a much lower value
and that the concentration of drug-protein complex rises over a similarly short period to
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Figure 4: Graphs of the drug-protein complex concentration in the plasma compartment
DP1(t) of the system (2.7) - (2.11) over three time intervals: 1 microsecond (left), 10
seconds (middle) and ± 6 days (right). The rate constants and initial data are given by
Tables 1 and 2, and kPb=1000 (black), 100 (red), 10 (blue), 1 (green).

a critical value. In fact, upon close inspection, we see that over this initial period,

D1(t) +DP1(t) ≈ D1,0

i.e., drug loss through the membrane and direct elimination from the plasma compartment
are negligible during this initial redistribution period. We see that as kPb decreases the
free drug concentration D1 drops to a lower level and more drug is bound to protein, i.e.
DP1 rises to a higher level.

Evidently, the half-time of the convergence to an almost constant value is about 10−4

sec. This agrees with the theoretical estimate of t1/2 ≈ ln(2)/(kPfP1,0) derived in Section
5.

After this rapid adjustment, in which - as we shall see - drug and protein reach equilib-
rium, drug and complex stay at approximately constant values for a relatively long period
of time (cf. Figure 4). We shall often refer to this constant value as the plateau value of
the compound. Thus, the plateau value of the free drug drops as kPb decreases and drug
binds more rapidly to the proteins.

3.2 Concentrations in the brain compartment

Concentration versus time graphs of the drug-receptor complex DR2 have been shown in
Figure 2 and corresponding graphs of the drug-lipid complex DL2 are shown in Figure 5.
As in Figure 2 we vary KP (100 - 0.1) and KL (50 - 2) by changing kPb and kLb, whilst
keeping kPf and kLf fixed (see Table 1).

Figures 2 and 5 show that as the drug binds more readily to the protein, i.e., KP

decreases, drug enters the brain compartment more slowly and we see lower, but longer
lasting, complex concentrations of the drug with receptors and lipids. On the other hand,
when the drug binds more readily to the lipids, i.e., KL decreases, more drug-lipid complex
is formed and the complex concentration DL2 increases.

In Figures 2 and 5, the blue graphs on the left and on the right are taken for the same
parameter values: kPb = 10 and kLb = 100, i.e. KP = 1 and KL = 10.
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Figure 5: Graphs of DL2(t) of the system (2.7) - (2.11) over a period of around 110 hours
(12 hours = 43200 sec). On the left: kPb ranges from 1000 (black), 100 (red), 10 (blue), 1
(green), and on the right kLb ranges from 500 (red), 100 (blue), 20 (green). The other rate
constants are taken from Table 1; initial concentrations are given in Table 2. Note that
the blue curves in the figures on the left and the right are the same. Time in seconds.

In Figure 6 we show graphs of the drug concentrations D1 and D2 versus time as KP

ranges from 100 to 0.1 and KL ranges from 50 to 2. We see that the graphs of D1 emerges
from the plateau value and the drops to zero at a rate which increases as KP increases.
In Section 6 we shall show that t1/2 ≈ P1,0/(KP kout), which agrees with the simulations
in Figure 6.

Note that the graphs ofD1 andD2 intersect at a point where dD2/dt ≈ 0. In light of the
system (2.11) we conclude that the dominant term on the right hand side of the equation
for dD2/dt is the term involving the difference D1 −D2, i.e., in the brain compartment,
the drug is approximately in equilibrium with the proteins, the receptors and the lipids.

As in Figures 2 and 5, in Figure 6 the blue curves on the left and on the right are taken
for the same parameter values: kPb = 10 and kLb = 100, i.e. KP = 1 and KL = 10. Note
that in the figure on the right the graphs of D1(t) approximately coincide, i.e., D1 seems
to be insensitive to changes of the affinity of the drug to the lipids. Thus, the changing
affinity of the drug to the lipids primarily affects the brain compartment.

4 Reformulation of the model

Thanks to the conservation laws for proteins, receptors and lipids in both compartments,
we can express the concentrations of proteins, receptors and lipids in terms of their re-
spective complexes with the drug and thus reduce the number of independent variables in
the system (2.7) - (2.11). This results in the following system of equations:
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Figure 6: Graphs of D1(t) (solid) and D2(t) (dashed) of the system (2.7) - (2.11) over
a period of about 55 hours (12 hours = 43200 sec) for kPb=1000 (black), 100 (red), 10
(blue), 1 (green), and on the right kLb ranges from 500 (red), 100 (blue), 20 (green). The
other rate constants are given in Table 1 and initial concentrations are given in Table 2.
Time in seconds.

For the plasma compartment:
⎧⎪⎨
⎪⎩
dDP1

dt
= +kPfD1 · P1,0 − (kPfD1 + kPb)DP1

dD1

dt
= k+(D2 −D1) + (kPfD1 + kPb)DP1 − (kPfP1,0 + kout)D1

(4.1)

For the brain compartment:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dDP2

dt
= +kPfD2 · P2,0 − (kPfD2 + kPb)DP2

dDR2

dt
= +kRfD2 · R2,0 − (kRfD2 + kPb)DR2

dDL2

dt
= +kLfD2 · L2,0 − (kLfD2 + kLb)DL2

dD2

dt
= −k−(D2 −D1) + (kPfD2 + kPb)DP2 + (kRfD2 + kRb)DR2

+ (kLfD2 + kLb)DL2 − (kPfP2,0 + kRfR2,0 + kLfL2,0)D2

(4.2)

Addition of the expressions for dD1/dt and dDP1/dt yields the balance equation for
the drug in the plasma compartment:

d

dt
(D1 +DP1) = k+(D2 −D1)− koutD1, (4.3)

which states that drug leaves the plasma compartment only through direct elimination
or through the membrane and it enters it only through the membrane. Similarly, for the
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brain compartment we obtain

d

dt
(D2 +DP2 +DR2 +DL2) = −k−(D2 −D1) (4.4)

i.e., drug only leaves or enters this compartment through the membrane.

4.1 Dimensionless variables

In order to identify the combinations of parameters which determine the dynamics of the
system, we introduce dimensionless variables. For the different concentrations we take
as reference values the initial concentrations of the proteins in both compartments, of
the drug in the plasma compartment and of the receptors and the lipids in the brain
compartment. Thus, we define the dimensionless variables

xi =
DPi

Pi,0
, y2 =

DR2

R2,0
, z2 =

DL2

L2,0
, ui =

Di

D1,0
, i = 1, 2 (4.5)

For the plasma compartment we then obtain from the system (4.1)

⎧⎪⎪⎨
⎪⎪⎩

dx1

dt
= +kPfD1,0u1 − (kPfD1,0u1 + kPb)x1,

du1

dt
= k+(u2 − u1)− (kPfP1,0 + kout)u1 + (kPfD1,0u1 + kPb)

P0

D1,0
x1

(4.6)

and for the brain compartment the system (4.2) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx2

dt
= +kPfD1,0u2 − (kPfD2,0u2 + kPb)x2

dy2

dt
= +kRfD1,0u2 − (kRfD2,0u2 + kRb)y2

dz2
dt

= +kLfD1,0u2 − (kLfD2,0u2 + kLb)z2

du2

dt
= k−(u1 − u2) + (kPfD1,0u2 + kPb)

P2,0

D1,0
x2 + (kRfD1,0u2 + kRb)

R2,0

D1,0
y2

+ (kLfD1,0u2 + kLb)
L2,0

D1,0
z2 − (kPfP2,0 + kRfR2,0 + kLfL2,0)u2

(4.7)

As in PBG we distinguish different time scales: a short time scale associated with the
binding of the drug to the protein in the plasma compartment, and a longer time scale,
initially associated with the dissociation of the drug receptor complex but later modified to
include the effect of the permeability of the membrane. Thus, we introduce the following
time variables:

τ1 = kPbt (short) and τ2 = kRbt (long) (4.8)

In the following sections we assume that kPb ranges from 1000 to 1 and that kLb ranges
from 500 to 20. The other constants are all taken from Table 1. Thus, KP ranges from
100 to 0.1 and KL from 50 to 2. The initial concentrations are taken from Table 2.
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5 Dynamics in the plasma compartment

In order to study the short time dynamics in the plasma compartment, we replace the
time t by the scaled time τ1 to obtain the system

⎧⎪⎪⎨
⎪⎪⎩

dx1

dτ1
= au1 − (au1 + 1)x1,

du1

dτ1
=

k+

kPb
(u2 − u1)−

(
a
P1,0

D1,0
+
kout

kPb

)
u1 + (au1 + 1)

P1,0

D1,0
x1,

(5.1)

where

a =
kPf

kPb
D1,0 =

D1,0

KP
(5.2)

Assumption 1: k+ = PS/V1 � kPfP1,0 and kout � kPfP1,0

Plainly for the data given in Table 1 and Table 2 these inequalities are satisfied.
We see from the system (5.1) that these two assumptions imply that the transport

term between the two compartments and the elimination term are very small and may
therefore be neglected. Thus, if we multiply the second equation by D1,0/P1,0 and add the
result to the first equation we obtain to good approximation the conservation law

x1(τ1) +
D1,0

P1,0
u1(τ1) =

D1,0

P1,0
(5.3)

which states that on this time scale no drug leaves the plasma compartment. Using (5.3)
to eliminate x1 from the second equation of (5.1), we end up with a single equation for u1:

du1

dτ1
= f(u1)

def
= (au1 + 1)(1 − u1)− a

P1,0

D1,0
u1 (5.4)

It is readily seen that f(u1) has a unique positive zero u1 and, using standard arguments
from the theory of ordinary differential equations (Blanchard et al. (1998)), that

u1(τ1)→ u1 as τ1 →∞ (5.5)

From the conservation law (5.3) we deduce that

x1(τ1) → x1
def
=

D1,0

P1,0
(1− u1) as τ1 →∞ (5.6)

Thus, over a short interval u1 and x1 reach quasi-stationary ”plateaus” at u1 and x1.
These values will be referred to as Plateau Values. Some plateau values are presented in
Table 3 below.

Table 3: Plateau values u1 and x1

KP 0.1 1 10 100

u1 1.333 × 10−4 1.331 × 10−3 1.316 × 10−2 1.176 × 10−1

x1 1.333 × 10−4 1.332 × 10−4 1.316 × 10−4 1.176 × 10−4

12



Assumption 2: D1,0 � P1,0.

Inspection of the function f(u1) in equation (5.4) shows that if δ = D1,0/P1,0 is small,
then au1 = O(δ), so that we may put au1 + 1 ≈ 1 in (5.4) and conclude that

1− u1 − a
P1,0

D1,0
u1 ≈ 0

Since aP1,0/D1,0 = P1,0/KP , we conclude that the plateau values u1 and x1 are well
approximated by

u1 =
κP,1

1 + κP,1
and x1 =

D1,0

P1,0

1

1 + κP,1
where κP,1 =

KP

P1,0
(5.7)

The half-time of the convergence towards the plateau values is then given by

τ1,1/2 =
κP,1

1 + κP,1
ln 2 (5.8)

Thus, the half-time ranges from about 10−4 sec (when KP = 0.1) to 10−1 sec (when
KP = 100 μM).

For the larger times we scale time by the rate constant kRb and introduce the dimen-
sionless time τ2 = kRbt (cf. eq. (4.8)). We now obtain the system

⎧⎪⎪⎨
⎪⎪⎩
ε
dx1

dτ2
= +au1 − (au1 + 1)x1,

du1

dτ2
=

k+

kRb
(u2 − u1) +

1

ε
(au1 + 1)

P1,0

D1,0
x1 −

(
1

ε
a
P1,0

D1,0
+
kout

kRb

)
u1

ε =
kRb

kPb
(5.9)

Assumption 3: kRb � kPb so that ε� 1.

In light of this assumption, which is seen to be justified by the data, the system (5.9) is a
singular perturbation problem. If we put ε = 0 in the first equation, we obtain

au1 − (au1 + 1)x1 = 0 =⇒ x1 =
au1

au1 + 1
(5.10)

Multiplying the first equation of (5.9) by ε−1(P1,0/D1,0) and adding the result to the
second equation yields

d

dτ2

(
u1 +

P1,0

D1,0
x1

)
=

k+

kRb
(u2 − u1)−

kout

kRb
u1 (5.11)

which is the dimensionless form of equation (4.3). Using (5.10) to eliminate x1 from the
left-hand side of (5.11) and writing

u1 +
P1,0

D1,0
x1 = u1 +

P1,0

D1,0

au1

au1 + 1

def
= ψ1(u1) (5.12)
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this equation can be written as

ψ′1(u1)
du1

dτ2
=

k+

kRb
(u2 − u1)−

kout

kRb
u1 (5.13)

where ψ′1 denotes the derivative of the function ψ1.
Recall from (5.2) and (5.7) that au1 < (D1,0/KP )(KP /P1,0) = D1,0/P1,0. Hence, by

Assumption 2, au1 � 1 so that, since u1 ≤ u1, we can approximate ψ1 and ψ′1 by

ψ̃1(u1) = u1 +
P1,0

D1,0
au1 = u1 +

P1,0

KP
u1 =⇒ ψ̃′1(u1) = 1 +

P1,0

KP
= 1 +

1

κP,1
(5.14)

Thus, equation (5.13) may be written as

(
1 +

1

κP,1

)
du1

dτ2
=

k+

kRb
(u2 − u1)−

kout

kRb
u1 (5.15)

In light of the constants of Tables 1 and 2 we are justified in making the following
assumption about the permeability of the membrane:

Assumption 4: k+ = PS/V1 � kout.

It follows that the exchange term (k+/kRb)(u2− u1) is small compared to the elimination
term (kout/kkRb)u1. This means that equation (5.15) may be approximated by the simpler
equation (

1 +
1

κP,1

)
du1

dτ2
= −θ u1, θ =

kout

kRb
(5.16)

This equation can readily be solved explicitly. Taking as initial value the plateau value
u1, right after the initial redistribution phase, we obtain the solution

u1(τ2) = u1e
−(κP,1/(1+κP,1))θ τ2 = u1e

−α t (5.17)

where
α =

κP,1

1 + κP,1
kout (5.18)

If KP ≤ 10, then κP ≤ 1/75 = 0.0133, i.e., κP � 1, so that, approximately,

α = κP,1 kout (5.19)

Remark. We conclude from the expression (5.17) that to good approximation, the free
drug concentration in the plasma compartment is unaffected by processes in the brain
compartment.

6 Dynamics in the brain compartment

Since the influx of drug into the brain compartment is negligible during the short time
equilibration of the drug and the protein in the plasma compartment, we focus here on the
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longer time scale. For the three complexes we obtain the following system of equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε
dx2

dτ2
= +au2 − (au2 + 1)x2

dy2

dτ2
= +bu2 − (bu2 + 1)y2

μ
dz2
dτ2

= +cu2 − (cu2 + 1)z2

(6.1)

where

a =
kPf

kPb
D1,0, b =

kRf

kRb
D1,0, c =

kLf

kLb
D1,0, ε =

kRb

kPb
, μ =

kRb

kLb
(6.2)

Assumption 5: kRb � kLb so that μ� 1.

Substituting the data listed in Tables 1 and 2, these constants have the following values:

a = 102−10−1, b = 104, c = 1, ε = 10−2−10−5, μ = (2−50)×10−5 (6.3)

when kPb = 1000, 100, 10 and 1 and kLb = 500, 100 and 20. For the drug we have

du2

dτ2
=

k−
kRb

(u1 − u2) +
1

ε
(au2 + 1)

P2,0

D1,0
x2 + (bu2 + 1)

R2,0

D1,0
y2

+
1

μ
(cu2 + 1)

L2,0

D1,0
z2 −

(
1

ε
a
P2,0

D1,0
+ b

R2,0

D1,0
+

1

μ
c
L2,0

D1,0

)
u2

(6.4)

We now multiply the first equation of the system (6.1) by P2,0/(εD1,0) and the third
equation by L2,0/(μD1,0) and then add these equations to the drug equation (6.4). This
then yields

d

dτ2

(
u2 +

P2,0

D1,0
x2 +

L2,0

D1,0
z2

)
=

k−
kRb

(u1 − u2) + (bu2 + 1)
R2,0

D1,0
y2 − b

R2,0

D1,0
u2 (6.5)

Since ε and μ are small, the system consisting of (6.1) and (6.4) constitutes again a
singular perturbation problem and to first approximation we may put

x2 =
au2

au2 + 1
and z2 =

cu2

cu2 + 1
(6.6)

The initial conditions satisfy these relations and we may therefore assume that (6.6) holds
for all time. Thus, we can eliminate x2 and z2 from equation (6.5) so that the first term
only involves the drug concentration in the brain, u2:

u2 +
P2,0

D1,0
x2 +

L2,0

D1,0
z2 = u2 +

P2,0

D1,0

au2

au2 + 1
+
L2,0

D1,0

cu2

cu2 + 1

def
= ψ2(u2) (6.7)

Equation (6.5) can now be rewritten as

ψ′2(u2)
du2

dτ2
=

k−
kRb

(u1 − u2) + (bu2 + 1)
R2,0

D1,0
y2 − b

R2,0

D1,0
u2 (6.8)
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where ψ′2 denotes the derivative of the function ψ2.
Observe that

au2 =
D1,0

KP
u2 <

D1,0

KP
u1 <

D1,0

KP
κP,1 =

D1,0

P1,0
� 1

where we have used the approximate expression for u1 given in (5.7) and Assumption 2.
Similarly, we find that

cu2 =
D1,0

KL
u2 <

D1,0

KL
u1 <

D1,0

KL
κP,1 =

D1,0

P1,0

KP

KL
� 1

Therefore, we may ignore these terms in the denominators in (6.7) and replace the non-
linear function ψ2(u) by a linear function:

ψ̃2(u) = u+
P2,0

KP
u+

L2,0

KL
u =⇒ ψ̃′2(u) = 1 +

P2,0

KP
+
L2,0

KL

Thus, we are justified in simplifying the system (6.1), (6.8) to

⎧⎪⎪⎨
⎪⎪⎩

dy2

dτ2
= bu2 − (bu2 + 1)y2

1

κm,2

du2

dτ2
=

k−
kRb

(u1 − u2) +
R2,0

D1,0
{y2(bu2 + 1)− bu2}

(6.9)

where we have written

κm,2 =

(
1 +

P2,0

KP
+
L2,0

KL

)
−1

(6.10)

This system can be solved explicitly. However, for the range of parameter values studied
in this paper, it is possible to make one further simplification.

Transforming to the new time variable

τ3 = κm,2τ2 = κm,2kRbt (6.11)

we can write the system (6.9) as

⎧⎪⎪⎨
⎪⎪⎩
κm,2

dy2

dτ3
= bu2 − (bu2 + 1)y2

du2

dτ3
=

k−
kRb

(u1 − u2) +
R2,0

D1,0
{y2(bu2 + 1)− bu2}

(6.12)

In light of our parameter values, the following assumption is justified:

Assumption 6: KL � L2,0.

Invoking this assumption, we conclude that κm,2 < κL,2 � 1 and hence, that we may
assume that drug and receptor are in quasi-equilibrium, i.e., to good approximation we
have

bu2 − (bu2 + 1)y2 = 0 =⇒ y2 =
bu2

bu2 + 1
(6.13)
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Using this identity in the second equation of (6.11), and observing that k−/kRb and
R2,0/D1,0 have the same order of magnitude, we are left with the single equation

du2

dτ3
=

k−
kRb

(u1 − u2). (6.14)

Remembering that u1(t) is well approximated by the exponential function given in (5.17)
we can approximate (6.14) by

du2

dt
= β

(
u1e

−αt − u2

)
, α =

κP,1

κP,1 + 1
kout, β = κm,2k− (6.15)

where we have returned to the original time variable t using (5.17) and (6.11). Equation
(6.15) can be solved explicitly. Since u2(0) = 0 we obtain

u2(t) =
β

β − α
u1

(
e−αt − e−βt

)
. (6.16)

In Figure 7 we show graphs of D1(t) (dashed) and D2(t) (solid) computed numerically
(in blue) as well as graphs of the approximations of the drug concentrations presented in
(5.17) and (6.16) (in red) for KP = 0.1, 1 and 10, and KL = 10. Evidently, for these
affinities the correspondence between numerical graphs and analytical approximations is
excellent, confirming analytical predictions.
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Figure 7: Graphs of the solutions D1(t) (dashed) and D2(t) (solid) of the system (4.1),
(4.2) (in blue) computed numerically, as well as graphs of the corresponding approximate
concentration profiles given by (5.17) and (6.16) (in red) with rate constants given in Table
1 for KP = 0.1, 1 and 10 (kPb = 1, 10, 100), and KL = 10. Initial concentrations are given
in Table 2. Note that, while the scale of the figures for KP =1 and 10 is the same, in the
figure for KP =0.1, the horizontal scale had been shrunk by a factor 10 and the vertical
scale has been blown up by a factor 10. Time in seconds.

We conclude from (6.16) that the terminal slope λz,1 of u1 is always α and the terminal
slope λz,2 of u2 is either α or β, depending on which is the smallest. Thus:
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• If α < β, i.e., when κP,1kout < κm,2PS/V2, e.g. when the drug has high affinity to the
proteins andKP � P+1, 0, then the terminal slopes λz,1 and λz,2 in the two compartments
are given by

λz,1 = λz,2 = α = κP,1kout (6.17)

• If α > β, i.e., when κP,1kout > κm,2PS/V2, e.g. when the drug has high affinity to the
lipids, or the permeability of the membrane is small, then the terminal slopes are given by

λz,1 = α and λz,2 = β = κm,2
PS

V2
(6.18)

In Figure 7 we see these properties demonstrated: for KP = 1, the rate constants of Table
1 and the concentrations of Table 2 we have α = 2.67 × 10−5 and β = 1.91 × 10−5, i.e.
α ≈ β. Therefore, when KP = 0.1 then α < β and the elimination rates of u1 and u2 are
the same, and when KP = 10 then α > β and (6.18) applies and u2 decays much more
slowly than u1.

7 Receptor occupancy

As is well known (see also PBG), receptor occupancy DR2/R2,0 is an important determi-
nant in assessing the effectiveness of a drug. In this section we analyse this quantity and
the way it depends on different parameters.

The previous analysis has yielded an important tool for the study of the receptor
occupancy: we have seen that for the parameter ranges involved drug and receptor are
rapidly in quasi-equilibrium and that

DR2(t)

R2,0
=

D2(t)

D2(t) +KR
or y2(t) =

bu2(t)

bu2(t) + 1
, b =

D1,0

KR
(7.1)

where u2(t) is the dimensionless drug concentration in the brain compartment. Having
obtained accurate analytical approximations for u2(t), equation (7.1) yields an analytical
approximation for DR2(t) and the receptor occupancy y2(t), and hence it is now possible
to approach the question as to the impact of different parameters also from an analytical
perspective.

In Figure 8 we first present a series of numerically computed graphs of DR2(t) for
different values of KP and KL, as they were shown in Figure 2. To demonstrate the
accuracy of the analytic approximations for DR2(t), these have been included (the dashed
curves).

The analytical approximation of DR2(t) now enables us to interpret these simulations,
both qualitatively and quantitatively. We discuss the two figures separately.

Impact of KP (left): Here we fixed KL = 10 and let KP take an increasing series
of values. We first compare this figure with a comparable one in PBG where the one-
compartment system without lipids was analysed. We find that here the half-life of DR2(t)
remains much larger than we observed in the one-compartment system. In that setting
the half-life becomes quite small as KP → 100.
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Figure 8: Graphs of DR2(t) of the system (2.7) - (2.11) over a period of about 110 hours.
On the left: kPb ranges from 1000 (acqua), 100 (red), 10 (blue), 1 (green), and on the right
kLb ranges from 1000 (acqua), 100 (red), 10 (blue), 1 (green). The other rate constants are
taken from Table 1; initial concentrations are given by Table 2. The black dashed curves
are the corresponding analytical approximations based on the expressions (7.1) and (6.16).
Note that the blue curve in the figure on the left and the red curve in the one on right are
the same. Time in seconds.

The analysis in the previous section shows how - and to what extent - the division
into two compartments and the presence of the lipids in the brain compartment has this
effect. As KP increases, the elimination rate in the plasma compartment α increases and
eventually overtakes β. When this happens, β becomes the elimination rate for the brain
compartment. If λz,2 is the terminal slope of u2, and hence of y2 or DR2, then for KP

large enough, λz,2 = β. If in addition KL � L2,0, then κm,2 ≈ κL,2, and hence, by (6.18),

λz,2 = β ≈
KL

L2,0

PS

V2
≈ 2KL × 10−6 (7.2)

where we have used data from Tables 1 and 2. Thus, for KL = 10 we have λz,2 ≈ 2×10−5,
which yields a half-time of 3.5×104 sec. This value is consistent with the half-time shown
in Figures 2 and 8 (left).

Impact of KL (right): In this figure we fixed KP = 1 and let KL decrease from 100
to 0.1. Thus, here α is fixed (α = 2.7 × 10−5) and by (6.9), the value of β decreases. In
addition, when κL,2 = KL/L2,0 � 1, then β is given by (7.2). Thus, once KL is small
enough, then β < α and hence the terminal slope is given by β and hence proportional
to KL. Hence, when KL is reduced by factors of 10, then at each reduction the half-time
increases by a factor of 10. These properties are plainly evident in the right-hand set of
graphs in Figure 8.

Impact of kout: Naturally, the elimination rate kout is closely connected to the elimination
rate α of the plasma compartment. In the left graphs in Figure 9 we show how when kout

19



is increased by a factor 10, i.e., we put kout = 0.2, the maximum value of DR2 drops by
about a factor 2. However, reducing the off-rate kRb by a factor 10 – and hence KR also
by a factor 10 – brings the receptor occupancy back up to levels of around 80 %. This
can be explained by inspecting the explicit approximation of u2(t). By increasing kout and
hence α we see that u2(t) becomes smaller and hence, so does y2(t) (for all the values of
KP we have α > β, cf. Table 4). From the expression (7.1) we see that reducing KR has
the effect of raising the receptor occupancy.
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Figure 9: Graphs of DR2 versus time over ± 110 hours – both numerical (solid) and
analytical (dashed) – for KP = 0.1, 1, 10 and 100 for kout = 0.2 and for kRf = 10,
kRb = 0.01 and 0.001, so that KR = 10−3 and 10−4, KL = 10 and D1,0 = 10. Time in
seconds.

The dashed curves in Figure 9 have been computed by means of the explicit expres-
sion for u2(t). They demonstrate the accuracy with which these approximate analytical
expressions predict the complex behaviour of the system.

Area under the receptor occupancy curve AUCRO: In accord with our earlier anal-
ysis of a one-compartment model (PBG) and for reasons of simplicity and transparency,
we have used the area under the curve for receptor occupancy (AUCRO) as a summary
measure of pharmacology, i.e. we estimate the integral

AUCRO(KP ,KL) =

∫ T

0

DR2(t)

R2,0
dt (7.3)

in which T denotes an appropriate time horizon, and we discuss the manner in which this
quantity is impacted by the affinities KP and KL.

This assumes that the AUCRO is proportional to pharmacological effect, which al-
though generally thought to be true and supported by some data, for example, see Jusko
(1995), it should be interpreted with the caveat that some exceptions to this may exist.

In Figure 10 we use the approximation (6.16) for the concentration of free drug in
the brain to explore how the area under the receptor-occupancy curve over a clinically

20



common period of 24 h depends on KP and KL. Remembering that y2(t) denotes the
dimensionless receptor occupancy we consider the function

AUCRO(KP ,KL) =

∫ T

0
y2(t) dt =

∫ T

0

bu2(t)

bu2(t) + 1
dt, T = 24 h = 86400 sec (7.4)

and we show how it changes as KP varies from 0 to 4. We do this for two values of
the affinity KL of the drug to the lipids. Notice the qualitative difference between the
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Figure 10: Graphs of the AUCRO over 24 hours, versus KP ∈ (0, 4] for KL = 10 and 100,
computed with the approximation (6.16) for the dimensionless drug concentration u2(t)
in the brain compartment used in the expression for y2(t) given in (7.1). Data are taken
from Tables 1 and 2.

two graphs. The one on the left, for KL = 10, is increasing for all 0 < KP ≤ 4, whilst
the one on the right, for KL = 100, has a maximum - the Sweet Spot - for KP ≈ 1.
Thus, evidently when KL is large enough there exists a unique value for KP for which the
receptor occupancy in the brain is maximal.

The impact of the permeability surface area product PS runs parallel with the affinity
of the drug to the lipids. This is best seen from the expression for the terminal slope λz,2

given in equation (7.2), which is valid when KL � L2,0. There KL and PS appear as a
product. As we have seen in (6.18), when PS becomes small, then β becomes small and
the terminal slope of the system will be given by β. When KL is also small then β will
be given by (7.2) and we may conclude that changes in PS and in KL have an identical
impact.

8 Constant rate drug infusion into the plasma

The analysis developed for the model described in Section 2 can be applied to a wide
range of related models. In this section we change the mode of administration and focus
on two such models involving a constant rate infusion into the plasma compartment. If
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we denote the amount of drug supplied per second by In, then this leads to an additional
zeroth order term kinfus = In/V1 in the equation for the free drug concentration in the
plasma compartment.

Apart from the infusion term, the first model discussed in this section is the same as
that discussed in the previous sections. In the second model we include an additional
route along which free drug flows from the brain to the plasma compartment.

8.1 No drug elimination from the brain

The model analysed in this subsection is the same as that discussed in Sections 2-7, except
that free drug now flows at a constant rate into the plasma compartment. Thus the model
equations remain the same, except for the equation for the drug concentration in the
plasma compartment, which now includes a the zeroth order infusion term kinfus:

dD1

dt
= kinfus + k+(D2 −D1)− kPfD1 · P1 + kPbDP1 − koutD1 (8.1)

We assume that at the time (t = 0), when the infusion starts, the system is free of drug,
i.e. D1(0) = 0, D2(0) = 0, and all the initial values of the drug complexes are zero too.

Inspection of the system (4.1), (4.2) modified accordingly, readily shows that the steady
state drug concentration in the two compartments is the same, i.e., at equilibrium,

D1 = D2 = Dss
def
=

kinfus

kout
and DR2,ss = R2,0

Dss

Dss +KR
(8.2)

We make the equations dimensionless, using Dss as a reference value for the drug
concentrations in the two compartments, i.e., ui(t) = Di(t)/Dss (i = 1, 2), and keep the
other reference concentrations the same. When the rate of infusion is small enough so that
Dss � KP and hence Di(t)� KP , as was the case in Sections 5 and 6, we can reproduce
the arguments employed in these sections to obtain the following system of equations:⎧⎪⎪⎨

⎪⎪⎩

1

κP,1

du1

dτ2
=

kinfus

kRbDss
+

k+

kRb
(u2 − u1)−

kout

kRb
u1

1

κm,2

du2

dτ2
=

k−
kRb

(u1 − u2)

(8.3)

This system is comparable to the differential equations (5.15) and (6.14) for respectively
u1 and u2. Returning to the original time variable, we arrive at⎧⎪⎪⎨

⎪⎪⎩

1

κP,1

du1

dt
= kout(1− u1) + k+(u2 − u1)

1

κm,2

du2

dt
= k−(u1 − u2)

(8.4)

As in Section 6, we utilise the fact that k+ � kout and neglect the drug loss from the
plasma to the brain in the first of the two equations of (8.4). This modification of the first
equation in (8.4) yields an equation involving u1(t) only, which can be solved explicitly.
Since u1(0) = 0, we obtain

u1(t) = 1− e−αt, α = κP,1kout (8.5)
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Substituting this expression into the second equation of (8.4) yields an equation involving
only u2(t):

du2

dt
= β

(
1− e−αt − u2

)
, β = κm,2k− (8.6)

For the solution u2 of equation (8.6) which satisfies the initial condition u2(0) = 0, we find

u2(t) = 1−
β

β − α
e−αt +

α

β − α
e−βt (β 	= α) (8.7)

In Figure 11 we show graphs of numerical solutions of the system (2.7) - (2.11), where
the equation for dD1/dt has been replaced by (8.1), and compare them with the cor-
responding graphs of Dssu1(t) and Dssu2(t), where u1(t) and u2(t) are the analytical
approximations of the free drug concentrations given by, respectively, (8.5) and (8.7). It
is clear that for KP = 10, 1 and 0.1, the numerical and the analytic curves are very close.
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Figure 11: Graphs of D1(t) (left) and D2(t) (right) over ± 140 hours of the system (2.7)
- (2.11) modified to include a constant rate infusion kinfus = 0.00002 (cf. (8.4)), so that
Dss = 0.001, for kPb = 1000 (aqua), 100 (blue), 10 (red) and 1 (green) and KL = 10.
The solid curves are computed numerically and the dashed curves are the corresponding
graphs of the function Dssu1(t) where u1(t) is given by the formula (8.5) and Dssu2(t)
where u2(t) is given by the formula (8.7). In the figure on the right the dotted curves are
the curves associated with D1(t) shown in the figure on the left. Time in seconds.

In Figure 12 we show how the ratio of the free drug concentration in the brain com-
partment over the free drug concentration in the plasma varies with time and with the
dissociation constant KP of the drug and the proteins. We use the analytical expressions
obtained for u1(t) and u2(t) since we have seen that they provide good approximations to
the real concentrations.

Consistent with the observation (8.2) that at equilibrium the two concentrations are
the same, we observe that D2(t)/D1(t) → 1 as t → ∞ with a rate which depends on
KP . The impact of KP is felt through the value of α = κP,1kout and, since the amount of
proteins in the brain compartment is much smaller than in the plasma compartment, to
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a much smaller extent also through the value of β. In Table 4 we have listed the values of
α and β for the values of the rate constants pertaining to the graphs in Figure 12.

Table 4: Values of α and β when KL = 10 μM

KP 10 1 0.1

α 2.67 ×10−4 2.6 ×10−5 2.6 ×10−6

β 1.95 ×10−7 1.91×10−7 1.51 ×10−7

As KP decreases, the drug has a greater tendency to be bound to the proteins and
it therefore takes longer to be released. Thus D1(t) decays, more slowly, as we also see
back in the expression for u1(t). In the brain compartment, the drug concentration is
dominated by the lipid binding which does not change. Therefore, we see that as KP

decreases, the quotient D2/D1 drops and takes longer to reach the limiting value 1.
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Figure 12: Graphs of D2(t)/D1(t) of the system (2.7) - (2.11) (over ± 140 h), modified
to include a constant rate infusion kinfus = 0.00002, so that Dss = 0.001, for kPb = 100
(blue), 10 (red) and 1 (green) and KL = 10. The curves are computed analytically using
the expressions (8.5) and (8.7) for, respectively, u1(t) and u2(t). Time in seconds.

8.2 Drug flow from the brain to the plasma

In the system studied in the previous subsection drug could only leave the brain compart-
ment though the blood-brain barrier. In reality, it is known that drug can also leave the
brain compartment through a different route: flowing convectively into a sub-compartment
containing the Cerebrospinal fluid (CSF) and from there into the plasma. Its volume is
about 100 ml (cf. Grant et al. (1989)). The CSF-compartment empties though a different
route into the plasma-compartment.

Transfer to the CSF-compartment is very fast, so that there is no need to treat it as a
separate compartment. In normal humans the CSF turns over about every six hours (cf.
Silverberga et al. (2003)) and hence a half-time of about 1h can be estimated yielding a
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rate constant kCSF of about 0.7 h−1. Since the CSF volume is estimated at 0.1 L, this
yields a clearance of kCSF × 0.1 = 0.07 L/h.

In this sub-section we study a modification of the system discussed in the previous
subsection in which we incorporate this drug route from the brain into the plasma by a
simple linear elimination term from the brain. For the sake of transparency, we first write
the two-compartment system for the free drug alone, assuming there are no proteins, lipids
and receptors in either compartment. This yields:

⎧⎪⎨
⎪⎩
V1
dD1

dt
= In+ PS(D2 −D1)− koutV1D1 + Cl ·D2

V2
dD2

dt
= −PS(D2 −D1)− Cl ·D2

(8.8)

Here Cl denotes the Clearance of the drug from the brain compartment along the new
route. It appears in the equation for dD2/dt as a loss term and, since this route discharges
into the plasma, in the equation for dD1/dt as a growth term. When we write

kinfus =
In

V1
, k+ =

PS

V1
, k− =

PS

V2
, kp =

Cl

V1
, kb =

Cl

V2
(8.9)

and put back the proteins, the lipids and the receptors, we end up with the following
modification of the system (2.11):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dD1

dt
= kinfus + k+(D2 −D1)− kPfD1 · P1 + kPbDP1 − koutD1 + kpD2

dD2

dt
= −k−(D2 −D1)− kPfD2 · P2 + kPbDP2

− kRfD2 ·R2 + kRbDR2 − kLfD2 · L2 + kLbDL2 − kbD2

(8.10)

Note that the steady state drug concentrations are

D1,ss =
In

koutV1
=
kinfus

kout
, D2,ss =

PS

PS + Cl
D1,ss =

PS

PS + Cl

kinfus

kout
(8.11)

i.e., in contrast to the previous model, they are now different. In particular

D2,ss

D1,ss
=

PS

PS + Cl
def
= Λ (8.12)

which reverts to 1 when Cl = 0, as in the previous model.
As in our previous analyses, we make the equations dimensionless. This time we

use Dss,1 as a reference value for the drug concentrations in the two compartments, i.e.,
ui(t) = Di(t)/Dss,1 (i = 1, 2). The other reference concentrations are kept the same.
When the rate of infusion is small enough so that Dss,1 � KP and hence Di(t) � KP ,
as was the case in Sections 5 and 6, we can reproduce the arguments employed in these
sections to obtain the following system of equations:

⎧⎪⎪⎨
⎪⎪⎩

1

κP,1

du1

dτ2
=

kinfus

kRbDss,1
+

k+

kRb
(u2 − u1)−

kout

kRb
u1 +

kp

kRb
D2

1

κm,2

du2

dτ2
=

k−
kRb

(u1 − u2)−
kb

kRb
D2

(8.13)
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As in Subsection 8.1, this system is comparable to the differential equations (5.15) and
(6.14) for respectively u1 and u2. Returning to the original time variable, we arrive at

⎧⎪⎪⎨
⎪⎪⎩

1

κP,1

du1

dt
= kout(1− u1) + k+(u2 − u1) + kpu2

1

κm,2

du2

dt
= k−(u1 − u2)− kbu2

(8.14)

Plainly, the steady state values of u1 and u2 are now

uss,1 = 1 and uss,2 =
PS

PS + Cl
(8.15)

As we explained above, a common value for Cl is 0.07 L/h, which is small compared to
the value of PS of 10 L/h, given in Table 1. Therefore, in the equation for du1/dt the
second and the third term on the right are small, and we may approximate it by

1

κP,1

du1

dt
= kout(1− u1) (8.16)

Its solution u1(t), that starts at zero, i.e., for which u1(0) = 0, is given by

u1(t) = 1− e−αt, α = κP,1kout (8.17)

Substitution into the second equation of (8.14) yields

du2

dt
= β(1− e−αt)− (β + γ)u2, β = κm,2k−, γ = κm,2kb (8.18)

The solution u2(t) of this equation, which starts at zero is given by

u2(t) =
β

β + γ
−

β

β + γ − α
e−αt +

αβ

(β + γ)(β + γ − α)
e−(β+γ)t (8.19)

Plainly,
u2(t)

u1(t)
→

β

β + γ
=

PS

PS + Cl
as t→∞ (8.20)

In Figure 13 we show the graphs of the drug concentrations D1(t) and D2(t) in the two
compartments (left) as well as graphs of the quotient D2(t)/D1(t) = u2(t)/u1(t) for this
model when PS takes on the values 10, 1, 0.1, 0.01 L/h and Cl is fixed at 0.07 L/h. Since
in three cases the half time t1/2 of the concentration D1(t) in the plasma compartment is
much shorter than that of D2(t) in the brain compartment, so that D1(t) ≈ 10−3 for most
over the interval, D2(t)/D1(t) ≈ D2(t) × 103, the shape of the corresponding graphs on
the left and on the right is very similar.

We see that in all cases β + γ < α, so that the elimination rate is given by β + γ.
As PS decreases, β decreases and hence β + γ decreases. Therefore, at each step, the
half-time increases by about a factor of 10. We also observe that the limit of D2(t) drops
as PS decreases, in agreement with (8.20).
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Figure 13: Graphs of D1(t) (dotted) and D2(t) (solid) on the left and D2(t)/D1(t) on
the right (over ± 140 h) for PS = 10 (aqua), 1 (red), 0.1 (blue) and 0.01 (green) L/h.
In addition we assume that kinfus = 0.00002 × kout (so that D1,ss = 10−3), KP = 1 and
KL = 10. For these values we have α ≈ 2.7× 10−5, β ≈ 2× 10−5 when PS = 10 L/h, and
γ ≈ 1.4× 10−7. Time in seconds.

9 Discussion

In order to extend our previous one-compartment model to allow for the exploration of
the impact of (i) receptors being in a compartment that is separate from the plasma
compartment, and (ii) of drug binding to lipids (cf. Figure 1), we have made certain
simplifying assumptions. Principal amongst these is that the behaviour of a drug in vivo
can be described by simple mass action binding kinetics and that the tissue behaves as
a well-stirred homogenous solution. Although there is ample precedent, this assumption
being the basis of many PBPK models (Rodgers, et al. (2005)), it remains a caveat. Theo-
retically, more than one binding site per HSA molecule may be observed, rendering certain
assumptions in the model inappropriate. However, in principle this can be determined via
surface plasmon resonance (or other technology) and the model extended to allow these
additional parameters to be accounted for. Accepting these assumptions as a basis for
our extended model, we have found that the dissociation constant KL for lipid binding
strongly influences the dynamics of the system.

Another is the assumption of s single plasma compartment between the administration
of the drug and the brain compartment. Other organs may play a role. One way one may
account for this is by expanding the plasma volume V1 to the steady state volume of
distribution Vss. However, this raises the question as to the size of Vss. To avoid this
question we envisage a sequel to this study in which additional compartments will be
included. Thus, in this paper we have worked with the plasma volume V1.

With the qualifications imposed by the assumptions discussed above, we can now draw
a number of conclusions from this model. We first make a few qualitative observations.

1. Impact of KL: We note that as the drug-affinity for the lipids increases, i.e., as
KL decreases, the long term elimination rate of the drug decreases and, in the case of
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a constant rate drug infusion, the time to equilibrium increases. This is to be expected,
since, as KL decreases, the drug binds more tightly to the lipids and hence is more slowly
released, causing a delay in elimination and a larger half-time.

2. Impact of two compartments: We note an important qualitative difference in the
receptor occupancy curves between the one-compartment model involving proteins and
receptors only and the more complex two-compartment model involving lipids as well. In
the one-compartment model the AUC of the receptor occupancy curve (AUCRO) becomes
quite small as KP → ∞, whilst in the two-compartment model the AUC of the receptor
occupancy curve stays well away from zero. This can be explained by the presence of the
lipids in the brain compartment, which keep the drug in that compartment, where it then
remains available for the receptor.

3. The Sweet Spot: We observe that the Sweet Spot - the interior maximum of the graph
of AUCRO over 24 hr versus KP - is present in both the one- and the two-compartment
model, albeit in the two-compartment model only when KL is large enough. In other
words, if KL is large enough, there exists a positive value of KP for which the AUCRO
over a period of 24 h is maximal.

Not only do we make qualitative observations in the simulations of the extended sys-
tem, but we also derive explicit approximations for the concentrations of the different
compounds. They make it possible to gain insight in the role played by the different rate
constants, the permeability and the initial concentrations, and actually make quantita-
tive predictions. In particular we show that the large time behaviour is to a large extent
determined by the following two critical elimination rates:

α =
KP

P1,0
kout and β =

(
1 +

P2,0

KP
+
L2,0

KL

)
−1 PS

V2
(9.1)

where α only contains parameters related to the plasma compartment and β only contains
parameters related to the brain compartment.

4. Elimination: The terminal slope (λz) of the system is given by

λz = α if α < β and λz = β if α > β (9.2)

When drug is administered through a constant rate infusion, we find that the drug
concentrations in both compartments eventually equalise. Specifically,

5. Equilibration: For constant rate infusion, the free drug concentration will equilibrate
between brain and plasma for all non-zero permeability values, i.e.,

D2(t)

D1(t)
→ 1 as t→∞. (9.3)

The permeability of the membrane, and the protein and lipid binding influence the time
to equilibrium – through α or β, depending on which is the smallest – but not the limit
of D2/D1. Since many drugs are given over weeks, if not months and years, over time the
drug in the plasma and the brain achieves a pseudo steady state.
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Thus, according to the model sketched in Figure 1, free drug could achieve equilibrium;
indeed as the blood-brain barrier in man is very large – of the order of 200,000 cm2 (cf.
Goodwin et al. (2005)) – then from equation (9.2) it can be calculated that even drugs
with low values of permeability (e.g. 10−6 cm/s, which translates into a PS value of 0.7
L/h) and typical lipid and protein binding should achieve equilibrium within a time frame
of days. Note that the permeability of drugs can be measured and is typically reported as
between 0.3 and 3×10−4 cm/s (cf. Fagerholm (2007) and Lundquist et al. (2002)). Taken
together, this assessment of inter-compartmental equilibration processes would appear to
challenge the notion (cf. Pardridge (2007)) that achieving brain penetration and receptor
occupancy will be challenging. On the contrary, this appears to suggest that restricting
drug from the brain is more likely to be an issue, if required.

However, the model of Figure 1 does not take into account processes that remove drug
from the brain. Two examples of this are known; bulk flow from the CSF to the plasma
and active transporter-mediated processes.

We estimate that the bulk flow from the CSF is of the order of 0.07 L/h. If, for
example, restriction of drug from brain is required with free brain/plasma ratio of 0.1,
then PS would need to be 1/10th of CLCSF (0.007 L/h) and from the paragraph above we
see that the permeability would have to be 1 × 10−8 cm/s. This conclusion is consistent
with published in vivo work showing poorly penetrating compounds such as sucrose and
mannitol exhibiting permeabilities in the range 1× 10−7 – 1× 10−8 cm/s (Takasato et al.
(1984)).

On- versus off-rates: Drug receptor interactions are often described in terms of equi-
librium affinity measures such as KR or IC50. However, it has been argued that the
rate constants for a given reaction equilibrium are important determinants of pharmaco-
dynamic behaviour, in particular the off rate for binding (cf. Tummino and Copeland
(2008)). Hence, a question that arises in the process of drug discovery is whether the
off-rate is a selectable parameter and moreover would this necessarily be correlated with
affinity. For example, in the simplest case of a one step binding as in equation (2.2), the
ratio of the off- and on-rates equals the equilibrium binding constant. Hence, one strategy
to decrease the off-rate would be to increase the affinity of a drug, on the assumption
that the on-rate is a relatively constant parameter (cf. Tummino and Copeland (2008)).
Alternatively, it could be argued that for a given affinity, an infinite spectrum of on- and
off-rate parameters could yield an equal affinity value. This implies that determining on-
and off-rates for a range of candidate drugs could be useful, if it turns out that drugs
with equal KR-value but specific combinations of on- and off-rates have improved phar-
macodynamic outcome. Clearly this is potentially a complex question to address for an
open system such as the in vivo situation, but in the models described in this paper it
is possible to explore this question in the context of a simple model of drug disposition.
Hence, we simulated the impact of a range of off- and on-rates, yielding the same KR

parameter (0.001 μM) and for typical drug characteristics. The results in Figure 14 show
negligible impact of varying rates over three orders of magnitude. This lack of impact can
be understood when we realise that the analytical approximations for the drug concen-
trations only depend on the value of the quotient of the off- and on-rate, i.e., the affinity
KR.

We infer from this that although sustained residence time on the receptor may be
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desirable, at least under the conditions adopted in this paper, selecting a drug with slower
off-rate at the expense of on-rate has no benefit. How generic this conclusion is remains
to be determined, but the models described here may be used to explore this for a wider
range of drug properties.
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Figure 14: Graphs of DR2 versus time over ± 110 hours – numerical (solid) and analytical
(dashed) – for kRf = 10n, n = 4, 5, 6, 7 and kRb is chosen so that in each simulation
KR = 10−3. In addition we have KP = 1, KL = 10, kout = 0.02 and D1,0 = 10 (see also
Tables 1 and 2).

In this manuscript we have developed and explored some of the behaviours of a model
of the pharmacokinetics, inter-compartmental distribution and receptor binding of a drug
in the presence of proteins and lipids. The model facilitated the exploration of this com-
plex problem and revealed that (i) contrary to some hypotheses, restricting a drug from
the brain may be challenging, unless an active brain clearance process is involved, (ii)
drug binding to lipids competes with binding to proteins and, in particular, in the brain
compartment it is the limiting factor for the elimination rate, and the time to equilibrium
in the event of a constant rate drug infusion and (iii) optimising PKPD properties through
slow-offset from the receptor alone may not always be a feasible strategy for CNS drugs.
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