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We use a Stochastic Differential Equation satisfied by Brownian motion taking values in the unit sphere S n-1 ⊂ R n and we obtain a Central Limit Theorem for a sequence of such Brownian motions. We also generalize the results to the case of the n-dimensional Ornstein-Uhlenbeck processes.

Introduction

This paper may be regarded as an extension to higher dimensions of the 2-dimensional study made in [START_REF] Vakeroudis | The Mean First Rotation Time of a planar polymer[END_REF]. We now consider a sequence of Brownian motions Θ (k) t , t ≥ 0 , k ∈ N taking values in the unit sphere S n-1 (⊂ R n ), all starting from the same point on the sphere. In Section 2, we introduce a general representation of Θ (k) in terms of a Stochastic Differential Equation. Using this representation, we describe in detail in Section 3 the limit in law, as K → ∞, for the renormalized sum:

Z K t ≡ 1 √ K K k=1 Θ (k) t -E Θ (k) t
of these processes, indexed by t ≥ 0, and taking values in R n . Of course, one could invoke the classical Central Limit Theorem (CLT), at least for the finite dimensional marginals of Z K t , t ≥ 0 , as K → ∞. However, with the help of stochastic calculus, there is much more to say about the description of the asymptotics. Finally, in this Section, we remark that the CLT can be generalized to Ornstein-Uhlenbeck processes taking values in the unit sphere S n-1 (⊂ R n ). Three technical points are gathered in an Appendix. Further extensions may also be obtained, by following e.g. [START_REF] Itô | Distribution-Valued Processes arising from Independent Brownian Motions[END_REF] or [START_REF] Ochi | Limit theorems for a class of Diffusion Processes[END_REF] and studying for which class of functions f (Θ) we can obtain a functional CLT such as (12) (see below) for f (Θ t ), instead of the unique function f * (Θ) = Θ which we study here.

2 A presentation of Brownian motion in the sphere S n-1

As remarked in [START_REF] Stroock | On the growth of stochastic integrals[END_REF] and [START_REF] Yor | A propos de l'inverse du mouvement brownien dans R n (n ≥ 3)[END_REF] (eq. (4.j), p.34), Brownian motion (Θ t , t ≥ 0) in the unit sphere S n-1 ⊂ R n may be viewed as the solution of a Stochastic Differential Equation:

Θ t = Θ 0 + t 0 σ 0,1 (Θ s ) • dB s - n -1 2 t 0 ds Θ s . (1) 
In ( 1),

B t ≡ B (i)
t , i ≤ n , t ≥ 0, denotes a n-dimensional Brownian motion starting from a = 0, while (σ 0,1 (x), x ∈ S n-1 ) denotes the family of n × n matrices (see e.g. [START_REF] Krylov | Controlled Diffusion Processes[END_REF]), defined by:

σ 0,1 (x) = (δ i,j -x i x j ) i,j≤n , (x ∈ S n-1 ) (2) 
and/or characterized by: σ 0,1 (x) • x = 0, and σ 0,1 (x)

• y = y, if y • x = 0. (3) 
Note that σ 0,1 (x) is symmetric and satisfies: σ 0,1 (x)σ 0,1 (x) = σ 0,1 (x). Thus, from (3), we deduce that:

σ 0,1 (x)m = m -(m • x) x, m ∈ R n , (4) σ 0,1 (x)m • σ 0,1 (x)m ′ = (m • m ′ ) -(m • x) (m ′ • x) , m, m ′ ∈ R n .
(5)

3 A Central Limit Theorem for a sequence of Brownian motions in the sphere S n-1 (⊂ R n )

Let Θ (1) , . . . , Θ (k) , . . . be a sequence of such independent and identically distributed Brownian motions in the sphere S n-1 . We aim for a Central Limit Theorem concerning:

Z K t ≡ 1 √ K K k=1 Θ (k) t -E Θ (k) t . ( 6 
)
Adding K equations of the kind of (1) term by term, for Θ (k) t , k ≤ K , it is immediate that:

Z K t = M K t - n -1 2 t 0 ds Z K s , (7) 
with

M K t = 1 √ K K k=1 t 0 σ 0,1 (Θ (k) s ) • dB (k) s . (8) 
Thus, from (7), we obtain:

Z K t = exp -(n -1)t 2 t 0 exp (n -1)s 2 dM K s . (9) 
Now, clearly, the Central Limit Theorem for Z K t , K → ∞, which we are seeking, will follow from the limit in law of the martingales M K t , t ≥ 0 , as K → ∞. We now state both limit results in the following:

Theorem 3.1 a) The sequence of martingales M K t , t ≥ 0 converges in law, as K → ∞, towards: M (∞) t = 1 - 1 n Θ(0) t 0 √ 1 -e -ns dβ s + t 0 1 + e -ns n -1 dB ′ s , (10) 
where

(β s , s ≥ 0) is a 1-dimensional BM and (B ′ s , s ≥ 0) is a (n -1)-dimensional BM taking values in the hyperplane which is orthogonal to Θ(0), and B ′ is independent of β. b) Consequently, Z K t , t ≥ 0 converges in law, as K → ∞, towards: Z (∞) t = exp - n -1 2 t t 0 exp n -1 2 s dM (∞) s . (11) 
Proof of Theorem 3.1: Using the Law of Large Numbers, it is not difficult to show that † † :

M K t , t ≥ 0 (law) -→ K→∞ t 0 E σ 0,1 (Θ (1) s ) • dB (1) s ≡ (M ∞ t , t ≥ 0) , (12) 
where

Q(s) ≡ E σ 0,1 (Θ (1)
s ) is a deterministic matrix, depending on s. The RHS of ( 12) is a centered Gaussian martingale in R n . Before computing the square root involved in (12), we shall first calculate (see (2) for the definition of σ 0,1 ):

E σ 0,1 (Θ (1) s ) = (δ i,j -E [Θ i (s)Θ j (s)]) i,j≤n . (13) 
In order to calculate E Θ

(i) s Θ (j) s
as "naturally" as possible, we consider two generic vectors m and m ′ in R n , and we compute:

ϕ m,m ′ (t) ≡ E [(m • Θ t ) (m ′ • Θ t )] . ( 14 
) † † In the Appendix A.1, a more general result, concerning 1 √ K t 0 K k=1 H (k) s • dB (k) s
is presented, where

(B (k) , k = 1, . . . , K) are K independent BMs and (H (k) , B (k) ) are k ≤ K iid random vectors.
Using (1) and the (special) properties of the matrices {σ 0,1 (x)}, we easily deduce from Itô's formula, that:

E [(m • Θ t ) (m ′ • Θ t )] = (m • Θ 0 ) (m ′ • Θ 0 ) -(n -1) t 0 ds E [(m • Θ s ) (m ′ • Θ s )] + t 0 ds E σ 0,1 (Θ s )m • σ 0,1 (Θ s )m ′ . (15) 
Using ( 5), ( 15) simplifies as:

E [(m • Θ t ) (m ′ • Θ t )] = (m • Θ 0 ) (m ′ • Θ 0 ) -(n -1) t 0 ds E [(m • Θ s ) (m ′ • Θ s )] + t 0 ds (m • m ′ -E [(m • Θ s ) (m ′ • Θ s )]) = (m • Θ 0 ) (m ′ • Θ 0 ) + (m • m ′ ) t -n t 0 ds E [(m • Θ s ) (m ′ • Θ s )] . (16) 
Consequently, the function ϕ m,m

′ (t) = E [(m • Θ t ) (m ′ • Θ t )]
is the solution of a first order linear differential equation, hence:

E [(m • Θ t ) (m ′ • Θ t )] = e -nt (m • Θ 0 ) (m ′ • Θ 0 ) + (m • m ′ ) t 0 e ns ds . (17) 
Now, taking m = e i and m ′ = e j , where (e k ; k ≤ n) is the canonical basis of R n , the matrix Q(s) has elements:

for i = j, (Q(s)) i,j = -E [Θ i (s)Θ j (s)] = -Θ i (0)Θ j (0)e -ns , (18) 
for i = j, (Q(s)) i,i = 1 -E [Θ i (s)Θ i (s)] = 1 -(Θ i (0)) 2 e -ns + e -ns e ns -1 n = 1 - 1 n + e -ns 1 n -(Θ i (0)) 2 . ( 19 
)
Finally:

Q(s) = 1 - 1 n Id + e -ns 1 n δ ij -Θ i (0)Θ j (0) i,j≤n ≡ 1 - 1 n 1 -e -ns Id -e -ns (Θ i (0)Θ j (0)) i,j≤n . (20) 
Using (20) in the RHS of (12), we obtain:

M (∞) t ≡ t 0 Q(s) dB s . (21) 
Now Q(s) ≡ Λ(s), where (for the explicit calculation, see Appendix A.2):

Λ(s) ≡ 1 - 1 n √ 1 -e -ns Id + 1 - 1 n 1 + e -ns n -1 - √ 1 -e -ns σ 0,1 (Θ(0)) = 1 - 1 n √ 1 -e -ns Id + 1 + e -ns n -1 - √ 1 -e -ns σ 0,1 (Θ(0)) . (22)
Thus, (21) now writes:

M (∞) t ≡ t 0 Λ(s) dB s = 1 - 1 n t 0 √ 1 -e -ns dB s + t 0 1 + e -ns n -1 - √ 1 -e -ns σ 0,1 (Θ(0)) dB s . (23) 
We remark here that, with

β s ≡ Θ(0) • B s , B ′ s = B s -Θ(0)β s ≡ σ 0,1 (Θ(0)) B s (24)
is a (n -1)-dimensional BM taking values in the hyperplane which is orthogonal to Θ(0). Thus, from (23) we deduce (10). From ( 9), letting K → ∞, we obtain (11).

Moreover, changing the variables s = tu and using the dominated convergence Theorem, we have:

Z (∞) t (law) = 1 - 1 n exp - n -1 2 t t 0 exp n -1 2 s × × Θ(0) √ 1 -e -ns dβ s + 1 + e -ns n -1 dB ′ s (25) s=t-u = (law) 1 - 1 n t 0 exp - n -1 2 u    1 -e -n(t-u) Θ(0)dβ u + 1 + e -n(t-u) n -1 dB ′ u    t→∞ -→ 1 - 1 n ∞ 0 exp - n -1 2 u Θ(0)dβ u + 1 - 1 n ∞ 0 exp - n -1 2 u dB ′ u . ( 26 
)
Proposition 3.2 The following asymptotic results hold:

a) Z (∞) t (law) -→ t→∞ Z (∞) ∞ , (27) 
where:

Z (∞) ∞ ≡ 1 - 1 n ∞ 0 exp - n -1 2 u dB u . (28) b) Z (∞) t -exp - n -1 2 t t 0 1 - 1 n exp n -1 2 s dB s L 2 -→ t→∞ 0. (29) 
Part a) of Proposition 3.2 follows from the previous calculations, using (24). In order to prove part b), it suffices to use the expression (25) and the following Proposition, which reinforces the convergence in L 2 result in (29).

Proposition 3.3 As t → ∞, the Gaussian martingales:

G (0) t Θ(0), t ≥ 0 ≡ Θ(0) t 0 √ 1 -e -ns e n-1 2 s dβ s - t 0 e n-1 2 s dβ s , t ≥ 0 , (30) 
and

(G ′ t , t ≥ 0) ≡ t 0 1 + e -ns n -1 e n-1 2 s dB ′ s - t 0 e n-1
2 s dB ′ s , t ≥ 0 (31) converge a.s. and in L 2 , and the limit variables are Gaussian, with variances, respectively:

√ πΓ(-1+ 1 n ) nΓ( 1 2 + 1 n ) -n+1 n-1
, and

2 2 F 1( -1 2 ,-1+ 1 n , 1 n , 1 1-n )-1 n-1 . Proof of Proposition 3.3: a)
The increasing process of the real-valued Gaussian martingale G (0) t is:

t 0 e (n-1)s √ 1 -e -ns -1 2 ds,
which converges, as t → ∞; thus:

G (0) t -→ t→∞ ∞ 0 √ 1 -e -ns e n-1 2 s -e n-1 2 s dβ s ,
where the convergence holds both a.s. and in every L p . Of course, the limit variable is Gaussian and its variance is given by (we change the variables u = e -ns and B(a, b) denotes the Beta function with arguments a and b * * ):

∞ 0 ds e (n-1)s √ 1 -e -ns -1 2 = 1 n 1 0 du u -2+ 1 n √ 1 -u -1 2 = 1 n 1 0 du u -2+ 1 n (1 -u) -2 √ 1 -u + 1 = 1 n B -1 + 1 n , 2 -2B -1 + 1 n , 3 2 - n n -1 = √ πΓ(-1 + 1 n ) nΓ( 1 2 + 1 n ) - n + 1 n -1 .
To be rigorous, the integral

1 0 du u -α √ 1 -u -1 2
, which is well defined for 0 < α < 1, can be extended analytically for any complex α with Re(α) < 3. b) Likewise, the "increasing process" of the vector-valued Gaussian martingale G ′ t is:

t 0 e (n-1)s 1 + e -ns n -1 -1 2 ds
which also converges as t → ∞. The limit variable:

∞ 0 1 + e -ns n -1 e n-1 2 s -e n-1 2 s dB ′ s ,
is also Gaussian and, by repeating the previous calculation, we easily compute its variance.

Proof of Proposition 3.2: From Proposition 3.3, by multiplying both processes by e (-(n-1)t

2

) 1 -1 n , we obtain (29).

Remark 3.4 (The Ornstein-Uhlenbeck case)

In fact, for every process satisfying:

dZ s = dB s + h(|Z s |)Z s ds, (32) 
where (B t , t ≥ 0) is a n-dimensional Brownian motion (BM) and h : R + → R is a bounded function, there is a CLT of the kind of Theorem 3.1. See Appendix A.3 for the proof.

A Appendix

A.1 Generalization for a class of symmetric matrices

For K independent Brownian motions, and a class of symmetric matrices H (k) such that (H (k) , B (k) ) k≤K are iid, we have:

M(K) t ≡ 1 √ K t 0 K k=1 H (k) s • dB (k) s (law) -→ K→∞ t 0 h s dB s , (33) 
with h s a deterministic symmetric positive definite matrix and (B t , t ≥ 0) a n-dimensional BM. Indeed, using m a generic vector in R n , we have:

m • M(K) t ≡ m • 1 √ K t 0 K k=1 H (k) s • dB (k) s = 1 √ K K k=1 t 0 H (k) s m • dB (k) s (law) -→ K→∞ N 0; t 0 dsE |H 1 s • m| 2 , ( 34 
)
and for the variance, we have:

t 0 dsE |H 1 s • m| 2 = m • t 0 dsE H 1 s H1 s m, (35) 
and

E H 1 s ≡ h 2 s . ( 36 
)
Remark A.1 In our case, we have:

H k s Hk s = H k s . A.2 Square root of Q s Q(s) = 1 - 1 n Id + e -ns 1 n δ ij -Θ i (0)Θ j (0) (i,j≤n) ≡ 1 - 1 n 1 -e -ns Id + e -ns • σ 0,1 (Θ(0)) . ( 37 
)
We are searching for a(s) and b(s) such that:

a(s)I + b(s)σ 0,1 (Θ(0)) 2 = Q(s),
or equivalently:

(a(s)) 2 I + 2a(s)b(s)σ 0,1 (Θ(0)) + (b(s)) 2 σ 0,1 (Θ(0)) = Q(s).
We compare with (37) and we find:

(a(s)) 2 = 1 - 1 n 1 -e -ns ; 2a(s)b(s) + (b(s)) 2 = e -ns .
Solving this system of equations, we easily obtain:

   a(s) = 1 -1 n √ 1 -e -ns b(s) = 1 -1 n 1 -e -ns n-1 - √ 1 -e -ns . (38) 
A.3 The Ornstein-Uhlenbeck case

We consider the n-dimensional Ornstein-Uhlenbeck (OU) process:

Z t = z 0 + B t -λ t 0 Z s ds, (39) 
where (B t , t ≥ 0) is a n-dimensional Brownian motion (BM), z 0 ∈ R n and λ ≥ 0.

Proposition A.2 The Ornstein-Uhlenbeck (OU) process Θt , t ≥ 0 in the unit sphere S n-1 is the solution of the Stochastic Differential Equation

Θ Z t = Θ Z 0 + t 0 σ 0,1 (Θ Z s ) • d Bs - n -1 2 + λ t 0 ds Θ Z s , (40) 
where Bt , t ≥ 0 is a n-dimensional BM.

Proof of Proposition A.2:

We shall study φt ≡ Zt |Zt| . We remark that the Jacobi matrix and the Hessian matrix associated respectively to the functions Φ(x) ≡ x |x| , (x = 0) and g(x) ≡ |x| are given by: ∂

∂x j Φ i (x) = 1 |x| σ 0,1 (x) ; ∂ 2 g(x) ∂x i ∂x j = 1 |x| σ 0,1 (x).
Hence, using (39), φ satisfies the following Stochastic Differential Equation

φt = φ0 + t 0 1 |Z s | σ 0,1 ( φs ) • dZ s - n -1 2 t 0 ds |Z s | 2 φs (41) = φ0 + t 0 1 |Z s | σ 0,1 ( φs ) • dB s - t 0 n -1 2 φs |Z s | 2 + λZ s |Z s | σ 0,1 ( φs ) ds = φ0 + t 0 1 |Z s | σ 0,1 ( φs ) • dB s - t 0 φs n -1 2 1 |Z s | 2 + λ σ 0,1 ( φs ) ds. (42)
We can replace the BM B by another BM B * :

B * t ≡ t 0 σ 0,1 ( φs ) • dB s + σ 1,0 ( φs ) • dW s , where (W t , t ≥ 0) is a BM independent from B. Thus, γ t ≡ t 0
Zs |Zs| • dB s , t ≥ 0 and B * are two independent BMs, and from Knight's theorem (see e.g. [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] and other references therein), γ is independent from the BM Bt , t ≥ 0 obtained by changing the time scale of Remark A.5 Proposition A.2 is easily generalized for every process of the kind:

dZ s = dB s + h(|Z s |)Z s ds, (43) 
for every bounded function h : R n → R.

  Finally, Θ Z t , t ≥ 0 may be obtained from ( φt , t ≥ 0) by making the same change of time scale.Corollary A.3The angular part of a 2-dimensional Ornstein-Uhlenbeck process is equal to the angular part of a planar Brownian motion, considered under the time scale α t = e 2λt -1 2λ . Remark A.4 For further results concerning the case of a complex-valued OU process, see[START_REF] Vakeroudis | On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity[END_REF].Proof of Corollary A.3: It follows easily from equation (39) for n = 2 by taking the angular part. For the new time scale, it suffices to remark that, with < • > denoting the quadratic variation of a martingale: