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Abstract The goal of this paper is to introduce the notion of essential supre-
mum of a family of multi-dimensional random variables with respect to a
random convex cone. We give two applications in mathematical finance; We
determine the “minimal” portfolio process super-hedging an American claim
in the Kabanov dicrete-time model with transaction costs. For the same
model, we construct a dynamic risk measure in a continuous-time setting. At
last, we solve a Skorokhod problem with oblique reflection.
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1 Introduction

The primary goal of this paper was the following. Assume that a financial
market with proportional transaction costs is modeled by the Kabanov or
Campi–Schachermayer framework, [3]. A vector-valued portfolio process, ex-
pressed in physical units, represents the number of different risky assets an
agent holds. Given a vector-valued process h := (ht)t≤T , we interpret as an
American option, the problem is to define the possible endowments (super-
hedging prices) we need to start a vector-valued portfolio process which can
be liquidated at any instant t ∈ [0, T ], paying transaction costs, in such a way
that all its components are greater or equal than those of ht. In a discrete-
time setting, we may reformulate the problem as follows: given a set-valued
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random process (Kt(ω))t=0,··· ,T whose values are closed convex cones in Rd,
d ≥ 1, find V0 ∈ Rd allowing to start a vector-valued portfolio process
(Vt)t=0,··· ,T , i.e. ∆Vt := Vt−Vt−1 ∈ −Kt a.s., and super-hedging h in the fol-
lowing sense: Vt ≥Kt

ht, i.e. Vt−ht ∈ Kt a.s. for all t ≤ T . Papers [1] and [2]
provide dual characterizations of all super-hedging prices of a given pay-off
referred as the “hedging theorems”. The natural question which arises is to
determine the “minimal” endowments V0 we need to super-hedge the payoff
h. Of course the same problem can be posed for a European option, i.e. when
we only require to super-hedge the pay-off at the terminal date T . Without
transaction costs, the problem is simpler. A portfolio process is scalar-valued
and under the absence of arbitrage opportunities, the minimal prices of a
bounded from below European claim hT ∈ R depending on the price pro-
cess (St)t≤T ∈ Rd is given by the interval [supQ∈M(S) e

−rTEQhT ,∞) where
T is the maturity date of the option, r is the return of the non-risky asset
and M(S) is the set of all so-called risk-neutral probability measures un-

der which the discounted prices S̃t := e−rtSt are maringales, Th. 2.1.11 [3].
It is then possible to define a minimal super-hedging price as the unique
element supQ∈M(S) e

−rTEQhT (since R is endowed with a total ordering).
With transaction costs, the portfolio processes are multi-dimensional and
the ordering, defined by random cones in Rd, is only partial. The natural
question is to determine the set of all endowments V0 ∈ R allowing to start
a portfolio process super-hedging a given pay-off (ht)t≤T which are mini-

mal in the following sense: if V0 is minimal and Ṽ0 is another super-hedging

price with Ṽ0 ≤K0 V0, then Ṽ0 = V0. More generally, among the portfolio
processes super-hedging the claim (ht)t≤T at any date t (with respect to
the random cone Kt), may we find minimal portfolios? In this paper, we
prove the existence of such set of portfolios we call Essential Supremum.
This is a generalization of the notion of essential supremum of a family of
real-valued random variables but it is not a singleton in general. Although,
in the two-dimensional space R2, we prove and provide a construction of a
unique minimal portfolio. This is of great interest in finance. Indeed, recall

that Vt ≥Kt Ṽt or Vt − Ṽt ∈ Kt a.s. means that we can change Vt into Ṽt
paying some transaction costs, i.e. Ṽt is “cheaper” than Vt.

We propose to extend the concept of essential supremum of a family of
real-valued random variables to vector-valued random variables when the
partial ordering is defined by a random cone. The paper is organized as
follows; we introduce the definition and the immediate properties. We then
give conditions under which the essential supremum can be uniquely defined
as a singleton (this is the case in R2). We end the paper with applications
in finance and with a Skorohod problem with oblique relection.

2 Essential supremum with respect to a random cone

2.1 The model

Let (Ω,F ,F = (Ft)t≤T , P ) be a continuous-time stochastic basis verifying
the usual conditions. In particular, the filtration (Ft) is right continuous.
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Assume we are given t ∈ [0, T ] and a Ft-adapted closed convex cone-valued
mapping Gt in Rd with

Gt := cone{ξ1t , · · · , ξNt }

where ξ1t , · · · , ξNt are Ft-adapted processes we call the generators of Gt. We
suppose that the cone Gt is proper, i.e. Gt∩ (−Gt) = {0} a.s., and Rd

+ ⊆ Gt.
The positive dual of Gt is defined as

G∗t := {x ∈ Rd : xy ≥ 0, ∀y ∈ Gt}.

This is also a Ft-adapted closed convex cone-valued mapping and we assume
throughout the paper that

G∗t = cone{ξ1∗t , · · · , ξM∗t }

where ξ1∗, · · · , ξM∗t are Ft-adapted processes we call the generators of G∗t .
We recall that the assumptions above hold in the financial models with trans-
action costs [3]. In this case, Gt is the so-called solvency cone which is poly-
hedral.

We denote by ≥Gt
the partial ordering generated by Gt. If X,Y are two

random variables in Rd, we note X ≥Gt
Y if X − Y ∈ Gt a.s. The set of

all Ft-measurable random variables with values in a random set A ⊆ Rd

is denoted by L0(A,Ft). We denote by 1d the vector in Rd whose each
component equals 1 and ei the vector in Rd whose each component equals 0
except the ith one equal to 1.

2.2 Definitions

Our goal is to define “the essential supremum” of a collection of FT -measurable
random variables (γi)i∈I with respect to Gt at any date u ∈ [t, T ]. When ex-
istence and uniqueness hold, γ∗ = essup i(γi)u is the Fu-adapted random
variable satisfying the following statements:

γ∗ ≥Gt γi a.s. ∀i ∈ I, (2.1)

γ ∈ L0(Rd,Fu), γ ≥Gt γi a.s. ∀i ∈ I ⇒ γ ≥Gt γ
∗a.s. (2.2)

Recall that the ordering induced by the cone Gt is only partial. Hence, the
existence of such ” essential supremum” is not trivial since uniqueness does
not necessarily hold. We then define more generally the Essential supremum
at date u ∈ [t, T ] as the class (eventually empty) Γ ∗ := Essup i(γi)u of all
Fu-adapted random variables γ∗ satisfying the following statements:

γ∗ ≥Gt
γi, ∀i ∈ I, (2.3)

γ ∈ L0(Rd,Fu) and γ ≥Gt γi ∀i ∈ I ⇒ ∃ γ∗ ∈ Γ ∗ s.t. γ ≥Gt γ
∗ (2.4)

γ∗1 , γ
∗
2 ∈ Γ ∗ and γ∗1 6= γ∗2 ⇒ P (γ∗1 − γ∗2 ∈ Gt\{0}) = 0. (2.5)

When (2.3) holds, we say that γ∗ dominates the family (γi)i at date t.
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Lemma 2.1 The set Γ ∗ is unique.

Proof. Let us consider two classes C1 and C2 satisfying the axioms (2.3), (2.4)
and (2.5). Consider γ∗1 ∈ C1. Since γ∗1 dominates the collection (γi)i, there
exists γ∗2 ∈ C2 with γ∗1 ≥Gt γ

∗
2 . Similarly, there exists γ̃∗1 ∈ C1 satisfying

γ∗2 ≥Gt
γ̃∗1 . Then, γ∗1 − γ̃∗1 ∈ Gt a.s. But (2.5) implies that γ∗1 = γ̃∗1 = γ∗2 . We

deduce that C1 ⊂ C2 and finally C1 = C2. 2

Lemma 2.2 The following equivalence holds:

essup i(γi)u exists if and only if Essup i(γi)u is a singleton.

Lemma 2.3 If Essup i(γi)u is not a singleton, then Essup i(γi)u is empty or
infinite.

Proof. Suppose that Essup i(γi)u = {γ∗1 , γ∗2 , · · · , γ∗m} where γ∗i 6= γ∗j if
i 6= j. For each k ∈ N, the random variable (1/k)γ∗1 + (1− 1/k)γ∗2 dominates
(γi)i. We deduce Nk ∈ {3, · · · ,m} such that (1/k)γ∗1 + (1− 1/k)γ∗2 ≥Gt

γ∗Nk
.

But there exists at least an integer j ∈ {3, · · · ,m} and an infinite subsequence
Nkn such thatNkn = j, ∀n. By letting n tend to∞, we deduce that γ∗2 ≥Gt

γ∗j
so that γ∗2 = γ∗j hence a contradiction. 2

Lemma 2.4 The class Essup i(γi)u is decomposable, i.e. whatever γ∗1 , γ
∗
2 in

Essup i(γi)u and Ωu ∈ Fu, γ∗1IΩu + γ∗2IΩc
u
∈ Essup i(γi)u.

Proof. It suffices to consider Γ = Essup i(γi)u ∪ {γ̃} where γ̃ is defined as
γ̃ := γ∗1IΩu

+ IΩc
u
γ∗2 . This set satisfies Axioms (2.3), ( 2.4) and ( 2.5) so that

Γ = Essup i(γi)u. 2

Lemma 2.5 If A ⊂ B then EssupB ⊆ EssupA .

Similarly, we define essinf i(γi)u := −essup i(−γi)u and

Essinf i(γi)u := −Essup i(−γi)u.

3 Existence

In the following section, we show that the Essential supremum of a family
of FT -adapted random variables at some date u ∈ [t, T ] is not empty under
mild assumptions. To do so, we prove several lemmas.

Lemma 3.1 Let us consider a collection (γi)i∈I ⊂ L0(Rd,FT ) such that
there exists γ ∈ L0(Rd,Fu) satisfying γi ≤Gt

γ, ∀i ∈ I. Suppose there exists
j0 ∈ I such that E(γj0 |Fu) = 0. Then, Essup i(γi)u is not empty.

Proof. Let us define for any γ̂ ∈ L0(Rd,Fu) satisfying γi ≤Gt γ̂ ∀i ∈ I, the
real number

a1(γ̂) := inf
γ∈C1(γ̂)

Eξ1∗t γ ≥ 0

where

C1(γ̂) := {γ ∈ L0(Rd,Fu) : γ ≥Gt
γi, ∀i ∈ I and γ ≤Gt

γ̂}.
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Consider a sequence (γ̂n) ∈ C1(γ̂) such that a1(γ̂) = limnEξ
1∗
t γ̂n. Let us

define χn := −γ̂n/(1 + |γ̂|). Since Rd
+ ⊆ Gt, it follows that χn ≥Gt

−1d and
χn ∈ L0(−Gt,Fu). Indeed, by assumption E(γj0 |Fu) = 0 so that γ ∈ Gt
whenever γ ∈ C1(γ̂). To see it, observe that ξi∗t γ ≥ ξi∗t γj0 whatever the
selector ξi∗t ∈ L0(G∗t ,Ft). It follows that ξi∗t γ ≥ ξi∗t E(γj0 |Fu) and ξi∗t γ ≥ 0.
From there, we deduce that γ ∈ Gt a.s.

We split Ω in Ω = Ω1∪Ωc1 where Ω1 = {lim infn |χn| =∞}. On Ω1, there
exists a.s.(ω) a subsequence nk(ω) such that |χnk | → ∞. Let us define χ̃n =
(χn/|χn|)I|χn|6=0. We may assume by compacity that χ̃nk(ω)(ω) → χ̃∞(ω)

on Ω1 where |χ̃∞(ω)| = 1. Moreover, χ̃nk(ω)(ω) ≥Gt
−1d/|χnk |. By getting

nk converged to ∞, we deduce that χ̃∞(ω) ≥Gt 0 in contradiction with the
assumption χ̃∞(ω) ≤Gt

0. Indeed, since Gt is closed and proper, we deduce
that χ̃∞(ω) = 0 in contradiction with |χ̃∞| = 1.

We then deduce that Ω = Ωc1. According to the lemma on subsequences
(Lemma 2.1.2 [3]), there exists a strictly increasing sequence of integer-valued
Fu- adapted random variables nk such that χnk → χ∞ on Ω. It follows that
γ̂nk

is also convergent to some random variable γ1. Since Gt is convex and
closed, γ1 ∈ C1(γ̂). In particular, γ1 ∈ L0(Gt,Fu). We then may apply the
Fatou lemma:

Eξ1∗t γ
1 ≤ lim inf

k
Eξ1∗t γ̂nk

≤ a1(γ̂) ≤ Eξ1∗t γ1.

We then deduce that a1(γ̂) = Eξ1∗t γ
1. We repeat the procedure in the fol-

lowing way. Consider

a2(γ̂) := inf
γ∈C2(γ̂)

Eξ2∗t γ ≥ 0

where

C2(γ̂) := {γ ∈ L0(Rd,Fu) : γ ≥Gt γi, ∀i ∈ I and γ ≤Gt γ
1} ⊂ C1(γ̂).

We get γ2 ∈ C2(γ̂) such that a1(γ̂) = Eξ1∗t γ
2 and a2(γ̂) = Eξ2∗t γ

2. Reiterat-
ing the procedure, we finally get a Fu-adapted random variable γM ∈ Ci(γ̂),
1 ≤ i ≤M satisfying

ai(γ̂) = Eξi∗t γ
M , ∀i = 1, · · · ,M. (3.1)

Observe that γM ≤Gt
γ̂ by definition. We denote by Λ(γ̂) the set of all

random variables γM ∈ CM (γ̂) verifying (3.1) and we define

Essup i(γi)u :=
⋃
γ̂∈Θ

Λ(γ̂) (3.2)

where Θ is the set of all Fu–adapted γ̂ satisfying γi ≤Gt
γ̂, ∀i ∈ I. Of

course, for a given γ̂, Λ(γ̂) is not necessarily unique so the union should be
understood over all possible sets CM (γ̂). It remains to show that the class
defined by (3.2) satisfies the statements (2.3), (2.4) and (2.5).

If γ∗ ∈ Essup i(γi)u, it is obvious that γ∗ verifies Assertion (2.3). We
claim that for any γ ∈ L0(Rd,Fu), dominating every γi, i ∈ I, Assertion
(2.4) holds. It suffices to consider an arbitrary γ∗ ∈ Λ(γ). At last, consider
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γ∗1 , γ
∗
2 ∈ Essup i(γi)u with γ∗1 ∈ Λ(γ̂1) and γ∗2 ∈ Λ(γ̂2). Assume that γ∗1−γ∗2 ∈

Gt\{0} on a non null set Ωu ∈ Fu. Then, there exists i ∈ {1, · · · ,m} and a
non null setΘu ⊂ Ωu such that ξi∗t (γ∗1−γ∗2 )IΘu ≥ 0 and Eξi∗t (γ∗1−γ∗2)IΘu > 0.
It follows that

ai(γ̂1) = Eξi∗t γ
∗
1 > Eξi∗t (γ∗2IΘu

+ γ∗1IΘc
u
). (3.3)

But γ = γ∗2IΘu +γ∗1IΘc
u
≤Gt γ

∗
1 ∈ Ci(γ̂1) and γ dominates the family (γi)i∈I .

It follows that γ ∈ Ci(γ̂1) which implies that Eξi∗t γ ≥ ai(γ̂1) in contradiction
with (3.3). Hence, Assertion (2.5) holds. 2

Corollary 3.2 Let us consider a family (γi)i∈I ∈ L0(Rd,FT ) such that there
exists γ ∈ L0(Rd,Fu) satisfying γi ≤Gt

γ ∀i ∈ I. Then, Essup i(γi)u is not
empty.

Proof. Let us define, for all i ∈ I, γ̃i := γi − E(γj0 |Fu) where j0 ∈ I is
fixed. This collection obviously satisfies the conditions of Lemma 3.1. We
then conclude with

Essup i(γi)u = Essup i(γ̃i)u + E(γj0 |Fu).

2

In the one dimensional case, with G0 = R+, we may define the essential
supremum essup i(γi)u as soon as the family (γi)i∈I is bounded from above
by a real-valued and Fu-adapted random variable as shown above. In partic-
ular essup i(γi)T coincides with the usual essential supremum essup i(γi) as
defined in the literature. Actually, we may extend the definition for random
variables taking values in (−∞,∞] as follows:

Proposition 3.3 For any family (γi)i∈I ∈ L0(R,FT ) of scalar random vari-
ables (which may take infinite values), there exists a unique Fu-adapted ran-
dom variable essup i(γi)u := γ verifying:

(1) γ ≥ γi, ∀i ∈ I,

(2) If γ′ ∈ L0(R,Fu) verifies γ′ ≥ γi, ∀i ∈ I, then γ′ ≥ γ.

Proof. It suffices to take γ := limm→∞ essup i(γi ∧m)u. 2

Remark 3.4 We have essup i(γi)u ≥ essup i(γi)T , ∀u ∈ [0, T ].

Corollary 3.5 Assume that the family (γi)i∈I satisfies essup i|γi|u <∞ a.s.
Then, Essup i(γi)u is not empty.

Proof. Consider the family

γ̃i :=
γi

1 + essup j |γj |u
, i ∈ I.

We have−1d ≤Gt γ̃i ≤ 1d. Applying Corollary 3.2, we deduce that Essup i(γ̃i)u
is not empty. It follows that Essup i(γi)u is not empty and is given by

Essup i(γi)u = (1 + essup j |γj |u)Essup i(γ̃i)u. (3.4)
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Indeed, consider γ∗ ∈ (1+essup j |γj |u)Essup i(γ̃i)u, i.e. γ∗ = (1+essup j |γj |u)γ̃∗

where

γ̃∗ ≥Gt

γi
1 + essup j |γj |u

, ∀i ∈ I.

We deduce that γ∗ ≥Gt
γi, ∀i ∈ I, i.e. Assertion (2.3) holds. Let us consider

a random variable γ verifying γ ≥Gt γi, ∀i ∈ I. Then, we also have the
inequalities γ/(1 + essup j |γj |u) ≥Gt

γ̃i, ∀i ∈ I. We deduce γ̃∗ ∈ Essup i(γ̃i)u
such that γ/(1 + essup j |γj |u) ≥Gt

γ̃∗ and γ ≥Gt
(1 + essup j |γj |u)γ̃∗ i.e.

Assertion (2.4) holds. Similarly, Assertion (2.5) holds. 2

4 Immediate properties

Corollary 4.1 Let us consider a family (γi)i∈I . Then, essup i|γi|T <∞ (a.s.)
if and only if there exists γ1, γ2 ∈ L0(Rd,FT ) such that γ1 ≤Gt

γi ≤Gt
γ2, ∀i.

Proof. Assume that essup i|γi|T <∞ a.s. Applying Corollary 3.5, we deduce
that Essinf i(γi)T and Essup i(γi)T are not empty so that we can conclude.
Reciprocally, suppose that essup i|γi|T = ∞ on a non null set Λ. We may
extract a subsequence such that |γi| → ∞. We introduce the random variables
γ̃i = γi/|γi|, γ̃1i = γ1/|γi| and γ̃2i = γ2/|γi|. By assumption, we obtain
γ̃1i ≤Gt

γ̃i ≤Gt
γ̃2i, ∀i ∈ I. By compacity, we may assume that γ̃i → γ̃ with

|γ̃| = 1. On the other hand, the last inequality yields γ̃ = 0 on Λ since Gt is
closed and proper. Hence a contradiction. 2

Proposition 4.2 Let us consider a family (γi)i∈I ∈ L0(Rd,FT ) such that
Essup i(γi)u 6= ∅ where u ∈ [t, T ]. If λu ∈ L0(R+,Fu), then

Essup i(λuγi)u = λuEssup i(γi)u.

Proof. We first suppose that there exists i0 ∈ I such that E(γi0 |Fu) = 0. It
follows that

Essup i(λuγi)u ∪ Essup i(γi)u ⊂ L0(Gt,Fu). (4.5)

Let us consider γ ∈ Essup i(λuγi)u. Since γ ≥Gt
λuγi, ∀i, we then deduce

that for a given γ1∗ ∈ Essup i(γi)u,

γ

λu
I{λu 6=0} + γ1∗I{λu=0} ≥Gt

γi, ∀i ∈ I.

We deduce γ∗ ∈ Essup i(γi)u such that

γ

λu
I{λu 6=0} + γ1∗I{λu=0} ≥Gt γ

∗.

By virtue of (4.5), γ ≥Gt
λuγ

∗. Similarly, there exists γ1 ∈ Essup i(λtγi)u
such that λuγ

∗ ≥Gt γ
1. We then deduce that γ = γ1 = λuγ

∗. We have shown

Essup i(λuγi)u ⊆ λuEssup i(γi)u.
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Reciprocally, if γ∗ ∈ Essup i(γi)u, then λuγ
∗ ≥Gt λuγi, ∀i ∈ I. So, there is

γ ∈ Essup i(λuγi)u such that λuγ
∗ ≥Gt

γ. We deduce that

γ∗ ≥Gt

γ

λu
Iλu 6=0 + γ∗Iλu=0 ≥Gt γ

1∗ (4.6)

where γ1∗ ∈ Essup i(γi)u. From there, γ∗ = γ1∗ and λuγ
∗ = γ if λu 6= 0.

Otherwise, λuγ
∗ ≥Gt γ implies that γ = 0 since γ ≥Gt 0 by virtue of (4.5).

We then conclude that λuγ
∗ = γ and the reverse inclusion is proven.

In the general case, we fix i0 ∈ I and we deduce from above that

Essup i(λuγi)u = Essup i (λu(γi − E(γi0 |Fu)))u + λuE(γi0 |Fu),

= λuEssup i (γi − E(γi0 |Fu))u + λuE(γi0 |Fu),

= λu (Essup i (γi − E(γi0 |Fu))u + E(γi0 |Fu)) ,

= λuEssup i(γi)u.

2

Proposition 4.3 Let us consider X ∈ L0(Rd,Fu) where u ∈ [t, T ]. Assume
that Essup (X, 0)u is a singleton. Then,

Essup (X,−X, 0)u ⊂ Essup (X, 0)u + Essup (−X, 0)u.

Proof. Let us consider γ∗ ∈ Essup (X,−X, 0)u. Then, γ∗ + X ≥Gt
X and

γ∗+X ≥Gt
0. We deduce that γ∗+X ≥Gt

γ1 where γ1 := essupGt(X, 0)u. We
also have γ∗ ≥Gt γ1. Then γ∗−γ1 ≥Gt −X, 0. We deduce that γ∗−γ1 ≥Gt γ2
where γ2 ∈ EssupGt(−X, 0)u. On the other hand, γ1 + γ2 dominates X, −X
and 0. Hence there is γ1∗ ∈ EssupGt(−X,X, 0)u such that γ∗ ≥Gt

γ1+γ2 ≥Gt

γ1∗. It follows that γ∗ = γ1 + γ2 = γ1∗. 2

Remark 4.4 In the case where the three essential supremum sets above are
singletons, the inclusion is an equality.

Proposition 4.5 Assume that the cone Gt is such that the essential supre-
mum of two random variables is necessary a singleton. Let us consider a
family (γi)i∈I ∈ L0(Rd,FT ) and u ∈ [t, T ]. Then, the set Essup i(γi)u is
closed in probability.

Proof. Consider Γ the closure in probability of Essup i(γi)u. It suffices to
check that Γ satisfies the same axioms than Essup i(γi)u. First, if γn con-
verges in probability to γ∗ ∈ Γ , there exists a subsequence nk such that
γnk → γ∗ a.s. From γnk ≥Gt

γi, ∀i ∈ I, we deduce that γ∗ ≥Gt
γi, ∀i.

Secondly, if δ ∈ L0(Rd,Fu) satisfies δ ≥Gt
γi, ∀i ∈ I, then there ex-

ists γ ∈ Essup i(γi)u ⊆ Γ such that δ ≥Gt γ. At last, consider γ1, γ2 ∈
Γ and suppose that γ1 − γ2 ∈ Gt\{0} on a non null set Ωu ∈ Fu. We
may assume there exists i ∈ {1, · · · ,M} such that ξi∗t γ1 > ξi∗t γ2 on Ωu
where, by density, γ1, γ2 ∈ Essup i(γi)u. We assume without loss of gen-
erality that Essup i(γi)u 6= ∅. It follows that the essential supremum is
given by Lemma 3.1. In particular, considering the notations of the proof,
γ1 ∈ CM (γ̂) and, for all i, the inequality ai(γ̂) = Eξi∗t γ1 > Eξi∗t γ ≥ ai(γ̂)
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holds where γ := γ1IΩ\Ωu
+ essinf (γ2, γ1)IΩu hence a contradiction. In-

deed, essinf (γ2, γ1) ≤Gt
γ2 yields the last strict inequality. Since γ2, γ1

dominate the family (γi)i∈I , we deduce that essinf (γ2, γ1) ≥Gt
(γi)i∈I with

essinf (γ2, γ1) ≤Gt γ̂. 2

Definition 4.6 A subset Λu ⊆ L0(Rd,Fu) is said decomposable if Ωu ∈ Fu
and γ, γ̃ ∈ Λu implies γIΩu + γ̃IΩc

u
∈ Λu.

Corollary 4.7 Suppose that the conditions of Proposition 4.5 hold. Let us
consider a family (γi)i∈I ∈ L0(Rd,FT ). Then, there exists a closed set-valued
and Fu-measurable mapping Γu ⊆ Rd such that

Essup i(γi)u = L0(Γu,Fu).

In particular, the graphs of Γu are Fu ⊗ B(Rd)–measurable.

Proof. We know that Essup i(γi)u is closed in probability. Moreover, observe
that Essup i(γi)u is decomposable. We then conclude applying Proposition
5.4.3 [3]. 2

Proposition 4.8 Let us consider a totally ordered family (γi)i∈I ∈ L0(Rd,Ft)
such that there exists γ ∈ L0(Rd,Ft) with γi ≤Gt

γ, ∀i ∈ I. Then Essup i(γi)t
is a singleton {γ∗}. Moreover, there exists a random subsequence nk ∈ N such
that γnk

is an increasing sequence converging a.s. to γ∗.

Proof. Consider
bj := sup

i∈I
Eξj∗t γi, j = 1, · · · ,M.

There exists some subsequences (i
(j)
k ) such that bj = limk ↗ Eξj∗t γi(j)k

. Since

the family we consider is totally ordered, we deduce that the sequences (γ
i
(j)
k

)k

are increasing with respect to the partial ordering induced by Gt. We then
set

γik := Essup 1≤j≤M (γ
i
(j)
k

)t ⊆ {γi(j)k

: 1 ≤ j ≤M}.

It is straightforward that (γik)k is still an increasing sequence and moreover

bj = lim
k
↗ Eξj∗t γik , ∀1 ≤ j ≤M.

Notice that γi1 ≤Gt γik ≤Gt γ, k ≥ 1. We deduce that lim infk |γik |t <∞.
We then deduce a random sequence nk ∈ N such that γnk

converges a.s.
to some γ∗ ≤Gt

γ. Recall that γnk
reads as γnk

=
∑∞

p=1 γpI{nk=p}. Since

the sequences (γik)k and nk are increasing (a.s.), we then deduce that the
sequence γnk

is also increasing with respect to the partial ordering induced
by Gt. From nk(ω) ≥ k a.s.(ω), we deduce that γnm(ω) ≥Gt

γk(ω) a.s. if
m ≥ k. It follows that γ∗ ≥Gt

γk for any k. From there, we deduce that
Essup i(γi)t = {γ∗}. Indeed, if γ ≥Gt

γk for any k, then γ ≥Gt
γnk

and
γ ≥Gt γ∗, i.e. the singleton {γ∗} satisfies the required axioms to be the
essential supremum. 2

We immediately deduce the following:

Corollary 4.9 Let us consider a family (γi)i∈I ∈ L0(Rd,Ft) such that
Essup i(γi)t 6= ∅. Assume that (γi)i∈I is decomposable and closed in prob-
ability. Then (γi)i∈I is an inductive set and so contains at least one maximal
element.
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5 When the generators are linearly independent

Recall that x ∈ Gt if and only if there are some positive coefficients αi(x) ≥ 0
such that

x =

N∑
i=1

αi(x)ξit.

We have the following lemma:

Lemma 5.1 Assume that ξ1t , · · · , ξNt are linearly independent. Let us con-
sider x, y ∈ Gt. Then, x ≥Gt

y if and only if αi(x) ≥ αi(y),∀i = 1, · · · , N .

Proof. If x− y ∈ Gt and x, y ∈ Gt, then

x− y =

N∑
i=1

αi(x− y)ξit =

N∑
i=1

(αi(x)− αi(y)) ξit.

We deduce that 0 ≤ αi(x− y) = αi(x)− αi(y), ∀i, and we conclude. 2

Lemma 5.2 Assume that ξ1t , · · · , ξNt are linearly independent and we are
given a finite family η1, · · · , ηm ∈ L0(Gt,FT ). Consider u ∈ [t, T ]. If there
exists γ ∈ L0(Rd,Fu) such that (ηi)i ≤Gt

γ a.s., then Γ ∗u := Essup i(ηi)u is
not empty and reduced to the singleton essup i(ηi)u.

Proof. By a measurable selection argument, let us write

ηi =

N∑
j=1

αijξ
j
t

where αij are positive and FT -adapted random variables. We then define

α̂j := essup i(α
i
j)u which is a.s. finite. Indeed, recall that (ηi)i ≤Gt

γ so that
we may apply Lemma 5.1. Let us set

essup i(ηi)u := γ∗ :=

N∑
j=1

α̂jξ
j
t .

By virtue of Lemma 5.1, γ∗ dominates ηi for all i . Moreover, if another
Fu-adapted random variable η dominates ηi for all i, then η ∈ L0(Gt,Fu).
Its decomposition

η =

N∑
j=1

αjξ
j
t

verifies αj ∈ L0(R+,Fu) and αj ≥ αij , ∀i, by virtue of Lemma 5.1, i.e.
αj ≥ α̂j or η ≥Gt γ

∗.2

In the same way, we show the following:

Lemma 5.3 Assume that ξ1t , · · · , ξNt are linearly independent and we are
given a finite family η1, · · · , ηm ∈ L0(Gt,FT ). If there exists γ ∈ L0(Rd,Fu)
such that (ηi)i ≥Gt

γ a.s., then Essinf i(γi)u is not empty and is reduced to
the singleton essinf i(γi)u.



11

Lemma 5.4 Assume that ξ1t , · · · , ξNt are linearly independent. Suppose we
are given a family (γi)i∈I and γ ∈ L0(Rd,Fu) such that γi ≤Gt

γ, ∀i ∈ I.
Then, Essup i(γi)u is not empty and is reduced to the singleton essup i(γi)u.

Proof. We may assume without loss of generality that there exists j0 ∈ I
such that E(γj0 |Fu) = 0 . Let us define

a1 := inf
γ∈C

Eξ1∗t γ ≥ 0

where

C := {γ ∈ L0(Rd,Fu) : γ ≥Gt
γi, ∀i ∈ I}.

Let us consider a sequence (γ̂n)n ∈ C such that a1 = limnEξ
1∗
t γ̂n. Let us

define

χn := − γ̂n
1 + |γ|

.

By assumption, we have χn ≥Gt −1d, and χn ∈ L0(−Gt,Fu).
As in the proof of Lemma 3.1, there exists a Fu-adapted subsequence nk

such that χnk is a.s. convergent. Hence γ̂nk
is also convergent to γ1. Since Gt

is convex and closed, γ1 ∈ C and belongs to L0(Gt,Fu). Applying the Fatou
lemma:

Eξ1∗t γ
1 ≤ lim inf

k
Eξ1∗t γ̂nk

≤ a1.

We deduce that a1(γ̂) = Eξ1∗t γ
1. In the same way, we define a2, · · · , aM and

we find γ2, · · · , γM ∈ C satisfying

ai := inf
γ∈C

Eξi∗t γ = Eξi∗t γ
i, i ≤M.

By virtue of Lemma 5.3, let us define γ∗ := essinf i(γ
i)u. By definition,

γ∗ ∈ C and

ai := inf
γ∈C

Eξi∗t γ = Eξi∗t γ
∗, i ≤M.

Assume that γ ∈ L0(Rd,Fu) verifies γ ≥Gt γi, ∀i ∈ I, and γ − γ∗ /∈ Gt
on a non null set Ωu ∈ Fu. Then, there exists i ∈ {1, · · · ,M} and a non
null set Θu ⊂ Ωu such that ξi∗t (γ − γ∗)IΘu

≤ 0 and Eξi∗t (γ − γ∗)IΘu
< 0. It

follows that

ai = Eξi∗t γ
∗ > Eξi∗t (γIΘu

+ γ∗IΘc
u
). (5.7)

But γ̃ = γIΘu
+ γ∗IΘc

u
∈ C. Hence, Eξi∗t γ̃ ≥ ai and we get a contradiction.

2

Corollary 5.5 Assume that ξ1t , · · · , ξNt are linearly independent. Let us con-
sider a collection (γi)i∈I with essup i|γi|u <∞ a.s. Then, Essup i(γi)u is not
empty and equals the singleton essup i(γi)u.

Proof. The proof is similar to that of Corollary 3.5. 2



12

Lemma 5.6 Assume that G is generated by some linearly independent gen-
erators ξ1t , · · · , ξNt . We are given a family of FT -adapted random variables
(γi)i such that there exists γ ∈ L0(Rd,Fu) satisfying γ ≥Gt

γi, ∀i ∈ I, where
u ∈ [t, T ]. Consider an arbitrary selector ηt of G∗, i.e. ηt ∈ L0(G∗t ,Ft). Then,

(essup i(γi)u) .ηt ≥ essup i (γi.ηt)u .

Proof. Since essup i(γi)u ≥Gt γi, ∀i ∈ I, we deduce the inequality
(essup i(γi)u) .ηt ≥ γi.ηt, ∀i ∈ I. It follows that

(essup i(γi)u) .ηt ≥ essup i (γi.ηt)u .

2

Lemma 5.7 Assume that Gt and G∗t are generated by a finite number of
linearly independent generators. We are given a family of FT -adapted random
variales (γi)i such that there exists γ ∈ L0(Rd,Fu) satisfying γ ≥Gt γi, ∀i,
where u ∈ [t, T ]. Consider an arbitrary generator ηt ∈ L0(G∗t ,Ft). Then,

(essup iγi)u .ηt = essup i (γi.ηt)u .

Proof. In sight of the previous lemma, assume that

(essup iγi)u .ηt � essup i (γi.ηt)u . (5.8)

We denote by η(1) := ηt, · · · , η(d) the generators of G∗t and we recall that
they are linearly independent by assumption. By a measurable selection ar-
gument, we consider ξt ∈ {η(2), · · · , η(d)}⊥ with ξtη

(1) ≥ 0 and |ξt| = 1.
It is possible; in the contrary case, we have {η(2), · · · , η(d)}⊥ = {0} and
lin (η(2), · · · , η(d)) = Rd. We deduce that ξt ∈ L0(Gt,Ft). Again, by a mea-
surable selection argument, we then deduce from (5.8) the existence of a
αu ∈ L0(R+,Fu) small enough such that

(essup i(γi)u − αuξt) .ηt ≥ essup i (γi.ηt)u .

From there, it follows that essup i(γi)u − αuξt ≥Gt
γi, ∀i ∈ I, and we get

that essup i(γi)u − αuξt ≥Gt
essup i(γi)u hence a contradiction. 2

Lemma 5.8 Let us consider a collection of FT -measurable random variables
γ = (γi)i∈I such that essup i∈I(γi)u exists where u ∈ [t, T ]. Consider the
“upward” completion defined as

γup :=
{

essup i1,··· ,in(γi1 , · · · , γin) : n ∈ N, ij ∈ I
}
. (5.9)

Then
essup i∈I(γi)u = essup γ∈γup(γ)u.

Proof. By definition, essup i∈I(γi)u ≥Gt
γij , whatever ij ∈ I. We deduce that

essup i∈I(γi)u ≥Gt essup j≤n(γij )u and then

essup i∈I(γi)u ≥Gt
essup γ∈γu(γ)u.

The reverse inequality is obvious so that we can conclude. 2
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Corollary 5.9 Assume that Gt is generated by a finite number of linearly
independent generators and G∗t is generated by a basis of Rd. We are given a
directed upwards family of Ft-adapted random variales (γi)i∈I such that there
exists γ ∈ L0(Rd,Ft) satisfying γ ≥Gt

γi, ∀i. Consider ηs ∈ L0(Rd,Fs)
where s ≤ t. Then, there exits a sequence in ∈ I such that

(essup iγi)t .ηs = lim
n
γin .ηs.

In particular,
(essup iγi)t .ηs ≤ essup i (γi.ηs) .

Proof. Since the generators ξ1∗t , · · · , ξd∗t of G∗t generate Rd, we deduce by a

measurable selection argument that ηs =
∑d

j=1 ajξ
j∗
t where aj ∈ L0(R,Ft)

for all j ≤ d. By virtue of Lemma 5.7,

(essup iγi)t .ηs =

d∑
j=1

ajessup i

(
γi.ξ

j∗
t

)
t

where here essup i

(
γi.ξ

j∗
t

)
t

= essup i

(
γi.ξ

j∗
t

)
is the R-valued essential supre-

mum of the litterature. For each j ≤ d, the family (γi.ξ
j∗
t )i is directed

upwards. We then deduce the existence of a sequence ijn ∈ I such that

essup i

(
γi.η

j∗
t

)
= limn ↑ γijn .η

j∗
t , see A.3.3 [3]. But, (γi)i∈I being directed

upwards, we deduce in ∈ I such that essup i

(
γi.η

j∗
t

)
= limn ↑ γin .η

j∗
t for all

j ≤ d and we conclude. 2

Lemma 5.10 Assume that Gt and G∗t are generated by linearly indepen-
dent generators. We are given a family of FT -adapted random variables
γ = (γi)i∈I such that there exists γ ∈ L0(Rd,Fu) satisfying γ ≥Gt

γi, ∀i,
where u ∈ [t, T ]. If E (essup i(γi)u|Ft) exists, then

essup iE(γi|Ft)t ≤Gt
E (essup i(γi)u|Ft) .

Moreover, if γ is directed upward and u = T then

essup iE(γi|Ft)t = E (essup i(γi)T |Ft) .

Proof. Let us consider an arbitrary selector ξ∗t ∈ L∞(G∗t ,Ft). Then, for all i,

E (essup i(γi)u|Ft) ξ∗t = E ((essup i(γi)u) ξ∗t |Ft) ≥ E (γiξ
∗
t |Ft) = E (γi|Ft) ξ∗t .

From there, we get that

E (essup i(γi)u|Ft) ≥Gt E (γi|Ft) , ∀i ∈ I,

and we conclude that

E (essup i(γi)u|Ft) ≥Gt essup iE (γi|Ft)t .

By virtue of Lemma 5.8, recall that
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essup i(γi)u = essup γ∈γup(γ)u.

Assume that the inequality

E (essup i(γi)T |Ft) ≤Gt
essup iE (γi|Ft)t

does not hold on a non null set Λt ∈ Ft.
Then, there exists a generator ξ∗t ∈ L0(G∗t ,Ft) such that the following

inequality holds on a subset of Λt.

E (essup i(γi)T |Ft) ξ∗t > (essup iE (γi|Ft)t) ξ
∗
t ≥ E (γi.ξ

∗
t |Ft) ,

E ((essup i(γi)T ) ξ∗t |Ft) > (essup iE (γi|Ft)t) ξ
∗
t ≥ E (γi.ξ

∗
t |Ft) .

By virtue of Lemma 5.7, we have on Λt,

E (essup i(γiξ
∗
t )T |Ft) > essup iE (γiξ

∗
t |Ft)t ≥ E (γi.ξ

∗
t |Ft) .

But the family (γiξ
∗
t )i is directed upwards by assumption and takes real

positive values. By virtue of Proposition A.3.1 [3], we then deduce that

E (essup i(γiξ
∗
t )T |Ft) = essup iE (γiξ

∗
t |Ft)t

which yields a contradiction. 2

6 Generalization and applications

We assume given t ∈ [0, T ] and a family of Fti -adapted closed convex cones

G̃ := (G̃ti)i∈I , ti ∈ [t, T ]. We consider a family (γi)i∈I ∈ L0(R,FT ). We
define the generalized Essential supremum at date u ∈ [t, T ] as the class

Γ ∗ := EssupGt

i (γi, G̃ti)u (eventually empty) of Fu-adapted random selectors
γ∗ satisfying

γ∗ ≥G̃ti
γi, ∀i ∈ I, (6.10)

γ ∈ L0(Rd,Fu), γ ≥G̃ti
γi, ∀i ∈ I,⇒ ∃ γ∗ ∈ Γ ∗ s.t. γ ≥Gt

γ∗ (6.11)

γ∗1 , γ
∗
2 ∈ Γ ∗, γ∗1 6= γ∗2 ⇒ γ∗1 − γ∗2 /∈ Gt\{0} a.s. (6.12)

Remark 6.1 Similarly, we may define Essinf Gt

i (γi, G̃ti)u replacing the in-
equality γ∗ ≥G̃ti

γi by γ∗ ≤G̃ti
γi and in (6.11) changing γ ≥Gt γ

∗ into

γ ≤Gt
γ∗.

Following the proofs of Section 3, we get similar results:

Lemma 6.2 Let us consider a collection (γi)i∈I ⊂ L0(Rd,FT ) such that
there exists γ ∈ L0(Rd,Fu) satisfying γi ≤G̃ti

γ, ∀i ∈ I. Suppose there

exists j0 ∈ I such that tj0 = t and G̃tj0 ⊆ Gt. Then, EssupGt

i (γi, G̃ti)u is
not empty.
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Theorem 6.3 Assume that Gt is generated by a finite number of linearly
independent generators. Let us consider a family (γi)i∈I ⊂ L0(Rd,FT ) such
that there exists γ ∈ L0(Rd,Fu) satisfying γi ≤Gti

γ, ∀i ∈ I. Suppose there

exists j0 ∈ I such that tj0 = t and G̃tj0 ⊆ Gt. Then, EssupGt

i (γi, Gti)u is

not empty and equals the singleton essupGt

i (γi, Gti)u.

Proof. By virtue of Lemma 6.2, consider γ1, γ2 ∈ EssupGt

i (γi, G̃ti)u 6= ∅.
Assume that γ1 6= γ2 so that γ2 − γ1, γ1 − γ2 /∈ Gt\{0} a.s. Without loss
of generality, we assume that E(γj0 |Fu) = 0. Then, there exists coefficients
αj , βj ∈ L0(R+,Fu) such that

γ1 =

N∑
j=1

αjξ
j
t , γ2 =

N∑
j=1

βjξ
j
t

where (ξjt ) ∈ L0(Rd,Ft) are the linear independent generators of Gt. Suppose

that α1 > β1 on a non null set. Then, let us define γ
(1)
1 := γ1 and

γ
(1)
2 := γ2I{α1>β1} + γ1I{α1≤β1} ∈ EssupGt

i (γi, G̃ti)u.

Otherwise, we set γ
(1)
1 := γ2 and γ

(1)
2 := γ1. We then deduce that

γ
(1)
1 =

N∑
j=1

α
(1)
j ξjt , γ

(1)
2 =

N∑
j=1

β
(1)
j ξjt

with α
(1)
1 ≥ β(1)

1 . Assume we have already defined (γ
(j)
1 , γ

(j)
2 ) ∈ EssupGt

i (γi, G̃ti)u,

for j ≤ N − 1, verifying α
(j)
k ≥ β

(j)
k for all k ≤ j . Suppose that β

(j)
j+1 > α

(j)
j+1

on a non null set. We then define γ
(j+1)
1 := γ

(j)
1 and

γ
(j+1)
2 := γ

(j)
1 I{β(j)

j+1>α
(j)
j+1}

+ γ
(j)
2 I{β(j)

j+1≤α
(j)
j+1}
∈ EssupGt

i (γi, G̃ti)u.

Otherwise, we set (γ
(j+1)
1 , γ

(j+1)
2 ) := (γ

(j)
1 , γ

(j)
2 ). We get that α

(j+1)
k ≥ β(j+1)

k

for all k ≤ j+1. In particular, with j = N−1, we deduce that γ
(N)
1 ≥Gt

γ
(N)
2 .

But γ
(N)
1 , γ

(N)
2 ∈ Essup i(γi)u implies that γ

(N)
1 = γ

(N)
2 hence we have the

equality chain γ
(N−1)
1 = γ

(N−1)
2 , · · · , γ(1)1 = γ

(1)
2 and finally γ1 = γ2. 2

6.1 Superhedging of American options

Let us consider the discrete-time financial model of Kabanov with propor-
tional transaction costs (see [3] for more details). We are given random cones
(Gt)0≤t≤T satisfying the hypothesis given in introduction. We interpret them
as solvency cones, i.e. Gt is the set of all portfolio positions we can change
into positive ones (i.e. in Rd

+) paying transaction costs. A portfolio pro-
cess (Vt)0≤t≤T expressed in physical units is a process with the dynamics:
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∆Vt := Vt − Vt−1 ∈ −Gt a.s. The goal is the following: given an American
claim (ht)0≤t≤T , find a “minimal” portfolio (Vt)0≤t≤T such that Vt ≥Gt

ht,
for all t, and VT = hT . Such a portfolio V is said “minimal” in the sense that
if W is another one satisfying the same property, then Wt ≥Gt

Vt for all t.
Throughout this section, we suppose that the random cones G and G∗ are
generated by linear independent generators. This is the case when d = 2 and
the transaction costs coefficients are strictly positive, [3]. We define a “Snell
envelop” as follows.

Proposition 6.4 Assume there exists k ≥ 0 such that ht ≤Gt
k1d for all

t. Then, there exists a unique minimal portfolio process (Vt)0≤t≤T such that
Vt ≥Gt

ht, for all t, and VT = hT . Moreover,

Vt = essupGt ((ht, Gt), (Vt+1, Gt+1))t , t ≤ T − 1.

Proof. We set VT = hT and inductively we define Vt := essup (ht, Vt+1)t
where the essential supremum is understood in the generalized sense of this
section; ht is associated to the cone Gt and Vt+1 is associated to Gt+1. It
follows that Vt is Ft-adapted and satisfies Vt ≥Gt

ht. Since, we also have
Vt ≥Gt+1 Vt+1, it follows that ∆Vt+1 ∈ −Gt+1, i.e. (Vt)0≤t≤T is a port-
folio process. Moreover, consider any portfolio W process super-replicating
(ht)0≤t≤T . We necessary have Wt ≥Gt

ht and WT = hT . From the dynamics
∆Wt+1 := Wt+1 −Wt ∈ −Gt+1, we also deduce that Wt ≥Gt+1

Wt+1 By
backward induction and definition, it follows that Wt ≥Gt

Vt for all t. 2

6.2 Dynamic risk measure

Assume we are given two constant closed and proper cones K and G gener-
ated by linear independent generators of Rd. We suppose that K ⊂ G and
intK 6= ∅. We also suppose that Rd

+ ⊆ G. In this section, G is interpreted
as the solvency cone in the continuous-time model of Campi–Schachermayer
as described in Section 3.6.6 [3]. We are given discounted prices (Si)1≤i≤d
verifying Si = 1 we interpret as currencies like Dollars, Euros, Yen, etc. The
constant proportional transaction costs coefficients (λi,j)i,j of the model are
interpreted as the exchange rate between the currency number i and number
j. Therefore, G is defined as, [3],

G := cone{(1 + λi,j)ei − ej : 1 ≤ i, j ≤ d}.

The problem is the following: we are given a vector-valued process X with
Xt ∈ L0(Rd,FT ) which models the value at date t of some multi-assets
financial portfolio, the investment of a company. A dynamic measure of risk
(ρt) associates to X the set of Ft-adapted portfolios of reference instruments
xt ∈ L0(Rd,Ft) which, when added to Xt, make the total position Xt + xt
acceptable by the regulator/supervisor. In this example, we suppose that the
acceptable positions are given by the cones K, we call the security cone. The
process (ρt(X)) is defined as a set-valued mapping but, as in the previous
example, there exists a “minimal” selector of the risk measure which turns
out to be also a risk-measure according to the definition we shall recall below.
Let us before show the following.
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Proposition 6.5 Suppose that h is an adapted process and there is k ≥ 0
such that ht ≤K k1d for all t ∈ [0, T ]. Then, there exists a unique minimal
process (Vt)t∈[0,T ] such that Vt ≥K ht, for all t, VT = hT and Vt2 −Vt1 ∈ −G
for all t1 ≤ t2. Moreover, V is left-continuous and of finite variations. If
W is another such process with only WT ≥K hT , then necessarily we have
W ≥G V .

Proof. We consider the refining sequence

Πn := {tni := Ti/2n : i = 0, · · · , 2n}

of partitions of [0, T ] and set Π = ∪nΠn. Like in Proposition 6.4, we deduce,

for each n ∈ N, the minimal portfolio process (V
(n)
tni

) super-replicating (htni )

at dates t ∈ Πn in the following sense:

V
(n)
tni

:= essupG
(

(htni ,K), (V
(n)
tni+1

, G)
)
tni

, i ≤ 2n − 1,

V
(n)
T := hT .

Observe that by definition V
(n+1)
tni

≥G V
(n+1)

tn+1
2i+1

and V
(n+1)

tn+1
2i+1

≥G V
(n+1)
tni+1

.

It follows that V
(n+1)
tni

≥G V
(n+1)
tni+1

. By virtue of the definition of V (n) as

a minimal process, we then deduce that k1d ≥G V
(n+1)
t ≥G V

(n)
t for any

t ∈ Πn. We then define V
(∞)
t , for each t ∈ Π, as the increasing limit of

the sequence (V
(n)
t )n with respect to G or equivalently as the Ft-adapted

essential supremum of the family (V
(n)
t )n with respect to the cone G. Then,

we put Vt := limr↑t,r∈Π V
(∞)
t which is left-continuous. Observe that Vt is

a decreasing limit with respect to G. Indeed, V
(∞)
t1 − V (∞)

t2 ∈ G if t1 ≥ t2
with t1, t2 ∈ Π. We then deduce that V is an adapted process. By virtue of
Lemma 7.1, we also deduce that V is of finite variations, i.e. V is a portfolio
process according to Lemma 3.6.12 [3] with respect to the constant cone G.
Finally, consider any portfolio process W K-superhedging the payoff h. Then,
the discrete-time process (Wtni

)i verifies Wtni
≥K htni and Wtni

≥G Wtni+1
by

assumption. It follows that Wt ≥K V
(n)
t for all t ∈ Π and n such that

t ∈ Πn. As n→∞, we obtain Wt ≥K V
(∞)
t for all t ∈ Π. Moreover, if W is

left-continuous we get that Wt ≥Gt
Vt for all t. 2

Throughout the sequence, we suppose that X ∈ Dρ, i.e. Xt ≥ −k1d for all
t ∈ [0, T ] where k > 0. Applying the last lemma to h = −X, we then deduce
a unique process ρt(X) satisfying ρt(X)+Xt ∈ K which is minimal according
to the cone process G. The dynamic ρt2(X)−ρt1(X) ∈ −G it satisfies means
that ρ(X) is a self-financed portfolio subjected to the transaction costs given
by (λi,j)i,j , see [3]. We then easily show the following:

Proposition 6.6 The mapping ρ is a coherent risk measure, i.e. satisfies
the following statements:

R0.) ρt(0) = 0.
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R1.) If X ≥K 0, then ∀t, ρt(X) ≤Gt 0 a.s.

R2.) If X,Y ∈ Dρ then ∀t, ρt(X + Y ) ≤Gt
ρt(X) + ρt(Y ) a.s.

R3.) If λ ∈ R+ and X ∈ Dρ then ρt(λX) = λρt(X) a.s.

R4.) If X ∈ Dρ and a ∈ R, then ρt(X + a) = ρt(X) + {−a}.

6.3 Skorohod problem with oblique reflection

Assume we are given two constant closed and proper cones K and G gen-
erated by linear independent generators of R2 with K ⊂ G, ∂K ⊆ intG
and intK 6= ∅. We suppose that R2

+ ⊆ G. Let us consider a càdlàg (right-
continuous and left-limited) and deterministic function (Xt)t≥0 with X0 ∈
intK.

The goal is to find a left-continuous and right-limited function (Yt)t≥0 of
finite variations such that Zt = Xt + Yt verifies:

Zt ∈ G, Zt+ ∈ K a.s. ,

Ẏt, ∆
+Zt ∈ −∂G,

∆+Zt 6= 0⇔ Zt /∈ K

where Ẏt is the option version of the Radon-Nikodym derivative dY c/dVar (Y c),
Y c is the continuous part of Y and Var (Y c) its total variation.

Definition 6.7 A process A is said G-increasing if At ≥G As for t ≥ s.

We consider the refining sequence Πn := {tni := Ti/2n : i = 0, · · · , 2n}
of partitions of [0, T ] and denote Π = ∪n≥1Πn. We say that h is a càdlàg
(respectively làdcàg) Πn-process if h is constant on each interval [tni , t

n
i+1[

(respectively on ]tni , t
n
i+1]). Moreover, a left-continuous process (Vt)t≤T is

assumed to have a right limit at date T we denote by VT+ and verifies
V0 = V0+. We recall in Appendix the projection of a point x ∈ G onto K

parallel to −G we denote by P−GK (x). Given
−→
k ∈ intK we fix rk > 0 such

that B(
−→
k , rk) ⊆ K. We denote

−→
k ∗ :=

−→
k /rk.

Lemma 6.8
Let us consider a function (Xt)t≤T and ‖X‖u := supt≤T ‖Xt‖. Then,

−
−→
k ∗‖X‖u ≤K X ≤K

−→
k ∗‖X‖u.

Proof. Since B(
−→
k , rk) ⊆ K, we get that B(

−→
k ∗, 1) ⊆ K. It follows that

B(0, ‖X‖u) ⊆ K −
−→
k ∗‖X‖u. Since, X and −X evolves in B(0, ‖X‖u) we

easily conclude. 2
Observe that there exists a constant βK only depending on the cone K

and
−→
k ∗ such that −

−→
k ∗ ≤K x ≤K

−→
k ∗ implies ‖x‖ ≤ βK .

Our main result is:
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Theorem 6.9 Suppose that (Xt)t≤T is a càdlàg function. Then, there exists
a làdcàg function Σ1(X) := (Vt)t≤T of finite variations which is G-decreasing
such that Σ2(X) := X+V ∈ G, Σ2(X)+ ∈ K, ‖V ‖u ≤ βK‖X‖u and ∆+V ∈
−∂G. Moreover, V̇ = dV c/dVar (V c) ∈ −∂G and V̇ = V̇ 1Σ2(X)/∈intK .

The proof follows from the following result.

Theorem 6.10 Suppose that h is a deterministic càdlàg function. Suppose

ht ≤K
−→
k for all t ∈ [0, T ] where

−→
k ∈ K. Then, there exists a làdcàg function

(Vt)t≤T such that Vt ≥K ht, for all t. Moreover, V is of finite variations with

∆+V ∈ −∂G and V̇ c ∈ −∂G. If W is another such process, then necessarily
we have W ≥G V .

To give the proof, we need the following lemmas.

Proposition 6.11 Suppose that (ht)t∈Πn is a discrete-time process and there

is
−→
k ∈ K such that ht ≤K

−→
k for all t ≤ T . Then, there exists a process

Z(h) := (Zt)t∈Πn such that Z ≥K h and Ztni+1
−Ztni ∈ −G for all i ≤ 2n−1.

If W is another such process, then necessarily we have W ≥G V .

Proof. Like in Proposition 6.4, it suffices to set ZT = hT and

Ztni := essupG((htni ,K), (Ztni+1
, G))tni , i ≤ 2n − 1.

2

Proposition 6.12 Suppose that (ht)t≤T is a càdlàg Πn-process and there

is
−→
k ∈ K such that ht ≤K

−→
k for all t ≤ T . Then, there a unique minimal

làdcàg Πn-process (Vt)t≤T such that V ≥G h, V0 = V0+,
−→
k ≥G V+ ≥K h

and ∆+V ∈ −∂G, Vti+−hti = P−GK (Vti −hti). If W is another such process,
we have W ≥ V .

Proof. Consider the minimal G-decreasing process (Zt)t∈Πn we get using
Proposition 6.11. Let us set V0 = V0+ := Z0 := Vtn1 and let us define recur-
sively Vtni+1

= Vtni + as follows. Suppose we have already defined Vtni = Vtni−1+

such that Vtni ≥K htni−1
and Vtni ≥G Ztni−1

. Then, Vtni ≥G Ztni ≥G htni so that

we may define

Vtni+1
= essup−G((htni ,K); (Vtni ,−G))tni := essinf G((htni ,−K); (Vtni , G))tni .

Observe that we have Vtni + − Vtni ∈ −∂G, i.e. Vtni + = P−GK+hti
(Vtni ):



20

To see the uniqueness, let us set Ut := Vt − ht, t ∈ Πn. Observe that it is
equivalent to define U instead of V as follows: the discrete-time process U is
defined as U0 = U0+ = Z0 − h0 and

Uti− := Uti−1+, Uti := Uti− −∆hti ∈ G, Uti+ := P−GK (Uti).

Consider another process W satisfying the same properties than V . We first

get that W+ ≥G Z so that Wt1 ≥G Vt1 . We then consider Ũ the process
associated to W which is defined as U and satisfies the same properties. By

induction, we get that Ũ ≥G U so that W ≥G V . 2

Corollary 6.13 Suppose that (Xt)t≤T is a càdlàg Πn-process. Then, there is
a G-minimal làdcàg Πn-process Σ1(X) := (Vt)t≤T with Σ1(X)0 = Z(−X)0,

Σ2(X) := X + Σ1(X) ∈ G, Σ2(X)+ = P−GK (Σ2(X)) ∈ K and ∆+V ∈
−∂G. Moreover, we have ‖Σ1(X)‖u ≤ βK‖X‖u and ∆+Vt 6= 0 if and only if
Σ2(X)t /∈ intK.

Proof. It suffices to apply Proposition 6.12 and Lemma 6.8. 2

Corollary 6.14 Suppose that (Xt)t≤T is a càdlàg function. Then, there ex-
ists a làdcàg function Σ1(X) := (Vt)t≤T of finite variations which is G–
decreasing such that Σ2(X) := X + V ∈ G, Σ2(X)+ ∈ K, ‖V ‖u ≤ C‖X‖u
and ∆+V ∈ −∂G. Moreover,

V̇ = dV c/dVar (V c) ∈ −∂G, V̇ = V̇ 1Σ2(X)/∈intK .

Proof. Consider the càdlàg function X as an element of the Skorokhod space
D[0, T ] endowed with the usual Skorohod topology. In the following, we use
the notations of [4] Chapter VI. Consider a sequence of càdlàg Πn-functions
Xn such that Xn converges uniformly to X on [0, T ] and (Πn) is a refining
sequence of partitions. For each n, Corollary 6.13 ensures the existence of
(Σ1(Xn), Σ2(Xn)) solving the Skorokhod problem. Observe the inequalities
supn ‖Σ2(Xn)‖u < ∞ and supn ‖Σ1(Xn)‖u < ∞ since supn ‖Xn‖u < ∞.
Recall that for each n,Σ1(Xn) is aG-decreasing process. Using Lemma 3.6.13
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[3] (or Lemma 7.1 of this paper) and Corollary 6.13, the Helly theorem asserts
that for any sequence of A := {Var(Σ1(Xn)+)} there exists a subsequence
αn ∈ A such that αn converges pointwise to α ∈ D[0, T ] at each point t ∈ D
of continuity of α. It is straightforward that for any t ∈ D, there exists tn ≤ t,
with tn → t, such that ∆αn(tn)→ ∆α(t) = 0 since αn is a stepwise function.
Moreover D is dense in [0, T ] as a complement of a countable subset of [0, T ].
By virtue of Lemma VI-2.25 [4], we deduce that αn converges to α ∈ D[0, T ]
for the Skorokhod topology. We then deduce that A is relatively compact, i.e.
lim supθ↓0 supα∈A w

′
T (α, θ) = 0. We also have lim supθ↓0 supn w

′
T (Xn, θ) = 0.

Since ∆Σ2(Xn)+ = ∆Xn +∆Σ1(Xn)+, we then deduce that

w′T (Σ2(Xn)+, θ) ≤ w′T (Xn, θ) + w′T (Σ1(Xn)+, θ)

≤ sup
n
w′T (Xn, θ) + w′T (Var(Σ1(Xn)+), θ)

≤ sup
n
w′T (Xn, θ) + sup

α∈A
w′T (α, θ).

From there, we get that lim supθ↓0 supn w
′
T (Σ2(Xn)+, θ) = 0 and finally the

family (Σ2(Xn)+) is relatively compact for the Skorokhod topology. We de-
duce that (Σ2(Xn)+) converges to Σ2(X)+ ∈ D[0, T ] for a subsequence.
We then set Σ2(X) := Σ2(X)− + ∆X. By virtue of Proposition VI-2.1 [4],
for each t ∈ [0, T ] there exists tn → t such that Σ2(Xn)+(tn)→ Σ2(X)+(t),
Σ2(Xn)−(tn)→ Σ2(X)−(t) and ∆Σ2(Xn)+(tn)→ ∆Σ2(X)+(t). Recall that
by assumption, ∆Xn converges uniformly to ∆X. It follows that

Σ2(Xn)(tn) = Σ2(Xn)−(tn) +∆Xn(tn)→ Σ2(X)(t) ∈ G.

Since Σ2(Xn)+(tn) = P−GK (Σ2(Xn)(tn)), we deduce by continuity that

Σ2(X)+(t) = P−GK (Σ2(X)(t)) ∈ K.

We note Σ1(X) := Σ2(X)−X. From above, we have

Σ1(Xn)(tn) = Σ2(Xn)(tn)−Xn(tn)→ Σ1(X).

Since ∆Σ2(X) = ∆X, we deduce that ∆Σ1(X) = 0 i.e. Σ1(X) is left-
continuous. It is clear that Σ1(X) is G-decreasing hence of finite variations:

Σ1(X)t = Z(−X)0 +

∫ t

0

αu dVarΣc
1(X)u +

∑
s≤t

∆Σ+
1 (X)s

where α is the optional Radon-Nikodym derivative dΣc
1(X)/dVarΣc

1(X).
From the equalities ∆Σ2(Xn)+(tn) = ∆Xn(tn) +∆+Σ1(Xn)(tn) and
∆Σ2(X)+(t) = ∆X(t) + ∆+Σ1(X)(t) we deduce that ∆+Σ1(X)(t) ∈ −∂G
as n → ∞ for all t ≤ T . Assume that ∆+Σ1(X)(t) 6= 0. Then, we also have
∆+Σ1(Xn)(tn) 6= 0 if n is large enough so that Σ2(Xn)(tn) /∈ intK hence
Σ2(X)(t) /∈ intK. At last, we may assume, [2], that

α = lim sup
j

∑
k

Σ1(X)tjk+1+
−Σ1(X)tjk+

V ar(Σ1(X)+)tjk+1+
− V ar(Σ1(X)+)tjk+

1]tjk,t
j
k+1]
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where (tjk) is the same refining sequence of partitions of [0, T ] we use to
approximate X. By construction, we have Σ1(X)tjk+1+

− Σ1(X)tjk+
∈ −G.

Moreover, since Σ1(X)tjk+1+
−Σ1(X)tjk+

→ ∆+Σ1(X), it follows that

Σ1(X)tjk+1+
−Σ1(X)tjk+

≥G ∆+Σ1(X)− ε1

if j is large enough and ε is chosen arbitrarily small. Since ∆+Σ1(X) ∈ −∂G,
we then deduce as ε→ 0 that α ∈ (−G) ∩ (−∂G+G) = −∂G. Assume that

α 6= 0, then Σ1(X)tjk+1+
−Σ1(X)tjk+

6= 0 if j is large enough. We deduce t̃jk

such that Σ1(X)tjk+1+
− Σ1(X)t̃jk

6= 0 where tjk+1 > t̃jk > tjk . On the other

hand, by virtue of Proposition V1-2.1, we get tjn with tjn < tjk+2 and sjn with

tjk < sjn converging respectively to tjk+1 and t̃jk such that

Σ1(Xn)tjk+1+
−Σ1(Xn)tjk+

= Σ1(Xn)tjn+ −Σ1(Xn)sjn+ 6= 0.

Observe we necessarily have tjn > tjk+1. By construction, it follows that
Σ2(Xn)tjn = Σ2(Xn)tjk+1

/∈ intK. Taking the limit, we get that

Σ2(X)+(t) ∈ (R2\intK) ∩K = ∂K.

Since Σ2(X)+(t) = P−GK (Σ2(X)(t)) we then deduce that Σ2(X)(t) /∈ intK.
2

7 Appendix

Lemma 7.1 Suppose we are given a constant cone G ⊆ Rd generated by
a basis of Rd. Let us consider a process (At)t≤T verifying At2 − At1 ∈ G
whatever t2 ≥ t1. Then, A is of finite variations.

Proof. By assumption, G = cone (ξi)1≤i≤d where (ξi) is a basis of Rd. Let us
consider the mapping

Φ : Rd 3 x =

d∑
i=1

xiξi 7→ Φ(x) :=

d∑
i=1

xiei ∈ Rd

where (ei)i is the canonical basis of Rd. We denote by Φ−1 the inverse of Φ.
Recall that Φ and Φ−1 are linear hence continuous. Moreover Φ(G) ⊆ Rd

+.
For any subdivision (ti) of [0, T ], we get∑
i

|Ati+1 −Ati | =
∑
i

|Φ−1 ◦ Φ
(
Ati+1 −Ati

)
| ≤ ‖Φ−1‖

∑
i

|Φ
(
Ati+1 −Ati

)
|

≤ C‖Φ−1‖
∑
i

d∑
j=1

|Φj
(
Ati+1

)− Φj(Ati)
)
|
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where Φj is the j-th component of Φ and C is a constant (all the norms being
equivalent). By assumption, Φj(Ati+1

)−Φj(Ati) ≥ 0 for all j. It follows that
there is another constant C such that∑

i

|Ati+1
−Ati | ≤ C‖Φ(AT −A0)‖ ≤ C‖Φ‖|AT −A0|.

We conclude that Var (A)T ≤ C‖Φ‖|AT −A0|. 2
In the following, we assume that G ⊆ R2 is a constant cone satisfying the

hypothesis of the introduction and K ⊆ G is a closed cone with ∂K ⊆ intG.

Proposition 7.2 (Projection onto K parallel to −G) Given x ∈ G, there

exists a unique y := P−GK (x) ∈ K such that

‖x− y‖ = min
k∈K
{‖x− k‖ : x− k ∈ G}.

We omit the proof which is standard.

Lemma 7.3 The mapping G 3 x 7→ P−GK (x) ∈ Rd is continuous.

Proof. We may assume that G = R2
+ like in the previous lemma. Then

∂K = Da ∪ Db where Da = {(x1, y1) : y1 = ax1, x ≥ 0} and Db is defined
similarly with b > a > 0. It is then easy to show the implication xn → x ⇒
P−GK (xn)→ P−GK (x) since we have an explicit expression of P−GK (x) if x ∈ G.
2

References

1. Bouchard B., Chassagneux J.F. Representation of continuous linear forms on
the set of ladlag processes and the pricing of American claims under propor-
tional costs. Electronic Journal of Probability, (2009), 14, 612-632.

2. De Vallière D., Denis E., Kabanov Yu. Hedging of American options under
transaction costs. Finance and Stochastics, 13 (2009), 1, 105-119.

3. Kabanov Y., Safarian M. Markets with Transaction Costs. Mathematical The-
ory. Springer-Verlag, 2009.

4. Jacod J., Shiryaev A.N. Limit Theorems for Stochastic Processes. Springer,
Berlin–Heidelberg–New York, (1987).


