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In this paper we prove a theorem of global time-extension for the local classical solution of Navier-Stokes's evolution problem in R n with n 2 for incompressible fluids subjected to external forces and regular initial conditions. This will be achieved by expressing the boundedness of the time derivative of the L ∞ solution norm.

Introduction

Let's consider the problem of evolution for the Navier-Stokes equations in R n (1.1)

     ∂ t u = ν∆u -u • ∇u -∇p + f (x ∈ R n , t 0) ∇ • u = 0 (x ∈ R n , t 0) u(x, 0) = u 0 (x) (x ∈ R n )
where:

µ 0 u(x, t), f (x, t) ∈ R n , p(x, t) ∈ R u 0 ∈ C ∞ (R n ), ∇ • u 0 = 0 |∂ α x u 0 (x)| C αK (1 + |x|) -K , x ∈ R n , ∀ α, K (1.2) |∂ α x ∂ m t f (x, t)| C αmK (1 + |x| + t) -K , (x, t) ∈ R n × [0, ∞), ∀ α, m, K (1.3)
The Navier-Stokes equations describe the time evolution of the speed vector field u(x, t) and the pressure p(x, t) of an incompressible viscos fluid, depending on the initial velocity u 0 (x) and the external force f (x, t). For µ = 0, 1.1 is the Euler evolution problem. Equation 1.1 represents the Eulerian description of the flow. The Lagrangian formulation of Navier-Stokes equation 1.1 describes the flow in term of a volume preserving diffeomorphism, the time dependent map X : R n → R n :

α → X(α, t), X(α, 0) = α
These maps represent marked fluid particle trajectories, α in label of the particle, which can be seen as the location of the particle at time t = 0. The fact that the particle travels with velocity u is expressed by the system of ordinary differential equations,

(1.4) ∂ ∂t X(α, t) = u(X(α, t), t), X(α, 0) = α
The incomprensibility condition given by 1.1 are det(∇ α X) = 1, where det(∇ α X) denotes the determinant of ∇ α X, the jacobian matrix of X. [START_REF] Bertozzi Andrew | Vorticity and Incompressible Flow[END_REF] The map X defined by Equation 1.4 is a volume preserving

C 1 -diffeomorphism from R n on itself, indeed, since u ∈ C 1 (R n × [0, T ])
, then thanks to Cauchy-Lipschitz Theorem, we deduce that the differential equation 1.4 admits a unique solution

X ∈ C 1 (R n × [0, T ]).
We introduce P the Leray's projection operator with components,

P = I -∇∆ -1 ∇•
The operator P is a projection: P 2 = P , annihilates gradients and map into divergence-free vectors; it is a bounded operator on L p , 1 < p < ∞ and commutes with translation. P yields to Helmholtz decomposition, indeed for

al v ∈ L 2 (R n ) ∩ C ∞ (R n ) has a unique orthogonal decomposition: v = P v + ∇q ∇ • (P v) = 0, q = ∆ -1 ∇ • v P v, ∇q ∈ L 2 (R n ) ∩ C ∞ (R n ).

Local in time Existence Theorems

In this section we report without proof some results on classical mild solutions, obtained for the first time by Kato and Fujita in the Sobolev spaces

H s (R n ) for s n / 2 -1 [HF64],
Theorems based on Picard's contraction principle.

For a systematic treatment of the theorems of existence with demonstrations, for example, see [START_REF]Recent developments in the Navier-Stokes problem[END_REF] [AJM02] (proofs are given only for the homogeneous case but they are easily extendable in case of external force f (x, t) ∈ S(R n+1 ) ).

Definition 2.1. (Divergence-free Sobolev spaces) Let's define

V s = {v ∈ H s (R n ) : ∇ • v = 0} = P H s (R n )
Theorem 2.2 (Existence of local solutions to Navier-Stokes's problem). Let s > n / 2 + 2. For all u 0 ∈ V s (R n ), there exists T * > 0 (possibly infinite) and a unique solution

u ∈ C([0, T * ), V s (R n )) ∩ C 1 ([0, T * ), V s-2 (R n )) and u ∈ C([0, T * ), C 2 (R n )) ∩ C 1 ([0, T * ), C(R n )) for Navier-Stokes's equation on R n × (0, T * ) so that u(•, 0) = u 0 . Theorem 2.3. Solution u described in Theorem 2.2 is u(•, t) ∈ C(R n ) for t ∈ (0, T * ), furthermore, for the maximal time of existence, it is T * < ∞ if and only if lim t→T * u(•, t) ∞ = ∞.
Proposition 2.4. From local solution u(x, t) we gain the pressure term resolving Poisson's problem, which is in turn obtained by taking the divergence from the first Navier-Stokes equation 1.1.

     ∆p = -∇ • [(u • ∇)u] + ∇ • f = - j,k ∂ j u k ∂ k u j + ∇ • f (x ∈ R n , t 0) lim |x|→0 p 3. Control of the L ∞ norm Theorem 3.1 (Derivative of the L ∞ norm).
Let u be a solution in [0, T * ) of the problem 1.1 described in the theorem 2.2, be t ∈ (0, T * ), then

(3.1) d u(t) ∞ dt P f (t) ∞
Proof. In the problem 1.1 the term -∇p has the task to cancel all non-zero divergence components which come from the nonlinear term and the ones due to external force. By applying Helmholtz's decomposition to u • ∇u and to f we'll get

u • ∇u = P (u • ∇u) + ∇q 1 f = P (f ) + ∇q 2 and it is -∇q 1 + ∇q 2 = ∇p
We note that where

∇ • (u • ∇u) = 0 ⇒ u • ∇u = P (u • ∇u), ∇q 1 = 0, ∇p = ∇q 2
particularly, this will be true where ∇u = 0, infact

∇u = 0 ⇒ 0 = j,k ∂ j u k ∂ k u j = ∇ • (u • ∇u)
Let now be t ∈ (0, T * ), u is a function differentiable in all variables, and be x an absolute maximum point for |u(•, t)|, then we'll have

∇u(x, t) = 0 Let's consider now u(x, t) • ∆u(x, t) = lim r→0 1 |B(x, r)| B(x,r) (u • ∆u)dx = = lim r→0 1 |B(x, r)| B(x,r) (-∇u • ∇u)dx + lim r→0 1 |B(x, r)| ∂B(x,r) (u • ∇u) • dσ = = -|∇u(x, t)| 2 + lim r→0 1 |B(x, r)| B(x,r) 1 2 ∇ • ∇ |u| 2 dx = = -|∇u(x, t)| 2 + 1 2 ∆ |u(x, t)| 2 but x is an absolute maximum point for |u(•, t)|, |∇u(x, t)| 2 = 0, ∆ |u(x, t)| 2 0 then u(x, t) • ∆u(x, t) = 1 2 ∆ |u(x, t)| 2 0
To estimate the derivative of u in (x, t) with respect to time, we are going to substitute in the equation 1.1

∂u(x, t) ∂t = ν∆u(x, t) -u(x, t) • ∇u(x, t) -∇p(x, t) + P f (x, t) + ∇q 2 (x, t) = ∂u(x, t) ∂t = ν∆u(x, t) + P f (x, t) u(x, t) • ∂u(x, t) ∂t = νu(x, t) • ∆u(x, t) + u(x, t) • P f (x, t) u(x, t) • ∂u(x, t) ∂t u(x, t) • P f (x, t)
from which follows

∂ |u(x, t)| ∂t |P f (x, t)| By Theorem 2.2, u ∈ C 1 ([0, T * ), C(R n ))
; then the time derivative of u(t) ∞ exists, thus :

d u(t) ∞ dt = lim h→0 |u(x h , t + h)| -|u(x, t)| h = lim h→0 + |u(x h , t + h)| -|u(x, t)| h
where |u(x h , t + h)| is the absolute maximum at time (t + h) reached at xh ∈ R n .

Evaluating the difference quotient we can write

|u(x h , t + h)| -|u(x, t)| h = |u(x h , t + h)| -|u(x * h , t)| + |u(x * h , t)| -|u(x, t)| h = |u(x h , t + h)| -|u(x * h , t)| h + |u(x * h , t)| -|u(x, t)| h = = L 1 + L 2 where x * h is such that ∂ ∂s X(x * h , s) = u(X(x * h , s), s + t), X(x * h , h) = xh , X(x * h , 0) = x * h Let's consider L 1 . We can write ||u(x h , t + h)| -|u(x * h , t)|| ∇ |u(x h , t + h)| dx h dt (x h , t + h) |h| + ∂ |u(x h , t + h)| ∂t |h| + o(|h|)
Being xh a point of maximum at time (t + h), for what we have seen so far, it is

∇ |u(x h , t + h)| = 0, ∂ |u(x h , t + h)| ∂t |P f (x h , t + h)|
furthermore, we have

dx h dt (x h , t + h) ≡ ∂ ∂s X(x * h , h) = u(X(x * h , h), t + h) = u(x h , t + h)
being the derivative along the flow line passing by xh at time (t + h). u ∈ C(R n × [0, T * )) and for (t + h) < T * it is Let's suppose T * < ∞ and t ∈ (0, T * ), integrating the inequality 3.1 we get 

|u(x h , t + h)| < ∞ from which ∇ |u(x h , t + h)| dx h dt (x h , t + h) = 0 thus ||u(x h , t + h)| -|u(x * h , t)|| |P f (x h , t + h)| |h| + o(|h|) Shifting to limits lim h→0 ||u(x h , t + h)| -|u(x * h , t)|| |h| lim h→0 |P f (x h , t + h)| + lim h→0 o(|h|) h = |P f (x * 0 , t)| P f (t) ∞ where x * 0 = lim h→0 X(x * h , 0) with |u(x * 0 , t)| = |u(x 0 , t
u(t) ∞ u 0 ∞ + t 0 P f (s) ∞ ds f ∈ C ∞ (R n+1 ) thus P f ∈ C ∞ (R n+1

  s) ∞ ds T * max s∈[0,T * ] P f (s) ∞ < ∞ from which lim t→T * u(t) ∞ < ∞So, for the theorem 2.3 it must be T * = ∞

  Theorem 3.2 (Extension theorem). In the hypotheses of the Theorem 3.1, the solution u can be extended to the whole real axis of time.Proof. According to Theorem 2.3, the maximal interval of existence T * < ∞ if and only if lim t→T

	|u(x * h , t)| -|u(x, t)| h	0	h > 0
	shifting to limit notation					
	lim h→0 +	|u(x * h , t)| -|u(x, t)| h	= lim h→0+	L 2 0
	thus					
	d u(t) ∞ dt	= lim h→0 +	|u(x h , t + h)| -|u(x, t)| h
	lim h→0 +	|L 1 | + lim h→0 +	L 2	lim h→0 +	|L 1 |	P f (t) ∞
							)|
	Let's consider now L 2 . Being |u(x, t)| absolute maximum at time t we'll have

* u(•, t) ∞ = ∞.