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. In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.

Introduction

Recently regularity results for integro-differential equations have been investigated by many authors: we provide below some references but the list is by no means complete. In particular, Hölder estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations are obtained in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF], by the classical Ishii-Lions's method.

The aim of this article is twofold: on one hand, we extend these results to provide Lipschitz estimates in a similar framework and, on the other hand, we deal with a new class of nonlocal equations that we call mixed integro-differential equations for which we also give complementary Hölder estimates. The simplest example of such mixed integro-differential equations is given by

-∆ x 1 u + (-∆ x 2 ) β/2 u = f (x 1 , x 2 ) (1) 
where and(-∆ x 2 ) β/2 u denotes the fractional Laplacian with respect to the x 2 -variables

x 1 ∈ R d 1 , x 2 ∈ R d 2 ,
(-∆ x 2 ) β/2 u = - R d 2 u(x 1 , x 2 + z 2 ) -u(x 1 , x 2 ) -D x 2 u(x 1 , x 2 ) • z 2 1 B d 2 (z 2 ) dz 2 |z 2 | d 2 +β
where B d 2 is the unit ball in R d 2 . In this case local diffusions occur only in the x 1 -directions and fractional diffusions in the x 2 -directions.

To be more specific about our approach, we first recall that Ishii and Lions introduced in [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF] a simple method to prove C 0,α (0 < α ≤ 1) regularity of viscosity solutions of fully nonlinear, possibly degenerate, elliptic partial differential equations, which has the double advantage of providing explicit C 0,α estimates combined with a light localization procedure. This simple method, closely related to classical viscosity solutions theory, was recently explored by the first, second and fourth authors in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF] for second order, fully nonlinear elliptic partial integro-differential equations, dealing with a large class of integro-differential operators, whose singular measures depend on x. They prove that the solution is α-Hölder continuous for any α < min(β, 1), where β characterizes the singularity of the measure associated with the integral operator. However, in the case β ≥ 1 the respective ad-literam estimates do not yield Lipschitz regularity.

In order to treat a large class of nonlinear equations, the authors of [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF] assume the nonlinearity satisfies a suitable ellipticity growth assumption. Roughly speaking, this assumption gives a suitable meaning to a generalized ellipticity of the equation in the sense that at each point of the domain, the ellipticity comes either from the second order term (the equation is strictly elliptic in the classical fully nonlinear sense), or from the nonlocal term (the equation is strictly elliptic in a nonlocal nonlinear sense).

In a recent study of the strong maximum principle for integro-differential equation [START_REF] Ciomaga | On the strong maximum principle for second order nonlinear parabolic integro -differential equations[END_REF], the third author introduced another type of mixed ellipticity: at each point, the nonlinearity may be degenerate in the second-order term, and in the nonlocal term, but the combination of the local and the nonlocal diffusions renders the nonlinearity uniformly elliptic. Equation (1) is the typical example of such mixed integro-differential equations since the diffusion term gives the ellipticity in certain directions, whereas it is given by the nonlocal term in the complementary directions. For this type of nondegenerate equations, the assumptions in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF] are not satisfied.

1.1. Main results. Using Ishii-Lions's viscosity method, we give both Hölder and Lipschitz regularity results of viscosity solutions for a general class of mixed elliptic integro-differential equations of the type F 0 (u(x), Du, D 2 u, I[x, u]) + F 1 (x 1 , D x 1 u, D 2

x 1 x 1 u,

I x 1 [x, u]) + F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, I x 2 [x, u]) = f (x) (2) 
as well as evolution equations

u t + F 0 (u(x), Du, D 2 u, I[x, u]) + F 1 (x 1 , D x 1 u, D 2 x 1 x 1 u, I x 1 [x, u]) + F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, I x 2 [x, u]) = f (x). (3) 
A point in x ∈ R d is written as

x = (x 1 , x 2 ) ∈ R d 1 × R d 2 , with d = d 1 + d 2 .
The symbols u t , Du, D 2 u stand for the derivative with respect to time, respectively the gradient and the Hessian matrix with respect to x. Subsequently, we write the gradient on components as Du = (D x 1 u, D x 2 u) and the Hessian matrix D 2 u ∈ S d (with S d the set of real symmetric d × d matrices) as a block matrix of the form

D 2 u = D 2 x 1 x 1 u D 2 x 1 x 2 u D 2 x 2 x 1 u D 2 x 2 x 2 u
. I[x, u] is an integro-differential operator, taken on the whole space R d , associated to Lévy processes

I[x, u] = R d (u(x + z) -u(x) -Du(x) • z1 B (z))µ x (dz)
where 1 B (z) denotes the indicator function of the unit ball B and µ x x∈R d is a family of Lévy measures, i.e. nonnegative, possibly singular, Borel measures on R d such that sup

x∈R d R d min(|z| 2 , 1)µ x (dz) < ∞.
Accordingly, one has the directional integro-differential operators

I x 1 [x, u] = R d 1 (u(x 1 + z, x 2 ) -u(x 1 , x 2 ) -D x 1 u(x) • z1 B d 1 (z)) µ 1 x 1 (dz) I x 2 [x, u] = R d 2 (u(x 1 , x 2 + z) -u(x 1 , x 2 ) -D x 2 u(x) • z1 B d 2 (z)) µ 2 x 2 (dz).
where µ i x i x i ∈R d i , i = 1, 2 are Lévy measures and 1 B d i is the indicator function of the unit ball B d i in R d i . We consider as well the special class of Lévy-Itô operators, defined as follows

J [x, u] = R d (u(x + j(x, z)) -u(x) -Du(x) • j(x, z)1 B (z)) µ(dz)
where µ is a Lévy measure and j(x, z) is the size of the jumps at x satisfying sup

x∈R d R d min(|j(x, z)| 2 , 1)µ(dz) < ∞.
Similarly, we deal with directional Lévy-Itô integro-differential operators

J x 1 [x, u] = R d 1 (u(x 1 + j(x 1 , z), x 2 ) -u(x 1 , x 2 ) -D x 1 u(x) • j(x 1 , z)1 B d 1 (z))µ 1 (dz) J x 2 [x, u] = R d 2 (u(x 1 , x 2 + j(x 2 , z)) -u(x 1 , x 2 ) -D x 2 u(x) • j(x 2 , z)1 B d 2 (z))µ 2 (dz).
We assume the nonlinearities are continuous and degenerate elliptic, i.e. F i (..., X, l) ≤ F i (..., Y, l ′ ) if X ≥ Y, l ≥ l ′ , for all X, Y ∈ S d i and l, l ′ ∈ R, i = 0, 1, 2.

In addition, we suppose that the three nonlinearities satisfy suitable strict ellipticity and growth conditions, that we omit here for the sake of simplicity, but will be made precise in the following section. These structural growth conditions can be illustrated on the following example:

-a 1 (x 1 )∆ x 1 u -a 2 (x 2 )I x 2 [x, u] -I[x, u] + b 1 (x 1 )|D x 1 u 1 | k 1 + b 2 (x 2 )|D x 2 u| k 2 + |Du| n + cu = f (x)
where the nonlocal term I x 2 [x, u] has fractional exponent β ∈ (0, 2) and a i (x i ) > 0, for i = 1, 2. Thus

F 0 (u(x), Du, D 2 u, I[x, u]) = -I[x, u] + |Du| n + cu F 1 (x 1 , D x 1 u, D 2 x 1 x 1 u, J x 1 [x, u]) = -a 1 (x 1 )∆ x 1 u + b 1 (x 1 )|D x 1 u 1 | k 1 F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, J x 2 [x, u]) = -a 2 (x 2 )I x 2 [x, u] + b 2 (x 2 )|D x 2 u| k 2 .
When β > 1, we show that the solution is Lipschitz continuous for mixed equations with gradient terms b i (x i )|D x i u| k i having a natural growth k i ≤ β if b i bounded. If in addition b i are τ -Hölder continuous, then the solution remains Lipschitz for gradient terms with natural growth k i ≤ τ + β. When β ≤ 1, the solution is α-Hölder continuous for any α < β. The critical case β = 1 is left open. 1.2. Known results. The classical theory for second order, uniformly elliptic integro -differential equations includes a priori estimates, weak and strong maximum principles, etc. In particular, existence and uniqueness results have been extended from elliptic partial differential equations to elliptic integro-differential equations. For results in the framework of Green functions and classical solutions we send the reader to the up-to-date book of Garroni and Menaldi [START_REF] Garroni | Second order elliptic integro-differential problems[END_REF] and the references therein.

More recently there have been many papers dealing with C 0,α estimates and regularity of solutions (not necessarily in the viscosity setting) for fully nonlinear integro-differential equations and the literature has been considerably enriched. It is not possible to give an exhaustive list of references but we next try to give the flavour of the known results.

In the framework of potential theory (hence linear equations), Bass and Levin first establish Harnack inequalities [START_REF] Bass | Harnack inequalities for jump processes[END_REF]. Then Kassmann [START_REF] Kassmann | The theory of De Giorgi for non-local operators[END_REF][START_REF]A priori estimates for integro-differential operators with measurable kernels[END_REF] adapted the de Giorgi theory to non-local operators. In the same spirit, Silvestre gave in [START_REF]Hölder estimates for solutions of integro-differential equations like the fractional Laplace[END_REF] an analytical proof of Hölder continuity for harmonic functions with respect to the integral operator.

In the setting of viscosity solutions, there are essentially two approaches for proving Hölder or Lipschitz regularity: either by the Ishii-Lions's method or by ABP estimates and Krylov -Safonov and Harnack type inequalities. These methods do not cover the same class of equations, they have different aims and each of them has its own advantages.

The powerful Harnack approach was first introduced by Krylov and Safonov [START_REF] Krylov | An estimate for the probability of a diffusion process hitting a set of positive measure[END_REF][START_REF]A property of the solutions of parabolic equations with measurable coefficients[END_REF] for linear equations under non-divergence form and then adapted to fully non-linear elliptic equations by Trudinger [START_REF] Trudinger | Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF] and Caffarelli [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF]. This theory applies to uniformly elliptic, fully nonlinear equations, with rough coefficients. The existing theory for second order elliptic equations has been extended to integro-differential equations by Caffarelli and Silvestre in [START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF]. Both for local and non-local equations, this theory leads to further regularity such as C 1,α . But as far as nonlocal equations are concerned, it requires in particular some integrability condition of the measure at infinity.

On the contrary, direct viscosity methods apply under weaker ellipticity assumptions but require Hölder continuous coefficients and do not seem to yield further regularity. Finally these methods allow measures which are only bounded at infinity.

Very recently, Cardaliaguet and Rainer showed Hölder regularity of viscosity solutions for nonlocal Hamilton Jacobi equations with superquadratic gradient growth [START_REF] Cardaliaguet | Hölder regularity for viscosity solutions of fully nonlinear, local or nonlocal, hamilton-jacobi equations with super-quadratic growth in the gradient[END_REF], using probablistic representation formulas.

We would like to conclude this introduction by mentioning that this work was motivated by the study of long time behaviour of periodic viscosity solutions for integro-differential equations, that we are considering in a companion paper. We point out that long time behaviour comes to the resolution of the stationary ergodic problem, which is basically the cell problem in homogenization. The periodic homogenization for nonlinear integro-differential equations has been adressed by Schwab in [START_REF] Schwab | Periodic homogenization for nonlinear integro-differential equations[END_REF]. However, it is restricted to a certain family of equations, due to a lack of fine ABP estimate. Recently, Schwab and Guillen provided [START_REF] Guillen | Aleksandrov-bakelman-pucci type estimates for integro-differential equations[END_REF] and ABP estimate that would help solve the homogenization for a wider class of nonlinearities.

The paper is organized as follows. In Section §2 we give the appropriate definition of viscosity solution, make precise the ellipticity growth conditions to be satisfied by the nonlinearities and list the assumptions on the nonlocal terms. Section §3 is devoted to the main results, which for the sake of clarity are given in the periodic setting. We state partial regularity results, provide the complete proof, and then present the global regularity result. In the next Section §4 we consider several significant examples and discuss the main assumptions required by the regularity results and their implications. Extensions to the nonperiodic setting, parabolic versions of the equations, Bellman-Isaacs equations and multiple nonlinearities are recounted in Section §5. At last we detail in Section §6 the technical Lipschitz and Hölder estimates for the general nonlocal operators and Lévy-Itô operators, which are essentially the backbone of the main results.

Notations and Assumptions

2.1. Viscosity Solutions for Integro-Differential Equations. To overcome the difficulties imposed by behavior at infinity of the measures (µ x ) x , as well as the singularity at the origin, we often need to split the nonlocal terms into

I 1 δ [x, u] = |z|≤δ u(x + z) -u(x) -Du(x) • z1 B (z) µ x (dz) I 2 δ [x, p, u] = |z|>δ u(x + z) -u(x) -p • z1 B (z) µ x (dz)
respectively, in the case of Lévy-Itô operators,

J 1 δ [x, u] = |z|≤δ u(x + j(x, z)) -u(x) -Du(x) • j(x, z)1 B (z) µ(dz) J 2 δ [x, p, u] = |z|>δ u(x + j(x, z)) -u(x) -p • j(x, z)1 B (z) µ(dz) with 0 < δ < 1 and p ∈ R d .
One of the very first definitions of viscosity solutions for integro-differential equations was introduced by Sayah in [START_REF] Sayah | Équations d'Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. II. Existence de solutions de viscosité[END_REF]. In particular, for mixed integro-differential equations, the definition can be stated as follows.

Definition 1. [Viscosity solutions] An upper semi-continuous ( in short usc) function u :

R d → R is a subsolution of (2) if for any φ ∈ C 2 (R d ) such that u -φ attains a global maximum at x ∈ R d F 0 (u(x), Dφ(x), D 2 φ(x), I 1 δ [x, t, φ] + I 2 δ [x, t, Dφ(x, t), u]) + F 1 (x 1 , D x 1 φ(x), D 2 x 1 x 1 φ(x), I 1 x 1 ,δ [x, t, φ] + I 2 x 1 ,δ [x, t, Dφ(x, t), u]) + F 2 (x 2 , D x 2 φ(x), D 2 x 2 x 2 φ(x), I 1 x 2 ,δ [x, t, φ] + I 2 x 1 ,δ [x, t, Dφ(x, t), u]) ≤ f (x).
A lower semi-continuous (in short lsc) function u :

R d → R is a subsolution of (2) if for any φ ∈ C 2 (R d ) such that u -φ attains a global minimum at x ∈ R d F 0 (u(x), Dφ(x), D 2 φ(x), I 1 δ [x, t, φ] + I 2 δ [x, t, Dφ(x, t), u]) + F 1 (x 1 , D x 1 φ(x), D 2 x 1 x 1 φ(x), I 1 x 1 ,δ [x, t, φ] + I 2 x 1 ,δ [x, t, Dφ(x, t), u]) + F 2 (x 2 , D x 2 φ(x), D 2 x 2 x 2 φ(x), I 1 x 2 ,δ [x, t, φ] + I 2 x 1 ,δ [x, t, Dφ(x, t), u]) ≥ f (x)
. However, there are several equivalent definitions of viscosity solutions. Thoughout this paper, we use the definition involving sub and super-jets, which was shown in [START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF] to be equivalent with Definition 1. One just has to replace in the viscosity inequalities the derivatives of the test function (Dφ, D 2 φ) with semi-jets (p, X). To avoid technical details due to partial derivatives with respect to x 1 and x 2 we omit it here, and just recall the notions of semi-jets.

If u : R d → R and v : R d → R are respectively a lsc and an usc function, we denote by D 2,-u(x) the subjet of u at x ∈ R d and by D 2,+ v(x) the superjet of v at x ∈ R d . We recall that they are given by

D 2,-u(x) = (p, X) ∈ R d × S d ; u(x + z) ≥ u(x) + p • z + 1 2 Xz • z + o(|z| 2 ) D 2,+ v(x) = (p, X) ∈ R d × S d ; u(x + z) ≤ u(x) + p • z + 1 2 Xz • z + o(|z| 2 ) .
2.2. Ellipticity Growth Conditions. We assume that the nonlinearities F i , with i = 0, 1, 2, satisfy (one or more of) the next assumptions. In the sequel of this subsection, the notation F stands for any of the nonlinearties F i . The precise selection for each of the nonlinearities shall be given later on, when the regularity result is stated. Further examples and comments upon the restrictions of these nonlinearities are provided in Section §4. In the sequel of this subsection, the notation F stands for any of the nonlinearties F i .

(H0) There exists γ ∈ R such that for any

u, v ∈ R, p ∈ R d, X ∈ S d and l ∈ R F (u, p, X, l) -F (v, p, X, l) ≥ γ(u -v) when u ≥ v. (H1) There exist two functions Λ 1 , Λ 2 : R d → [0, ∞) such that Λ 1 (x) + Λ 1 (x) ≥ Λ 0 > 0 and some constants k ≥ 0, τ ∈ (0, 1] θ, θ ∈ (0, 1] such that for any x, y ∈ R d, p ∈ R d, l ≤ l ′ and any ε > 0 F (y, p, Y, l ′ ) -F (x, p, X, l) ≤ Λ 1 (x) (l -l ′ ) + |x -y| 2θ ε + |x -y| τ |p| k+τ + C 1 |p| k + Λ 2 (x) tr(X -Y ) + |x -y| 2 θ ε + |x -y| τ |p| 2+τ + C 2 |p| 2 if X, Y ∈ S d satisfy the inequality - 1 ε I 0 0 I ≤ X 0 0 -Y ≤ 1 ε Z -Z -Z Z , (4) 
with Z = I -ωâ ⊗ â, for some unit vector â ∈ R d, and ω ∈ (1, 2). (H2) F (•, l) is Lipschitz continuous, uniformly with respect to all the other variables. (H3) There exists a modulus of continuity ω F such that for any ε > 0

F (y, x -y ε , Y, l) -F (x, x -y ε , X, l) ≤ ω F |x -y| 2 ε + |x -y|
for all x, y ∈ R d, X, Y ∈ S d satisfying the matrix inequality (4) with Z = I and l ∈ R.

Lévy Measures for General Nonlocal

Operators. We recall that in this case, the nonlocal term I[x, u] is an integro differential operator defined by

I[x, u] = R d u(x + z) -u(x) -Du(x) • z1 B (z) µ x (dz) (5) 
where 1 B denotes the indicator function of the unit ball and µ x x is a family of Lévy measures. We need to make a series of assumptions for the family of Lévy measures that we make precise now.

(M 1) There exists a constant Cµ > 0 such that sup

x∈R d B |z| 2 µ x (dz) + R d\B µ x (dz) ≤ Cµ .
(M 2) There exists β ∈ (0, 2) such that for every a ∈ R d there exist 0 < η < 1 and a constant C µ > 0 such that the following holds for any x ∈ R

d ∀δ > 0 C η,δ (a) |z| 2 µ x (dz) ≥ C µ η d-1 2 δ 2-β with C η,δ (a) := {z ∈ B δ ; (1 -η)|z||a| ≤ |a • z|}. ( M 
3) There exist β ∈ (0, 2), γ ∈ (0, 1) and a constant C µ > 0 such that for any x, y ∈ R d and all δ > 0

B δ |z| 2 |µ x -µ y |(dz) ≤ C µ |x -y| γ δ 2-β and B\B δ |z||µ x -µ y |(dz) ≤ C µ |x -y| γ δ 1-β if β = 1 C µ |x -y| γ | ln δ| if β = 1.
At the same time, we assume that the directional Lévy measures satisfy similar assumptions.

Example 1. To make precise the form of (M 2) we consider the fractional Laplacian with exponent β and compute in R 2

C η,δ (a) |z| 2 dz |z| 2+β = vol(C η,δ (a)) vol(B δ ) B δ |z| 2 dz |z| 2+β = vol(C η,1 (a)) vol(B 1 ) B δ |z| 2 dz |z| 2+β = δ 2-β vol(C η,1 (a)) vol(B 1 ) B 1 |z| 2 dz |z| 2+β = δ 2-β θ π B 1 |z| 2 dz |z| 2+β ,
where θ denotes the angle measuring the aperture of the cone. Taking into account the definition of C η,1 (a) we have for small angles θ

η = 1 -cos(θ) = θ 2 2 + o(θ 2 )
and hence θ ≃ √ η, from where we deduce (M 2).

In higher dimension d ≥ 3, the volume of the cone is given in spherical coordinates, with normal direction a = (0, 0, ..., 1), polar angle φ 1 ∈ [0, π], and angular coordinates φ 2 , ...,

φ d-2 ∈ [0, π], φ d-1 ∈ [0, 2π], by the formula vol(C η,1 (a)) = θ 0 sin d-2 (φ 1 )dφ 1 ... π 0 sin(φ d-2 )dφ d-2 2π 0 dφ d-1 1 0 r d-1 dr.
For small angles θ the volume can be approximated by

vol(C η,1 (a)) ≈ θ d-1 d -1 π 0 sin d-3 (φ 2 )dφ 2 ... π 0 sin(φ d-2 )dφ d-2 2π 0 dφ d-1 1 0 r d-1 dr.
Therefore there exists a positive constant C > 0 such that

vol(C η,1 (a)) vol(B 1 ) ≥ Cθ d-1 = Cη d-1 2
and hence, denoting by

C µ = C B 1 |z| 2 dz |z| 2+β , (M 2 ) is satisfied C η,δ (a) |z| 2 dz |z| 2+β ≥ Cη d-1 2 δ 2-β B 1 |z| 2 dz |z| 2+β = C µ η d-1 2 δ 2-β .
2.4. Lévy Measures for Lévy-Itô Operators. Lévy-Itô operators are defined by

J [x, u] = R d u(x + j(x, z)) -u(x) -Du(x) • j(x, z)1 B (z) µ(dz). (6) 
In the sequel, we assume that the jump function(s) satisfies the following conditions.

(J1) There exists a constant Cµ > 0 such that for all

x ∈ R d B |j(x, z)| 2 µ(dz) + R d\B µ(dz) ≤ Cµ .
(J2) There exists β ∈ (0, 2) such that for every a ∈ R d there exist 0 < η < 1 and a constant C µ > 0 such that the following holds for any x ∈ R

d ∀δ > 0 C η,δ (a) |j(x, z)| 2 µ(dz) ≥ C µ η d-1 2 δ 2-β with C η,δ (a) := {z; |j(x, z)| ≤ δ, (1 -η)|j(x, z)||a| ≤ |a • j(x, z)|}. ( J3 
) There exists β ∈ (0, 2) such that for δ > 0 small enough

B\B δ |z|µ(dz) ≤ Cµ δ 1-β , if β = 1 Cµ | ln δ| if β = 1.
(J4) There exist γ ∈ (0, 1] and two constants c 0 , C 0 > 0 such that for any x ∈ R d and z ∈ R (J5) There exist γ ∈ (0, 1] and a constant C0 > 0 such that for all z ∈ R d \ B and x, y ∈ R

d |j(x, z) -j(y, z)| ≤ C0 |x -y| γ .
When several assumptions hold simultaneously, the constants denoted similarly are considered to be the same (e.g. β, C µ , Cµ ).

Lipschitz Continuity of Viscosity Solutions

In this section we present the main regularity results for mixed integro-differential equations. We deal with general nonlinearities derived from the toy model, namely Equation [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF], where the fractional diffusion gives the ellipticity in certain directions and the classical diffusion in the complementary ones. We first establish partial regularity results, namely Hölder and Lipschitz regularity of the solution with respect to the x 1 -variables. This is because of the lack of complete local or nonlocal diffusion. We then derive the global regularity of the solution.

For the sake of simplicity, we give the statements and proofs in the periodic setting. This yields C 0,α regularity instead of local regularity. At the same time it allows us to avoid the localization terms, meant to overcome the behavior at infinity of the solutions, which is related to the integrability of the singular measure away from the origin.

3.1. Partial Regularity Results. We first give partial regularity estimates, in which case we use classical regularity arguments in one set of variables, and uniqueness type arguments in the other variables. Regularity arguments apply for both general nonlocal operators and Lévy-Itô operators. However, uniqueness applies only for the latter. Consequently, we state two results: one for equations that mix general nonlocal operators with Lévy-Itô ones, and another one for equations dealing only with Lévy-Itô operators.

Theorem 2 (Partial regularity for periodic, mixed PIDEs -general nonlocal operators). Let f be a continuous, periodic function. Assume the nonlinearities F i , i = 0, 1, 2 are degenerate elliptic and that they satisfy the following:

-F 0 is Z d -periodic and satisfies assumptions (H0), (H2) with d = d and some constant γ; -F 1 is Z d 1 -periodic and satisfies (H1) with d = d 1 , for some functions Λ 1 , Λ 2 and some parameters Λ 0 , k ≥ 0, τ, θ, θ ∈ (0, 1]; -F 2 is Z d 2 -periodic and satisfies (H2), (H3) with d = d 2 . Let µ 0 , µ 1

x 1 x 1 and µ 2 be Lévy measures on

R d , R d 1 , R d 2 respectively associated to the integro -differential operators I[x, u], I x 1 [x, u] and J x 2 [x, u]. Suppose -µ 1 x 1 x 1 satisfies (M 1) -(M 3) for some C µ 1 , Cµ 1 , β and γ, with k ≤ β, β > 1 k < β, β ≤ 1; 
-the jump function j(x 2 , z) satisfies (J1),(J4) and (J5) for some C µ 2 , Cµ 2 , and γ = 1. Then any periodic continuous viscosity solution u of

F 0 (u(x), Du, D 2 u, I[x, u]) + F 1 (x 1 , D x 1 u, D 2 x 1 x 1 u, I x 1 [x, u]) (7) 
+ F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, J x 2 [x, u]) = f (x) (a) is Lipschitz continuous in the x 1 variable if β > 1; (b) is C 0,α continuous in the x 1 variable with α < β-k 1-k , if β ≤ 1.
The Lipschitz / Hölder constant L depends on ||u|| ∞ , the dimension of the space d, the constants associated to the Lévy measures as well as the constants required by the growth condition (H1).

Remark 1. In particular, when d 1 = d and F 0 ≡ 0, F 2 ≡ 0 we extend to Lipschitz the Hölder regularity result, recently obtained by Barles, Chasseigne and Imbert in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF].

Remark 2. When k = β = 1, the solution is α-Hölder continuous, with α small enough. Unfortunately in this case we cannot characterize the Hölder exponent α.

Remark 3. When β < 1, if C 1 = 0 in (H1) and β(k + τ ) > k, then the solution is exactly C 0,β .
Since the concave estimates for Lévy-Itô operators are of the same order as those for general nonlocal operators, similar regularity results hold. Namely, we have the following.

Theorem 3 (Partial regularity for periodic, mixed PIDEs -Lévy-Itô operators). Let f and F i , i = 0, 1, 2 satisfy the same assumptions as in Theorem 2. Let µ 0 , µ 1 and µ 2 be Lévy measures on R d , R d 1 and R d 2 , respectively associated to the integro-differential operators I[x, u], J x 1 [x, u] and J x 2 [x, u]. Suppose -the jump function j 1 (x 1 , z) satisfies assumptions (J1) -(J4), for some parameters β, C µ 1 , Cµ 1 , and γ ∈ (1 -β/2, 1], and in addition k ≤ β, β > 1 k < β, β ≤ 1; -the jump function j 2 (x 2 , z) satisfies (J1),(J4) and (J5) for some C µ 2 , Cµ 2 , and γ = 1. Then any periodic continuous viscosity solution u of

F 0 (u(x), Du, D 2 u, I[x, u]) + F 1 (x 1 , D x 1 u, D 2 x 1 x 1 u, J x 1 [x, u]) (8) + F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, J x 2 [x, u]) = f (x) (a) is Lipschitz continuous in the x 1 variable, if β > 1; (b) is C 0,α continuous in the x 1 variable with α < β-k 1-k , if β ≤ 1.
The Lipschitz / Hölder constant L depends on ||u|| ∞ , the dimension d of the space , the constants associated to the Lévy measures as well as the constants required by the growth condition (H1).

Remark 4. In order to establish Lipschitz or Hölder regularity results for the solution u, we shift the function and show that the corresponding difference can be uniformly controlled by

φ(t) = Lt α , for all α ∈ (0, 1].
Roughly speaking, one has to look at the maximum of the function 

α ∈ (0, 1] . (x, y) → u(x) -u(y) -φ(|x -y|)
and, in the case of elliptic PDEs, follow the uniqueness proof with a careful analysis of the matrix inequality given by Jensen-Ishii's lemma. Precise computations show that we just need ellipticity of the equation in the gradient direction. In the case of nonlocal diffusions, one has to translate in a proper way the ellipticity in the gradient direction. This is reflected in the nondegeneracy conditions (M 2) (respectively (J2)) required by the family of Lévy measures.

Proof of Theorem 2. The proof of the regularity of u consists of two steps: we first show that the solution u is C 0,α continuous for all α ∈ (0, 1), then we check that in the subcritical case β > 1 this implies the Lipschitz continuity. We use the viscosity method introduced by Ishii and Lions in [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF]. STEP 1. We introduce the auxiliary function

ψ(x 1 , y 1 , x 2 ) = u(x 1 , x 2 ) -u(y 1 , x 2 ) -φ(x 1 -y 1 )
where φ is a radial function of the form

φ(z) = ϕ(|z|)
with a suitable choice of a smooth increasing concave function ϕ : R + → R + satisfying ϕ(0) = 0 and ϕ(t 0 ) ≥ 2||u|| ∞ for some t 0 > 0. Our aim is to show that for all

x 2 ∈ R d 2 ψ(x 1 , y 1 , x 2 ) ≤ 0 if |x 1 -y 1 | < t 0 . (9) 
This yields the desired regularity result, for a proper choice of ϕ. Namely, ϕ = Lt α will give the partial Hölder regularity of the solution

|u(x 1 , x 2 ) -u(y 1 , x 2 )| ≤ L|x 1 -y 1 | α , if |x 1 -y 1 | < t 0 and ϕ = L(t -ρt 1+α ) the partial Lipschitz regularity |u(x 1 , x 2 ) -u(y 1 , x 2 )| ≤ L|x 1 -y 1 |, if |x 1 -y 1 | < t 0 .
STEP 2. To this end, we argue by contradiction and assume that ψ(x 1 , y 1 , x 2 ) has a positive strict maximum at some point (x 1 , ȳ1 , x2 ) with |x 1 -ȳ1 | < t 0 :

M = ψ(x 1 , ȳ1 , x2 ) = max x 1 ,y 2 ∈R d 1 ,x 2 ∈R d 2 |x 1 -y 1 |<t 0 ψ(x 1 , y 1 , x 2 ) > 0.
Denote by x = (x 1 , x2 ) and by ȳ = (ȳ 1 , x2 ). Then

ϕ(|x -ȳ|) ≤ u(x) -u(ȳ) ≤ ω u (|x -ȳ|) (10) ϕ(|x -ȳ|) ≤ u(x) -u(ȳ) ≤ 2||u|| ∞ . (11) 
To be able to extract some valuable information hereafter, we need to construct test functions defined on the whole space R d . For this reason, we penalize ψ around the maximum by doubling the variables, staying at the same time as close as possible to the maximum point. Therefore, we consider the auxiliary function

ψ ε (x, y) = u(x 1 , x 2 ) -u(y 1 , y 2 ) -φ(x 1 -y 1 ) - |x 2 -y 2 | 2
ε 2 whose maximum is attained, say at (x ε , y ε ). Denote its maximum value by

M ε = ψ ε (x ε , y ε ) = max x,y∈R d ψ ε (x, y).

Then the following holds.

Lemma 4. There exists (x, ȳ) such that M = ψ(x 1 , ȳ1 , x2 ) and up to a subsequence, the sequences of maximum points (x ε , y ε ) ε and of maximum values (M ε ) ε satisfy as ε → 0

M ε → M, |x ε 2 -y ε 2 | 2 ε 2 → 0, (x ε , y ε ) → (x, ȳ).
The proof of this lemma is classical and therefore omitted in this paper.

STEP 3. Let ā = (ā 1 , ā2 ) = x -ȳ , p = (p 1 , p 2 ) = (Dφ(ā 1 )
, 0) and denote by

a ε = (a ε 1 , a ε 2 ) = x ε -y ε , âε = a ε |a ε | , p ε = (p ε 1 , p ε 2 ) = (Dφ(a ε 1 ), 2 x ε 2 -y ε 2 ε 2 ). Since x ε 1 = y ε 1 ,
for ε small enough the function φ is smooth and we can apply the Jensen-Ishii's lemma for integro-differential equations [START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF]. This yields the existence, for each ε > 0, of two sequences of matrices

(X ε,ζ ) ζ , (Y ε,ζ ) ζ ⊂ S d of the form X ε,ζ = X ε,ζ 1 0 0 X ε,ζ 2 and Y ε,ζ = Y ε,ζ 1 0 0 Y ε,ζ 2 , ( 12 
)
which correspond to the subjets and superjets of u at the points x ε and y ε . In addition the block diagonal matrix satisfies

- 1 ζ I d 0 0 I d ≤ X ε,ζ 0 0 -Y ε,ζ ≤ Z -Z -Z Z + o ζ (1), (13) 
with Z a block matrix of the form

Z 1 0 0 Z 2 (14) 
with blocks

Z 1 = D 2 φ(a ε 1 ) = ϕ ′ (|a ε 1 |) |a ε 1 | I d 1 + ϕ ′′ (|a ε 1 |) - ϕ ′ (|a ε 1 |) |a ε 1 | âε 1 ⊗ âε 1 Z 2 = 2 ε 2 I d 2 .
By Lemma 24 the triple of block matrices (X ε,ζ i , Y ε,ζ i , Z i ) for i = 1, 2 satisfy [START_REF]A priori estimates for integro-differential operators with measurable kernels[END_REF]. Then, by sup and inf matrix convolution (see Lemmas 25 and 26 in Appendix) we build matrices, that we still denote by X ε,ζ and Y ε,ζ , for which the corresponding blocks

X ε,ζ i and Y ε,ζ i for i = 1, 2 satisfy uniform bounds - 2 ε I d 1 0 0 I d 1 ≤ X ε,ζ 1 0 0 -Y ε,ζ 1 ≤ Z1 -Z1 -Z1 Z1 + o ζ (1) (15) 
- 4 ε 2 I d 2 0 0 I d 2 ≤ X ε,ζ 2 0 0 -Y ε,ζ 2 ≤ 4 ε 2 I d 2 0 0 I d 2 + o ζ (1) (16) 
with

Z1 = Z ε 2 1 , where ε = |a ε 1 | ϕ ′ (|a ε 1 |) .
In addition, from the monotonicity of the sup and inf convolution (37) the new block matrices X ε,ζ and Y ε,ζ are still sub and superjets of u at x ε , respectively y ε

(p ε , X ε,ζ ) ∈ D 2,+ (u(x ε )) (p ε , Y ε,ζ ) ∈ D 2,-(u(y ε )).
Since the bounds in ( 15) and ( 16) are uniform with respect to ζ, we can let ζ → 0 and obtain two matrices X ε and Y ε satisfying the double inequality required by the ellipticity growth condition (H1), which are still sub and superjets of u at x ε and y ε respectively. Hence, they satisfy the viscosity inequalities

F 0 (u(x ε ), p ε , X ε , I[x ε , p ε , u]) + i=1,2 F i (x ε i , p ε i , X ε i , I x i [x ε , p ε i , u]) ≤ f (x ε ) F 0 (u(y ε ), p ε , Y ε , I[y ε , p ε , u]) + i=1,2 F i (ȳ ε i , p ε i , Y ε i , I y i [y ε , p ε i , u]) ≥ f (y ε ).
Subtracting the above inequalities and denoting

E 0 (x ε , y ε , u) = F 0 (u(y ε ), p ε , Y ε , I[y ε , p ε , u]) -F 0 (u(x ε ), p ε , X ε , I[x ε , p ε , u]) +f (x ε ) -f (y ε ) E i (x ε i , ȳε i , u) = F i (ȳ ε i , p ε i , Y ε i , I y i [y ε , p ε i , u]) -F i (x ε i , p ε i , X ε i , I x i [x ε , p ε i , u]) , i = 1, 2, we get that 0 ≤ E 0 (x ε , y ε , u) + E 1 (x ε 1 , y ε 1 , u) + E 2 (x ε 2 , y ε 2 , u). (17) 
STEP 4. In the following we estimate each of these terms as ε → 0, bringing into play the ellipticity growth assumptions satisfied by each nonlinearity.

Since u(y ε ) ≤ u(x ε ), X ε ≤ Y ε , the monotonicity assumption (H 0 ), the ellipticity (E) with respect to the second order term and the nonlocal term and the Lipschitz continuity (H2) of F 0 with respect to the nonlocal term yield

E 0 (x ε , y ε , u) ≤ γ u(y ε ) -u(x ε ) + L F 0 I[x ε , p ε , u] -I[y ε , p ε , u] + + f (x ε ) -f (y ε ).
As the Lévy measures corresponding to the nonlinearity F 0 do not depend on x, we immediately deduce from the maximum condition that

u(x ε + z) -v(y ε + z) ≤ u(x ε ) -v(y ε )
renders nonpositive the difference of the nonlocal terms

I[x ε , p ε , u] -I[y ε , p ε , u] ≤ 0.
Therefore, passing to the limits as ε → 0 and employing Lemma 4 we have

lim sup ε→0 E 0 (x ε , y ε , u) ≤ -γM. (18) 
The estimate of E 2 does not depend on the choice of ϕ and is given by the growth condition (H3) and the Lipschitz continuity (H2) of F 2 (•, l), uniformly with respect to all the other variables

E 2 (x ε 2 , y ε 2 , u) ≤ ω F 2 |a ε 2 | 2 ε 2 + |a ε 2 | + L F 2 (I x 2 [x ε , p ε 2 , u] -I y 2 [y ε , p ε 2 , u]) +
where L F 2 is the Lipschitz constant of F 2 (•, l). From Proposition 20 in Section 6 the quadratic estimates for Lévy-Itô operators hold

I x 2 [x ε , p ε 2 , u] -I y 2 [y ε , p ε 2 , u] ≤ C 1 ε 2 B δ |z 2 | 2 µ 2 (dz 2 ) + CC µ 2 |a ε 2 | 2 ε 2 .
for some positive constant C. As δ → 0, the estimate gives

I x 2 [x ε , p ε 2 , u] -I y 2 [y ε , p ε 2 , u] ≤ C Cµ 2 |a ε 2 | 2 ε 2 .
Letting now ε → 0 and using Lemma 4 which ensures that

|a ε 2 | 2 ε 2 → 0 we are finally lead to lim sup ε→0 E 2 (x ε 2 , y ε 2 , u) ≤ 0. ( 19 
)
For the estimate of E 1 , we use the ellipticity growth condition (H1)

E 1 (x ε 1 , y ε 1 , u) ≤ Λ 1 (x ε 1 ) I x 1 [x ε , p ε 1 , u] -I y 1 [y ε , p ε 1 , u] + |a ε 1 | 2θ ε + |a ε 1 | τ |p ε 1 | k+τ + C 1 |p ε 1 | k +Λ 2 (x ε 1 ) tr(X ε 1 -Y ε 1 ) + |a ε 1 | 2 θ ε + |a ε 1 | τ |p ε 1 | 2+τ + C 2 |p ε 1 | 2 (20) 
where we recall that

p ε 1 = Dφ(a ε 1 ) = Lϕ ′ (|a ε 1 |)â ε 1 .
The goal is to show that, for each choice of ϕ (measuring either the Hölder or the Lipschitz continuity), the right hand side quantity is negative, arriving thus to a contradiction by combining ( 17), ( 18), ( 19) and (20). STEP 5.1. Hölder continuity. In order to establish the Hölder regularity of solutions, we consider the auxiliary function

ϕ = Lt α , with α < min(1, β).
In this case, we apply Corollary 10 from Section 6, to the functions u(•, x 2 ) and u(•, y 2 ), which yields the following Hölder estimate for the difference of the nonlocal terms

I x 1 [x ε , p ε 1 , u] -I y 1 [y ε , p ε 1 , u] ≤ -L|a ε 1 | α-β αC(µ 1 ) -o |a ε 1 | (1) + O(1).
Lemma 27 from Appendix applies with Z1 = Z ǭ 2

1 , ε = Lα|a ε 1 | α-2 -1 , ω = 2 -α and hence the trace is bounded by trace(X ε 1 -Y ε 1 ) ≤ -8ω Lα|a ε 1 | α-2 (21) 
where ω = ω-1 ω+1 is a constant in (0, 1 3 ). We plug these estimates into the inequality for E 1 . Letting ε go to zero and employing the penalization Lemma 4 and (H4) we obtain the following bound

lim sup ε→0 E 1 (x ε 1 , y ε 1 , u) ≤ Λ 0 E 1 (|ā|) + Λ 0 E 2 (|ā|) + O(1)
where for 2θ + β > 2

E 1 (|ā|) = -L|ā| α-β αC(µ 1 ) -o |ā| (1) + |ā| 2θ Lα|ā| α-2 + |ā| τ Lα|ā| α-1 k+τ + C 1 Lα|ā| α-1 k = -L|ā| α-β αC(µ 1 ) -o |ā| (1) -α k+τ |ā| β-k (L|ā| α ) k+τ -1 -C 1 α k |ā| β-k (L|ā| α ) k-1
and

E 2 (|ā|) = -8ω Lα|ā| α-2 + |ā| 2 θ Lα|ā| α-2 + |ā| τ Lα|ā| α-1 2+τ + C 2 Lα|ā| α-1 2 = -L|ā| α-2 α 8ω -|ā| 2 θ -α 2+τ (L|ā| α ) 1+τ -C 2 α 2 L|ā| α .
Using the fact that L|ā| α ≤ 2||u|| ∞ we have

E 2 (|ā|) ≤ -L|ā| α-2 α 8ω -|ā| 2 θ -α 2+τ (2||u|| ∞ ) 1+τ -C 2 α 2 (2||u|| ∞ ) .
As far as E 1 is concerned, we further argue differently for the subcritical and supercritical case, with respect to the Lévy exponent β, and accordingly with respect to k and τ . Namely

(a) if 1 < k ≤ β, in which case k + τ -1 > 0, k -1 > 0, we have E 1 (|ā|) ≤ -L|ā| α-β αC(µ 1 ) -o |ā| (1) -α k+τ |ā| β-k (2||u|| ∞ ) k+τ -1 -C 1 α k |ā| β-k (2||u|| ∞ ) k-1 . (b) if k < min(1, β), then (b.1) for 0 < k≤1 -τ and β -k + α(k + τ -1) > 0 E 1 (|ā|) ≤ -L|ā| α-β αC(µ 1 ) -o |ā| (1) -α k+τ |ā| β-k+α(k+τ -1) L k+τ -1 -C 1 α k |ā| β-k+α(k-1) L k-1 = -L|ā| α-β αC(µ 1 ) -o |ā| (1) . (b.2) for 1 -τ < k ≤ 1 and β -k + α(k + τ -1) > 0 E 1 (|ā|) ≤ -L|ā| α-β αC(µ 1 ) -o |ā| (1) -α k+τ (2||u|| ∞ ) k+τ -1 -C 1 α k |ā| β-k+α(k-1) L k-1 = -L|ā| α-β αC(µ 1 ) -o |ā| (1) -α k+τ (2||u|| ∞ ) k+τ -1 .
This implies that for α small enough the two terms become (large) negative

lim L→∞ E 1 (|ā|) = -∞ and lim L→∞ E 2 (|ā|) = -∞.
Hence lim

L→∞ lim sup ε→0 E 1 (x ε 1 , y ε 1 , u) = -∞. ( 22 
)
We now turn back to inequality [START_REF] Sayah | Équations d'Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. II. Existence de solutions de viscosité[END_REF], let first ε → 0 and then L → ∞. Plugging in the estimates ( 18) -( 22) we arrive to a contradiction. Therefore, we have proved up to this point the C 0,α regularity of the solution, for α small enough. Note that the exponent α only depends on ||u|| ∞ , k and τ . We further use this first step to provide the C 0,α regularity for all α ∈ (0, 1). To this end, we estimate L|ā| α with the modulus of continuity of u and get

E 2 (|ā|) ≤ -L|ā| α-2 α 8ω -|ā| 2 θ -α 2+τ (ω u (|ā|)) 1+τ -C 2 α 2 ω u (|ā|) .
Taking into account that ω u (|ā|) ≤ L|ā| ᾱ for some ᾱ small, we come back to the original estimates in case k > 1 and to the estimates given in (b.1) when k ∈ (0, 1 -τ ), respectively (b.2) when k ∈ (1 -τ, 1), where α is everywhere replaced with ᾱ. By similar arguments we obtain

E 1 (|ā|) ≤ -L|ā| α-β αC(µ 1 ) -o |ā| (1) E 2 (|ā|) ≤ -L|ā| α-2 αC(µ 1 ) -o |ā| (1) .
This yields [START_REF] Trudinger | Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF] for L sufficiently large, and therefore completes the C 0,α regularity result. STEP 5.2. Lipschitz continuity. In the case β > 1, we establish the Lipschitz regularity of solutions. Therefore, we consider the auxiliary function

ϕ(t) = L t -̺t 1+α , t ∈ [0, t 0 ] ϕ(t 0 ), t > t 0
where α ∈ (0, 1) will be chosen small enough, ρ and t 0 as in Corollary 9 in Section §6. We remind that α is related to the aperture of the cone corresponding to η ∼ |ā| 2α . In order to estimate the difference of the nonlocal terms, we apply Corollary 9, to the same choice of functions u(•, x 2 ) and u(•, y 2 ):

I x 1 [x ε , p ε 1 , u] -I y 1 [y ε , p ε 1 , u] ≤ -L|a ε 1 | (1-β)+α(d 1 +2-β) Θ(̺, α, µ 1 ) -o |a ε 1 | (1) + O(1).
At this point, we fix ρ such that the constant Θ(̺, α, µ 1 ) is positive. We then apply Lemma

27 in Appendix with Z1 = Z ǭ 2 1
, where this time

ε = |a ε 1 | ϕ ′ (|a ε 1 |) = L|a ε 1 | -1 -Lρ(1 + α)|a ε 1 | α-1 -1 . Indeed ω = 1 -ϕ ′′ (|a ε 1 |)ε ∈ (1, 2) for ε sufficiently small. Hence trace(X ε 1 -Y ε 1 ) ≤ - 8 ε ω -1 ω + 1 = 8ϕ ′′ (|a ε 1 |) 2 -ϕ ′′ (|a ε 1 |)ε .
Note that in this case ω-1 ω+1 depends on |a ε 1 |. However there exists a positive constant ω such that for ε sufficiently small

8ϕ ′′ (|a ε 1 |) 2 -ϕ ′′ (|a ε 1 |)ε ≤ 8ωϕ ′′ (|a ε 1 |).
Hence, denoting by c = ρ(1 + α), second order terms are bounded by

trace(X ε 1 -Y ε 1 ) ≤ -8cω Lα|a ε 1 | α-1 .
We plug these estimates into the inequality for E 1 . Letting ε go to zero and employing Lemma 4 we arrive as before to

lim sup ε→0 E 1 (x ε 1 , y ε 1 , u) ≤ Λ 0 E 1 (|ā|) + Λ 0 E 2 (|ā|) + O(1),
where denoting by C(µ 1 ) = Θ(̺, α, µ 1 ) the terms E 1 , E 2 are given by

E 1 (|ā|) = -L|ā| (1-β)+α(d 1 +2-β) C(µ 1 ) -o |ā| (1) + |ā| 2θ L|ā| -1 1 -c|ā| α + |ā| τ L 1 -c|ā| α β+τ +C 1 L 1 -c|ā| α β E 2 (|ā|) = -8 c ω Lα|ā| α-1 + |ā| 2 θ L|ā| -1 1 -c|ā| α + |ā| τ L 1 -c|ā| α 2+τ + C 2 L 1 -c|ā| α 2 . Whenever α(d 1 + 3 -β) < 2θ -2 -β the second term in E 1 behaves like o |ā| (1-β)+α(d 1 +2-β) .
Taking L|ā| (1-β)+α(d 1 +2-β) as a common multiplier and using that 1 -c|ā| α ≤ 1 we have

E 1 (|ā|) ≤ -L|ā| (1-β)+α(d 1 +2-β) C(µ 1 ) -o |ā| (1) -|ā| -α(d 1 +2-β) L|ā| -cL|ā| α+1 β+τ -1 -C 1 |ā| -α(d 1 +2-β) L|ā| -cL|ā| α+1 β-1 ≤ -L|ā| (1-β)+α(d 1 +2-β) C(µ 1 ) -o |ā| (1) -2|ā| -α(d 1 +2-β) ϕ(|ā|) β+τ -1 -2C 1 |ā| -α(d 1 +2-β) ϕ(|ā|) β-1
.

On the other hand, similar techniques give us an estimate for E 2 :

E 2 (|ā|) ≤ -L|ā| α-1 8cαω -|ā| 2 θ|ā| -α -|ā| -α L|ā| -cL|ā| α+1 1+τ -C 2 |ā| -α L|ā| -cL|ā| α+1 ≤ -L|ā| α-1 8cαω -|ā| 2 θ|ā| -α -2|ā| -α ϕ(|ā|) 1+τ -2C 2 |ā| -α ϕ(|ā|) .
When α is small enough we have |ā| 2 θ|ā| -α = o |ā| [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF]. Then

E 2 (|ā|) ≤ -L|ā| α-1 C -o |ā| (1) -2|ā| -α ϕ(|ā|) 1+τ -2C 2 |ā| -α ϕ(|ā|) .
Since we have just seen that u is Hölder continuous for any α ∈ (0, 1), we have

ϕ(|ā|)|ā| -α → 0, as L → ∞.
Using this relation in the previous inequalities estimating E 1 and E 2 we get that, for L large enough

E 1 (|ā|) ≤ -L|ā| (1-β)+α(d 1 +2-β) C(µ 1 ) -o |ā| (1) E 2 (|ā|) ≤ -L|ā| α-1 C -o |ā| (1) .
Hence [START_REF] Trudinger | Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF] holds and this further yields the desired contradiction.

3.2. Global Regularity. It follows immediately from the previous results that as long as both nonlinearities F 1 and F 2 satisfy assumptions (H1)-(H3), the solution is global Lipschitz or Hölder continuous.

Corollary 5 (Global regularity for periodic, mixed PIDEs). Let the nonlinearities F i , i = 0, 1, 2 be degenerate elliptic, continuous and periodic, f continuous and periodic. Assume the following:

• F 0 satisfies assumptions (H0), (H2) with d = d and some constant γ > 0;

• F i with i = 1, 2 satisfy assumptions (H1) -(H3) with d = d i , for some functions Λ 1 i , Λ 2 i and some constants k i ≥ 0, τ i ∈ [0, 1], θ i , θi ∈ (0, 1]. Let µ 0 , µ i , with i = 1, 2 be Lévy measures on R d , R d i respectively associated to the integrodifferential operators I[x, u], J x i [x, u] and suppose the corresponding jump functions j i (x i , z i ) satisfy assumptions (J1) -(J5) for some constants β i , C µ i , Cµ i , with γ = 1. Then any periodic continuous viscosity solution u of

F 0 (u(x), Du, D 2 u, I[x, u]) + (23) F 1 (x 1 , D x 1 u, D 2 x 1 x 1 u, J x 1 [x, u]) + F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, J x 2 [x, u]) = f (x) (a) is Lipschitz continuous, if β i > 1 and k i ≤ β i for i = 1, 2; (b) is C 0,α continuous with α < min( β 1 -k 1 1-k 1 , β 2 -k 2 1-k 2 ), if β ≤ 1 and k i < β i for i = 1, 2.
The Lipschitz / Hölder constant depends on ||u|| ∞ , on the dimension d of the space and on the constants associated to the Lévy measures and on the constants required by the growth condition (H1).

At first glance, the fact that (H1) and (H3) must hold simultaneously seems to exclude a large class of nonlinear equations dealing with directional gradient or drift terms such as |D x i u| r or |b(x i )|D x i u| k+τ , r, k > 0. Indeed, taking in the ellipticity growth condition (H1) l = l ′ , p = x-y ε and θ = θ we get

F (y, x -y ε , Y, l) -F (x, x -y ε , X, l) ≤ Λ(x) tr(X -Y ) + |x -y| 2θ ε + |x -y| k+2τ ε k+τ + |x -y| r ε r .
Hence (H3) would hold whenever k = r = 0, θ = 1. In this case (H1) and (H3) could be joined together in assumption (H) There exist two functions Λ 1 , Λ 2 : R d → [0, ∞) such that Λ 1 (x) + Λ 1 (x) ≥ Λ 0 > 0 and a modulus of continuity ω F (r) → 0, as r → 0 such that for any x, y ∈ R d, p ∈ R d, l ≤ l ′ and any ε > 0

F (y, p, Y, l ′ ) -F (x, p, X, l) ≤ Λ 1 (x)(l -l ′ ) + Λ 2 (x)tr(X -Y ) + ω F |x -y|(1 + |p|) + |x -y| 2 ε if X, Y ∈ S d satisfy inequality (4) with Z = I -ωẑ ⊗ ẑ, for z ∈ R d and ω ≥ 1.
Nevertheless, one can argue under weaker growth assumptions, by a cut-off gradients argument for equations of the type (23) where F i , for i = 1, 2 satisfy assumptions (H1) -(H2) and F 0 satisfies (H2) and (H0) with γ > 0.

Roughly speaking, one should look at the approximated equation with |Du| replaced by |Du| ∧ R, for R > 0 and remark that its solutions are Lipschitz continuous, with the Lipschitz norm independent of R, thus the solution of the original problem is also Lipschitz continuous. This is made precise by defining, for each i = 0, 1, 2 the following functions

F R i (•, p, X, l) = F i (•, p, X, l), if |p| ≤ R F i (•, R p |p| , X, l), if |p| ≥ R. Consider then the approximated problem F R 0 (u R (x), Du R , D 2 u R , I[x, u R ]) + (24) F R 1 (x 1 , D x 1 u R , D 2 x 1 x 1 u R , J x 1 [x, u R ]) + F R 2 (x 2 , D x 2 u R , D 2 x 2 x 2 u R , J x 2 [x, u R ]) = f (x)
and remark that (H3) holds. Thus the approximated problem (24) has a Lipschitz/Hölder viscosity solution, whose continuity constant depends on ||u R || ∞ the constants required by the Lévy measures and those appearing in the ellipticity growth assumption (H1).

Let

M := |F 1 (0, 0, 0, 0)| + ||F 1 (x 1 , 0, 0, 0)|| ∞ + ||F 2 (x 2 , 0, 0, 0)|| ∞ + ||f || ∞ .
Since M (γ) -1 and -M (γ) -1 are respectively a supersolution and a subsolution of the approximated problem (24), by a comparison result between sub and super-solutions we have due to (H0)

||u R || ∞ ≤ M γ . Therefore, the Lipschitz constant of u R is independent of R.
Observing that for R large enough the solution u R of the approximated problem is as well a solution of the original, we conclude.

Examples and Discussion on Assumptions

In this section, we illustrate the partial and global regularity results on several examples. We start with two examples of classical nonlinearities for which we deal with global regularity: a model equation as in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF] and the advection fractional diffusion. Then we present the partial and global regularity results for pure mixed equations: first on the toy model and then on a general nonlinearity dealing with mixed gradient terms. 4.1. Classical Nonlinearities. As already presented in the introduction, the Lipschitz regularity result applies for equations that are strictly elliptic in a generalized sense: at each point, the nonlinearity is either non degenerate in the second-order term, or is nondegenerate in the nonlocal term. More precisely, by Theorem 2 we extend the Hölder regularity result in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF] to Lipschitz regularity when the nonlocal exponent β > 1.

Model Equation. A model equation for such nondegenerate equations is

-tr (A(x)D 2 u) -c(x)I[x, u] + b(x)|Du| k + |Du| r = 0 in R d , (25) 
where

A and c are continuous functions, b ∈ C 0,τ (R d ), with 0 ≤ τ ≤ 1, k, r ∈ (0, 2+τ ). I[x, u]
is a non-local term of type ( 5) or ( 6) of exponent β ∈ (0, 2). In the following, we discuss the ellipticity growth assumption (H1) and make precise the role of each term.

• One has to assume that equation ( 25) is strictly elliptic in the sense that

A(x) ≥ Λ 1 (x)I and c(x) ≥ Λ 2 (x) in R d (26) with Λ 1 (x) + Λ 2 (x) ≥ Λ 0 > 0.
Thus the equation may be degenerate in the local or the nonlocal term as for all x ∈ R d , A(x) ≥ 0 and c(x) ≥ 0. However, at each point either A(x) is a positive definite matrix and the equation is strictly elliptic in the classical sense, or c(x) > 0 and I[x, u] satisfies suitable nondegeneracy assumptions (that we discuss below) and the equation is strictly elliptic with respect to the integro-differential term. • A = σ T σ with σ a bounded, uniformly continuous function which maps R d into the space of N × p-matrices for some p ≤ N . It can be checked that

-(tr(A(x)X) -tr(A(y)Y )) ≤ d ω 2 σ (|x -y|) ε for any X, Y ∈ S d satisfying inequality (4).
• The nonlocal term can be writen as a general nonlocal operator

c(x)I[x, u] = c(x) R d u(x + z) -u(x) -Du(x) • z1 B (z) µ x (dz) = R d u(x + z) -u(x) -Du(x) • z1 B (z) c(x)µ x (dz)
where µ x x is a family of Lévy measures, satisfying assumptions (M 1)-(M 3). When c : R d → R is γ-Hölder continuous the results for general nonlocal operators literally apply for the new family of operators associated to the Lévy measures μx = c(x)µ x .

For a Lévy-Itô type operator, the nonlocal term can be writen as

c(x)I[x, u] = c(x) R d u(x + j(x, z)) -u(x) -Du(x) • j(x, z)1 B (z) µ(dz) = R d u(x + j(x, z)) -u(x) -Du(x) • j(x, z)1 B (z) c(x)µ(dz)
where the jump function j(x, z) satisfies assumptions (J1) -(J5). In this case, the results for general nonlocal operators do not apply ad-literram! Otherwise we could have considered Lévy-Itô operators as a particular case of general integro-differential operators. However, when c is γ-Hölder continuous, combining estimates arguments (see Section §6) used for Lévy-Itô operators with those for general nonlocal operators, we arrive to the same conclusion. • b : R d → R is a τ -Hölder continuous function, or just a bounded continuous function.

The growth conditions k, r on the gradient are related to the regularity of coefficients of b.

When β > 1, the solution is Lipschitz continuous for gradient terms b(x)|Du| k with natural growth k ≤ β and b bounded. If in addition b is τ -Hölder continuous, then the solution remains Lipschitz for gradient terms with growth k ≤ τ + β. Similarly, the solution is Lipschitz for any term gradient term |Du| r with r ≤ β.

Advection Fractional Diffusion Equation. Several recent papers deal with the regularity of solutions for the advection fractional diffusion equation

u t + (-∆ x ) β/2 u + b(x) • Du = f.
One distinguishes three cases, according to the order of fractional diffusion. The case β < 1 is known as the supercritical case, since the fractional diffusion is of lower order than the advection; conversely, β > 1 is the subcritical case. In between we have the critical value β = 1, when the drift and the diffusion are of the same order.

In the critical case, it was shown by Caffarelli and Vasseur [START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasigeostrophic equation[END_REF] by using De Giorgi's approach that the solution is smooth for L 2 initial data, f ≡ 0, and divergence free vector fields b belonging to the BMO class. The key step is to prove first that it is Hölder continuous. Their motivation comes from the quasi-geostrophic model in fluid mechanics. We mention that for smooth periodic initial data, Kiselev, Nazarov and Volberg [START_REF] Kiselev | Global well-posedness for the critical 2D dissipative quasigeostrophic equation[END_REF] proved that the solution of the quasi-geostrophic equation remains smooth.

Recently, Silvestre [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF] proved Hölder estimates for solutions of this equation (and nonlinear versions of it) by Harnack techniques. He also showed [START_REF]On the differentiability of the solution to an equation with drift and fractional diffusion[END_REF] that when β ≥ 1 and the vector field b is C 1-β+τ , the solution becomes C 1,τ .

As we shall see in the following Section §5, our regularity results apply as well in the parabolic and/or non-periodic setting. Hence for such an equation (and nonlinear versions of it), we obtain that the solution is Lipschitz continuous in the subcritical case β > 1 with b bounded; hence the fractional diffusion is stronger than the advection and prescribes the regularity of the solution. In the supercritical case β ≤ 1, the solution is β Hölder continuous whenever b is C 1-β+τ , where τ > 0. 4.2. Mixed nonlinearities. As discussed before, there is another interesting type of mixed ellipticity: at each point, the nonlinearity is degenerate both in the second-order term, and in the nonlocal term, but the combination of the local and the nonlocal diffusions renders the nonlinearity uniformly elliptic. For this type of equations, partial regularity results apply first and then they are used to derive the global regularity.

4.2.1.

A Toy-Model for the Mixed Case. The simplest example of pure mixed equations is given by

-∆ x 1 u + (-∆ x 2 ) β/2 u = f (x 1 , x 2 )
where (-∆ x 2 ) β/2 u denotes the fractional Laplacian with respect to the x 2 -variable It is clear that the equation is degenerate both with respect to the local and the nonlocal term, as both the Laplacian and the fractional Laplacian are incomplete. Indeed, the directional classical Laplacian has all of the eigenvalues corresponding to the x 2 variable equal to zero, and therefore the nonlinearity F is degenerate with respect to the second order term D 2 u. On the other hand, the degeneracy with respect to the nonlocal term comes from the fact that µ(dz 2 ) = dz 2 |z 2 | d 2 +β could be viewed as the restriction of the fractional Laplacian to the subspace {z 1 = 0}

(-∆ x 2 ) β/2 u = - R d 2 u(x 1 , x 2 + z 2 ) -u(x 1 , x 2 ) -D x 2 u(x 1 , x 2 ) • z 2 1 B (z 2 ) dz 2 |z 2 | d 2 +β .
ν(dz) = 1 {z 1 =0} (dz 1 )µ(dz 2 ).
Therefore, for a cone whose direction a is orthogonal to the x 2 -direction, we have

C d η,δ |z| 2 ν(dz) = C d 2 η,δ |z 2 | 2 µ(dz 2 ) = 0 where C d 2 η,δ = {z 2 ∈ B d 2 δ ; (1 -η)|z 2 ||a| ≤ |a 2 • z 2 |}.
Thus, (M 2) and (J2) fail and the Hölder regularity results of [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF] do not apply.

Instead, the partial regularity results of Theorem 2 hold: the solution is Lipschitz continuous with respect to the x 2 variable when β ≥ 1 and Hölder continuous when β < 1, and Lipschitz continuous with respect to the x 1 variable.

Remark 5. If we try to argue directly in R d and apply the regularity result as if we had only one nonlinearity defined on the whole space, then the best result we can get is Hölder regularity of the solution, except for the diagonal direction, i.e. for all ε ∈ (0, 1] the following holds for all α ∈ (0, ε)

u(x) -u(y) ≤ C|x -y| α , ∀x, y, ∈ R d s.t. max i=1,2 |x i -y i | |x -y| ≥ 1 2 -ε .
In addition, the further we go from the diagonal, the better the regularity of the solution is.

Let us check that when the gradient direction is the diagonal between x 1 and x 2 it is not possible to retrieve Hölder continuity directly. For this purpose, consider two matrices X, Y satisfying inequality (4), with Z = Dφ(a), where φ(z) = L|z| α . Let a = (a 1 , a 2 ) = x -ȳ be the gradient direction. The matrix inequality can be rewritten as follows

Xz • z -Y z ′ • z ′ ≤ D 2 φ(a)(z -z ′ ) • (z -z ′ ). ( 27 
)
Estimate of the diffusion terms. Applying (27) to z = -z ′ = e 1 = 1 |a 1 | (a 1 , 0) and to z = z ′ = (e, 0) for any unit vector e orthogonal to e 1 we obtain

tr X 1 -Y 1 ≤ 4D 2 φ(a)e 1 • e 1 .

Therefore taking into account the expression for

D 2 φ(a) = ϕ ′ (|a|) 1 |a| (I -â ⊗ â) + ϕ ′′ (|a|)â ⊗ â, we get tr X 1 -Y 1 ≤ 4 ϕ ′ (|a|) |a| (1 - |a 1 | 2 |a| 2 ) + 4ϕ ′′ (|a|) |a 1 | 2 |a| 2 . Using that φ(z) = L|z| α with α ∈ (0, ε) and L > 0 the previous inequality reads tr X 1 -Y 1 ≤ 4Lα|a| α-2 (1 + (α -2) |a 1 | 2 |a| 2 ). ( 28 
)
This expression is negative only if

|a 1 | 2 |a| 2 > 1 2 -ε .
Hence, when the gradient direction is "closer" to the x 1 -axis, the classical diffusion gains and the regularity is driven by the classical Laplacian.

Estimate of the nonlocal terms. As already made precise, the ellipticity of the equation comes in this case from the nondegeneracy assumption (M 2) with respect to the Lévy measures. Accordingly, the estimate that renders the nonlocal difference negative comes from the evaluation on the cone in the gradient direction. In view of (M 2) we have by rough approximations (see Proposition 8 and its Corollaries) that for e 2 = 1 |a 2 | (0, a 2 )

I x 2 [x, u] -I x 2 [ȳ, u] ≤ C η,δ sup |s|<1 D 2 a 2 a 2 φ(a + s(0, z 2 ))z 2 • z 2 µ(dz 2 ) + cLα|a| α-2 = C η,δ sup |s|<1 (1 -η2 ) ϕ ′ (|a + s(0, z 2 )|) |a + s(0, z 2 )| + η2 ϕ ′′ (|a + s(0, z 2 )|) |z 2 | 2 µ(dz) +cLα|a| α-2 ≤ C (1 -η2 ) ϕ ′ (|a|) |a| (1 - |a 2 | 2 |a| 2 ) + η2 ϕ ′′ (|a|) |a 2 | 2 |a| 2 + cLα|a| α-2 = CLα|a| α-2 1 + η2 (α -2) |a 2 | 2 |a| 2 + cLα|a| α-2 .
This expression is negative only if

|a 1 | 2 |a| 2 > 1 η2 (2 -ε) .
Similarly, when the gradient direction is "closer" to the x 2 -axis, the fractional diffusion gains and the regularity is driven by the (directional) fractional Laplacian.

Mixed Integro-Differential

Equations with First-Order Terms. Partial and global, Hölder and Lipschitz regularity results apply for a general class of mixed integro-differential equations. As pointed out in the previous theorems, the three nonlinearities must satisfy suitable strict ellipticity and growth conditions. The typical examples one can solve under those assumptions can be summed up by the following equation

-a 1 (x 1 )∆ x 1 u-a 2 (x 2 )I x 2 [x, u] -I[x, u]+b 1 (x 1 )|D x 1 u 1 | k 1 +b 2 (x 2 )|D x 2 u| k 2 + |Du| n + cu = f (x)
where for i = 1, 2 a i (x i ) ≥ 0 and

a i ∈ C 0,γ (R d i ), b i ∈ C 0,τ (R d i ) with 0 ≤ τ ≤ 1, k i ∈ (0, 2 + τ ),
n ≥ 0 and c > 0. We have thus considered

F 0 (u(x), Du, D 2 u, I[x, u]) = -I[x, u] + |Du| n + cu F 1 (x 1 , D x 1 u, D 2 x 1 x 1 u, J x 1 [x, u]) = -a 1 (x 1 )∆ x 1 u + b 1 (x 1 )|D x 1 u 1 | k 1 F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, J x 2 [x, u]) = -a 2 (x 2 )I x 2 [x, u] + b 2 (x 2 )|D x 2 u| k 2 .
Let us have a look at each of these terms and see the assumptions they have to satisfy, in order to ensure partial or global regularity of solutions. To fix ideas, suppose the nonlocal term I x 2 [x, u] is an integro-differential operator of fractional exponent β ∈ (0, 2).

In both situations, the nonlocal term I[x, u] can either be a general nonlocal operator associated to some Lévy measures µ 0 or a Lévy-Itô operator. We emphasize the fact that the associated Lévy measure has no x-dependency. This explains as well the lack of any coefficient a 0 (x) in front of the nonlocal term I[x, u]. The gradient term |Du| n is allowed to have any possible growth n ≥ 0.

As far as we are interested in partial regularity results, the constant c may be any real number, since we just need cu to be bounded. Yet, when combining the partial regularity results to obtain global regularity, F 1 and F 2 are submitted to rather restrictive assumptions, due to the uniqueness requirements. Thus, when b 1 and b 2 depend explicitly on x 1 , respectively x 2 the corresponding gradient terms are restrained to sublinear growth. To turn around this difficulty and obtain regularity of solutions in superlinear cases, one can argue by approximation, truncating the gradient terms and using Corollary 5 for obtaining uniform gradient bounds. To perform this program, c must be positive: c > 0.

We first discuss the partial regularity of the solution with respect to each of its variables. To this end, we need classical regularity assumptions in one set of variables, and uniqueness type assumptions in the other variables.

Partial regularity in x 2 -variable requires ellipticity of the equation in x 2 direction:

∀x 1 ∈ R d 1 , x 2 ∈ R d 2 a 1 (x 1 ) ≥ 0 and a 2 (x 2 ) > 0.
To ensure the uniqueness argument in x 1 -variable, we must take a 1 (x) = σ 1 (x) 

(x 2 )|D x 2 u| k 2 having a natural growth k 2 ≤ β if b 2 is bounded and directional gradient terms b 1 (x 1 )|D x 1 u| k 1 with linear growth k 1 = 1 if b 1 is Lipschitz (or sublinear growth k 1 < 1 if b 1 ∈ C 0,k 1 .
If in addition b 2 is τ -Hölder continuous, then the solution remains Lipschitz for gradient terms up to growth k 2 ≤ τ + β. When β ≤ 1, the solution is α-Hölder continuous for any α < β-k 2 1-k 2 . Partial regularity in x 1 -variable requires nondegeneracy of the equation in x 1 direction

a 1 (x 1 ) > 0, ∀x 1 ∈ R d 1 .
In this case, in the x 2 variable, we can only deal with nonlocal operators of Lévy-Itô type

I x 2 [x, u] = J x 2 [x, u],
for which the jump function is Lipschitz continuous and satisfies the structural conditions (J1), (J4) and (J5). The uniqueness constraint with respect to x 2 does not allow any x 2 -dependence of the Lévy-measure associated to the nonlocal term, and hence a 2 (x 2 ) should be a constant function.

Then the solution is Lipschitz in the x 1 variable, for directional gradient terms b

1 (x 1 )|D x 1 u| k 1 having a natural growth k 1 ≤ 2 + τ with b 1 ∈ C 0,τ (R d 1 ), 0 ≤ τ ≤ 1.
Once again, the uniqueness hypothesis forces directional gradient terms b 2 (x 2 )|D x 2 u| k 2 to have growth k 2 = 1 and b 2 is Lipschitz continuous.

Global regularity holds under slightly weaker assumptions than the partial regularity. It follows by interchanging the roles of x 1 and x 2 . Accordingly, the equation must be strongly elliptic both in the local and nonlocal term

a 1 (x 1 ) > 0 and a 2 (x 2 ) > 0 ∀x 1 ∈ R d 1 , x 2 ∈ R d 2 .
The nonlocal term I x 2 [x, u] is necessarily a Lévy-Itô operator, satisfying the nondegeneracy assumption (J2), as well as the rest of structural conditions (J1) -(J5). In addition a 1 (x 1 ) = σ 1 (x 1 ) 2 > 0 with σ 1 Lipschitz continuous and a 2 (x) ≡ a 2 > 0 constant function.

Joining the partial Lipschitz regularity results, we get Lipschitz continuity of the solution whenever b 1 and b 2 are Lipschitz continuous for linear, directional gradient terms b 1 (x 1 )|D x 1 u| and b 2 (x 2 )|D x 2 u|. The linear growth is constraint by the uniqueness argument.

However, looking at the approximated equations with |Du| replaced by |Du| ∧ R, for R > 0 and noting that the solutions are Lipschitz continuous, with the Lipschitz norm independent of R when c > 0, we obtain Lipschitz continuous viscosity solutions for general equations, dealing with gradient terms of growth

k 1 ≤ 2, k 2 ≤ τ + β, when b 2 ∈ C 0,τ (R d 2 )
. Similarly, we get α-Hölder continuous solutions, for any α < β-k 2 1-k 2 ≤ 1.

Extensions

5.1. Non-periodic Setting.

Theorem 6. Let f be continuous, the nonlinearities F i , i = 0, 1, 2 be degenerate elliptic, continuous, such that F 0 satisfies (H0) with γ > 0 and (H2), and that both F i , for i = 1, 2 satisfy assumptions (H2) and (H1 ′ ), with d = d i , for some functions Λ 1 i , Λ 2 i and some constants k i ≥ 0, τ i , θ i , θi ∈ (0, 1], where

(H1 ′ ) There exist two functions Λ 1 , Λ 2 : R d → [0, ∞) such that Λ 1 (x) + Λ 1 (x) ≥ Λ 0 > 0 and
for each 0 < R < ∞ there exist some constants k ≥ 0, τ, θ, θ ∈ (0, 1] such that for any

x, y ∈ R d, p, q ∈ R d, |q| < R, l ≤ l ′ and any ε > 0 F (y, p, Y, l ′ ) -F (x, p+q, X, l) ≤ Λ 1 (x) (l -l ′ ) + |x -y| 2θ ε + |x -y| τ |p| k+τ + C 1 |p| k + Λ 2 (x) tr(X -Y ) + |x -y| 2 θ ε + |x -y| τ |p| 2+τ + C 2 |p| 2 +O(K, R) if X, Y ∈ S d satisfy, inequality - 1 ε I 0 0 I ≤ X 0 0 -Y ≤ 1 ε Z -Z -Z Z +K I 0 -0 0 ,
for some Z = I -ωâ ⊗ â, with â ∈ R d a unit vector, and ω ∈ (1, 2).

Let µ 0 , µ i , with i = 1, 2 and j i (x i , z i ) satisfy assumptions (J1) -(J5) for some constants β i , C µ i , Cµ i , with γ = 1 in (J3). Then any bounded continuous viscosity solution u of ( 23) is

(a) locally Lipschitz continuous, if β i > 1 and k i ≤ β i for i = 1, 2, and (b) locally C 0,α continuous with α < min( β 1 -k 1 1-k 1 , β 2 -k 2 1-k 2 ), if β ≤ 1 and k i < β i for i = 1, 2.
The Lipschitz/Hölder constant depends on ||u|| ∞ , on the dimension d of the space and on the constants associated to the Lévy measures and on the constants required by the growth condition (H1).

Sketch of the proof. The fact that the solution is not periodic anymore, requires a localization term when measuring the shift of the solution. Thus, in order to prove the local continuity of the solution, either if it refers to Hölder or Lipschitz, we need to show that for each x 0 in the domain, there exists a constant K, depending on x 0 , such that for a proper choice of α (both in the Hölder in the Lipschitz case) there exists a constant L, depending on x 0 , large enough such that the auxiliary function

ψ(x 1 , y 1 , x 2 ) = u(x 1 , x 2 ) -u(y 1 , x 2 ) -Lϕ(|x 1 -y 1 |) - K 2 |(x 1 , x 2 ) -(x 0 1 , x 0 2 )| 2
attains a nonpositive maximum. The proof is technically the same, except that here there will be an additional contribution in the estimate of the nonlocal terms, coming from the localization term. The point is to show that this contribution is of order O(K).

Parabolic Integro-Differential Equations.

The techniques previously developed apply literally to parabolic integro-differential equations.

Corollary 7. Let f , the nonlinearities F i and the jump functions j i (x i , z i ) satisfy the assumptions of Corollary 5. If, for some

T > 0, u : [0, T ) × R d → R is a x -periodic, continuous viscosity solution of u t +F 0 (u(x), Du, D 2 u, I[x, u]) + F 1 (x 1 , D x 1 u, D 2 x 1 x 1 u, I x 1 [x, u]) + (29) F 2 (x 2 , D x 2 u, D 2 x 2 x 2 u, I x 2 [x, u]) = f (x) in (0, T ) × R d (a) If β i > 1, k i ≤ β i for i = 1, 2 and if u 0 ∈ Lip(R d ), then u is Lipschitz continuous with respect to x on [0, T ]. (b) If β ≤ 1, k i < β i for i = 1, 2 and if u 0 ∈ C 0,α (R d ), then u is C 0,α with respect to x on [0, T ], with α < min( β 1 -k 1 1-k 1 , β 2 -k 2 1-k 2 )
, . The Lipschitz / Hölder constant depends on ||u|| ∞ , on the dimension d of the space and on the constants associated to the Lévy measures and on the constants required by the growth condition (H1).

Sketch of proof.

The key difference with the previous proof consists in considering the spacetime auxiliary function

ψ(t, x 1 , y 1 , x 2 ) = u(t, x 1 , x 2 ) -u(t, y 1 , x 2 ) -φ(x 1 -y 1 )
and show that max t,x 1 ,x 2 ,y 2 ψ(t, x 1 , y 1 , x 2 ) < 0. By small space-time perturbations

ψ ε,ς (x, y, s, t) = u(t, x 1 , x 2 ) -u(s, y 1 , y 2 ) -φ(x 1 -y 1 ) - |x 2 -y 2 | 2 ε 2 - (t -s) 2 ς 2 ,
this leads to considering in the nonlocal Jensen-Ishii's lemma the parabolic sub and superjets

(r ε,ς , p ε,ς , X ε,ς ) ∈ D 2,+ p (u(x ε,ς )) (r ε,ς , p ε,ς , Y ε,ς ) ∈ D 2,- p (u(y ε,ς ))
with r ε,ς = 2 t-s ς 2 . Writing down the viscosity inequalities, note that the r ε,ς is the common term corresponding to the first order time-derivative, and hence it vanishes by subtraction. Therefore, when passing to the limits in inequality [START_REF] Sayah | Équations d'Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. II. Existence de solutions de viscosité[END_REF], we can first let ς go to zero. The rest of the proof is literally the same. 5.3. Bellman-Isaacs Equations. These results can be extended to fully nonlinear equations, that arise naturally in stochastic control problems for jump-diffusion processes. The following Bellman-Isaacs type equation arises

sup γ∈Γ inf δ∈∆ F γ,δ 0 (..., J γ,δ [x, u]) + F γ,δ 1 (..., J γ,δ x 1 [x, u]) + F γ,δ 2 (..., J γ,δ x 2 [x, u]) -f γ,δ (x) = 0
where J γ,δ [x, u] is a family of Lévy-Itô operators associated with a common Lévy measure µ 0 and a family of jump functions j γ,δ 0 (x, z), respectively J γ,δ x i [x, u] are families of Lévy-Itô operators associated with the Lévy measures µ i and the families of jump functions j γ,δ i (x i , z), for i = 1, 2.

A typical (and practical) example is

F γ,δ 0 = cu - 1 2 tr(A γ,δ (x)D 2 u) -J γ,δ [x, u] -b γ,δ (x) • Du F γ,δ i = - 1 2 tr(a γ,δ i (x i )D 2 x i x i u) -J γ,δ x i [x, u] -b γ,δ i (x) • D x i u.
Similar techniques to the previous ones yield the Hölder and Lipschitz continuity of solutions of Bellman-Isaacs equations, provided that the structure condition (H1) is uniformly satisfied by F γ,δ i , for i = 1, 2, as well as the assumptions (J1) -(J5) by the family of jump functions j γ,δ i (x i , z). In occurrence, the constants and functions appearing therein must be independent of γ and δ. For the above example, it is sufficient that

A γ,δ (x), a γ,δ i (x), b γ,δ i (x), f γ,δ (x) are bounded in W 1,∞ , uniformly in γ and δ.
The proof is based on the classical inequality

sup γ inf δ F γ,δ (..., J γ,δ [x, u]) -sup γ inf δ F γ,δ (..., J γ,δ [y, u]) ≤ sup γ,δ
F γ,δ (..., J γ,δ [x, u]) -F γ,δ (..., J γ,δ [y, u]) .

Multiple Nonlinearities.

The problem can be easily generalized to multiple nonlinearities

F 0 (u(x), Du, D 2 u, I[x, u]) + i∈I F i (x i , D x i u, D 2 x i x i u, J x i [x, u]) = f (x). (30) 
The proof can be reduced to the previous one, by grouping all the variables for which we employ uniqueness type arguments.

Estimates for Integro -Differential Operators

All these results are based on a series of estimates for the nonlocal terms, that we make precise in the following. They are similar to those in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF]. As we have seen, the proof of the Lipschitz regularity of solutions uses Hölder continuity of solutions for small orders α ∈ (0, 1 d+1 ), where d is the dimension of the space. For this reason, the estimates below are first given in a general form, such that they can be used for both regularity proofs. We then state as corollaries their precise form for Lipschitz and Hölder case.

6.1. General Nonlocal Operators. We first give some estimates for general nonlocal operators

I[x, u] = R d (u(x + z) -u(x) -Du(x) • z1 B ) µ x (dz).
We begin with a general result on concave estimates for these integro-differential operators, under quite general assumptions. We then derive finer estimates in the particular case of Lipschitz and Hölder control functions. However, these special forms will hold for family of Lévy measures (µ x ) x which satisfy some additional assumptions.

Proposition 8 (Concave estimates -general nonlocal operators). Assume condition (M 1) holds. Let u, v be two bounded functions and ϕ : [0, ∞) → R be a smooth increasing concave function. Define

ψ(x, y) = u(x) -v(y) -ϕ(|x -y|)
and assume the maximum of ψ is positive and reached at (x, ȳ), with x = ȳ. Let

a = x -ȳ, â = a/|a|, p = ϕ ′ (|a|)â.
Then the following holds

I[x, p, u] -I[ȳ, p, v] ≤ 4 Cµ max(||u|| ∞ , ||v|| ∞ ) + 1 2 C η,δ (a) sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) |z| 2 (µ x + µ ȳ) (dz) +2ϕ ′ (|a|) B\B δ |z| |µ x -µ ȳ| (dz) + B δ \C η,δ (a) 
sup

|s|≤1 ϕ ′ (|a + sz|) |a + sz| |z| 2 |µ x -µ ȳ| (dz), where C η,δ (a) = {z ∈ B δ ; (1 -η)|z||a| ≤ |a • z|}
and δ = |a|δ 0 > 0, η = 1-η-δ 0 1+δ 0 > 0 with δ 0 ∈ (0, 1), η ∈ (0, 1) small enough. Remark 6. The aperture of the cone is given by η and changes according to |a|. In order to ensure Lipschitz continuity of solutions, η must be chosen to behave like a power of |a|, i.e. η ∼ |a| α , and thus is diminishing as the modulus of the gradient approaches zero: lim |a|→0 η(|a|) = 0. Remark that as |a| → 0, C η,δ (a) degenerates to the line whose direction is given by the gradient. This will be made precise when proving Corollary 10 below.

Corollary 9 (Lipschitz estimates). Let (M 1) -(M 3) hold, with β > 1. Under the assumptions of Proposition 8 with

ϕ(t) = L t -̺t 1+α , t ∈ [0, t 0 ] ϕ(t 0 ), t > t 0 where α ∈ 0, min( γ d+1 , β-1 d+2-β ) , ̺ is a constant such that ̺α2 α-1 > 1, t 0 = max t (t-̺t 1+α ) = α 1 ρ(1+α) and L > (||u||∞+||v||∞)(α+1) t 0 α
, the following holds: there exists a positive constant

C = C(µ) such that for Θ(̺, α, µ) = C ρα2 α-1 -1 we have I[x, p, u] -I[ȳ, p, v] ≤ -L|a| (1-β)+α(d+2-β) Θ(̺, α, µ) -o |a| (1) + O( Cµ ).
Corollary 10 (Hölder estimates). Let (M 1) -(M 3) hold, with β ∈ (0, 2). Under the assumptions of Proposition 8 with

ϕ(t) = Lt α , t ∈ [0, t 0 ] ϕ(t 0 ), t > t 0
where α ∈ (0, min(β, 1)), t 0 > 0, and L > ||u||∞+||v||∞ t 0 α , the following holds: there exists a positive constant C(µ) > 0 such that

I[x, p, u] -I[ȳ, p, v] ≤ -L|a| α-β αC(µ) -o |a| (1) + O( Cµ ).
Proof of Proposition 8. We split the domain of integration into three pieces and take the integrals on each of these domains. Namely we part the ball B δ of radius δ into the subset C η,δ (a) with η = η(|a|) and δ = δ(|a|), and its complementary B δ \ C η,δ (a). We write the difference of the nonlocal terms, corresponding to the maximum point (x, ȳ), as the sum

I[x, p, u] -I[ȳ, p, v] = T 1 (x, ȳ) + T 2 (x, ȳ) + T 3 (x, ȳ)
where

T 1 (x, ȳ) = R d \B (u(x + z) -u(x)) µ x(dz) - R d \B (v(ȳ + z) -v(ȳ)) µ ȳ(dz) T 2 (x, ȳ) = C η,δ (a) (u(x + z) -u(x) -p • z) µ x(dz) - C η,δ (a) (v(ȳ + z) -v(ȳ) -p • z) µ ȳ(dz) T 3 (x, ȳ) = B\C η,δ (a) (u(x + z) -u(x) -p • z) µ x(dz) - B\C η,δ (a) (v(ȳ + z) -v(ȳ) -p • z) µ ȳ(dz).
Let φ(z) = ϕ(|z|). Then p = Dφ(a). Since (x, ȳ) is a maximum point of ψ(•, •), we have that

u(x + z) -u(x) -p • z ≤ v(ȳ + z ′ ) -v(ȳ) -p • z ′ +φ(a + z -z ′ ) -φ(a) -Dφ(a) • (z -z ′ ). (31) 
In the following we give estimates for each of these integral terms, using inequality (31) and properties of the Lévy measures (µ x ) x .

Lemma 11. T 1 (x, ȳ) is uniformly bounded with respect to all parameters. More precisely

T 1 (x, ȳ) ≤ 4 max(||u|| ∞ , ||v|| ∞ ) sup x∈R d µ x (R d \ B).
Proof of Lemma 11. Since the functions u and v are bounded, we immediately deduce that

T 1 (x, ȳ) ≤ 2||u|| ∞ R d \B µ x(dz) + 2||v|| ∞ R d \B µ ȳ(dz).
We conclude by recalling that the measures µ x are uniformly bounded away from the origin, by assumption (M 1).

Lemma 12. Let δ = |a|δ 0 with δ 0 ∈ (0, 1) small, η be small enough such that 1 -η -δ 0 > 0 and

η = 1 -η -δ 0 1 + δ 0 .
Then the nonlocal term T 2 satisfies

T 2 (x, ȳ) ≤ 1 2 C η,δ (a) sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) |z| 2 (µ x + µ ȳ)(dz).
Remark 7. The previous notations have been introduced to simplify the form of the estimates.

It is important to note however that the coefficients appearing in the convex combination of the derivatives of ϕ depend explicitly on η and not on the aperture of the cone, given in terms of η. We eventually set η ∼ |a| 2α and δ 0 ∼ |a| α , thus we expect to have η ≃ 1. Consequently, the second derivative of ϕ would dominate the nonlocal difference and would render T 2 (x, ȳ) as negative as needed.

Proof of Lemma 12. Taking z ′ = 0 and z = 0 in inequality (31) we have

u(x + z) -u(x) -p • z ≤ φ(a + z) -φ(a) -Dφ(a) • z -v(ȳ + z ′ ) -v(ȳ) -p • z ′ ≤ φ(a -z ′ ) -φ(a) + Dφ(a) • z ′ . Therefore T 2 (x, ȳ) ≤ C η,δ (a) (φ(a + z) -φ(a) -Dφ(a) • z) µ x(dz) + C η,δ (a) φ(a -z ′ ) -φ(a) + Dφ(a) • z ′ µ ȳ(dz ′ ).
Using Taylor's formula with integral reminder, the right hand side can be rewritten as

1 2 1 0 (1 -s)ds C η,δ (a) D 2 φ(a + sz)z • z µ x(dz) + 1 2 0 -1 (1 + s)ds C η,δ (a) D 2 φ(a+sz)z • z µ ȳ(dz).
Remark that the first and second derivatives of φ(z) = ϕ(|z|) are given by the formulas

Dφ(z) = ϕ ′ (|z|)ẑ D 2 φ(z) = ϕ ′ (|z|) |z| (I -ẑ ⊗ ẑ) + ϕ ′′ (|z|)ẑ ⊗ ẑ,
and in particular

D 2 φ(a + sz)z • z = ϕ ′ (|a + sz|) |a + sz| |z| 2 -| (a + sz) • z| 2 + ϕ ′′ (|a + sz|)| (a + sz) • z| 2 .
On the set C η,δ (a) we have the following upper and lower bounds

|a + sz| ≥ |a| -|s||z| ≥ |a| -δ = |a|(1 -δ 0 ) |a + sz| ≤ |a| + |s||z| ≤ |a| + δ = |a|(1 + δ 0 ) (32) |(a + sz) • z| ≥ |a • z| -s|z| 2 ≥ |a • z| -δ|z| ≥ (1 -η -δ 0 )|z||a|.
Hence we deduce that for all s ∈ (-1, 1)

| (a + sz) • z| ≥ η|z| with η = 1 -η -δ 0 1 + δ 0 . ( 33 
)
Recalling that ϕ is increasing and concave, we get

D 2 φ(a + sz)z • z ≤ (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| |z| 2 + η2 ϕ ′′ (|a + sz|)|z| 2 .
This implies that the integral terms corresponding to φ are bounded by

1 2 C η,δ (a) sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) |z| 2 (µ x + µ ȳ)(dz).
which concludes the proof of the lemma.

Lemma 13. The following estimate holds

T 3 (x, ȳ) ≤ B δ \C η,δ (a) sup |s|≤1 ϕ ′ (|a + sz|) |a + sz| |z| 2 |µ x -µ ȳ| (dz) + 2ϕ ′ (|a|) B\B δ |z| |µ x -µ ȳ| (dz).
Proof of Lemma 13. When estimating the nonlocal term outside the cone, one has to keep it as small as possible, though positive. Therefore we consider, as in [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF] the signed measure µ = µ x -µ ȳ. Consider its Jordan decomposition µ = µ + -µ -and denote by |µ| the corresponding total variation measure. Then, if K is the support of the positive variation µ + , one can define the minimum of the two measures as

µ * = 1 K µ ȳ + (1 -1 K )µ x.
But then, the measures µ x and µ ȳ can be rewritten as µ x = µ * + µ + and µ ȳ = µ * + µ -. With these notations in mind, we rewrite the nonlocal term T 3 as

T 3 (x, ȳ) = B\C η,δ (a) (u(x + z) -u(x) -p • z -(v(ȳ + z) -v(ȳ) -p • z)) µ * (dz) + B\C η,δ (a) (u(x + z) -u(x) -p • z)µ + (dz) - B\C η,δ (a) (v(ȳ + z) -v(ȳ) -p • z)µ -(dz).
Choosing successively z ′ = z, z ′ = 0 and z = 0 in (31) and noting that

u(x + z) -u(x) -p • z ≤ v(ȳ + z) -v(ȳ) -p • z
we deduce that

T 3 (x, ȳ) ≤ B\C η,δ (a) (φ(a + z) -φ(a) -Dφ(a) • z) µ + (dz) + B\C η,δ (a) (φ(a -z) -φ(a) + Dφ(a) • z) µ -(dz).
For estimating the integral terms corresponding to φ, we split the domain of integration into B \ B δ and B δ \ C η,δ (a). On the first set, from the monotonicity and the concavity of ϕ we have

φ(a + z) -φ(a) -Dφ(a) • z ≤ ϕ(|a| + |z|) -ϕ(|a|) -ϕ ′ (|a|)â • z ≤ 2ϕ ′ (|a|)|z|.
On B δ \ C η,δ (a) we use a second order Taylor expansion and we take into account that ϕ is smooth, ϕ ′ ≥ 0 and ϕ ′′ ≤ 0 to obtain the upper bound

sup |s|≤1 (φ(a + sz) -φ(a) -Dφ(a) • z) ≤ sup |s|≤1 D 2 φ(a + sz)z • z ≤ sup |s|≤1 ϕ ′ (|a + sz|) |a + sz| |z| 2 .
Therefore we get the estimate

T 3 (x, ȳ) ≤ 2ϕ ′ (|a|) B\B δ |z| |µ x -µ ȳ| (dz) + B δ \C η,δ (a) sup |s|≤1 ϕ ′ (|a + sz|) |a + sz| |z| 2 |µ x -µ ȳ| (dz).
From the three above lemmas, we obtain the final estimate for the nonlocal term.

Proof of Corollary 9. Remark that |a| ≤ t 0 . Indeed, since the maximum of ψ is positive and in view of the lower bound on L, we have

ϕ(|a|) < ||u|| ∞ + ||v|| ∞ ≤ Lt 0 α 1 + α = ϕ(t 0 )
which by the strict monotonicity of ϕ implies the desired inequality. We first evaluate the estimate that renders the integral difference negative, namely:

sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) = L sup |s|≤1 (1 -η2 ) 1 -̺(1 + α)|a + sz| α |a + sz| -η2 ̺α(1 + α)|a + sz| α-1 ≤ L sup |s|≤1 1 -η2 |a + sz| -̺(1 + α)(1 -η2 + αη 2 )|a + sz| α-1 .
Using the fact that η2

≤ 1 ≤ 1 1-α 2 we have that (1 + α)(1 -η2 + αη 2 ) ≥ α which further implies sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) ≤ L sup |s|≤1 1 -η2 |a + sz| -̺α|a + sz| α-1 .
But this quantity has to be integrated over the cone C η,δ (a), in which case |a + sz| satisfies

|a|(1 -δ 0 ) ≤ |a + sz| ≤ |a|(1 + δ 0 ).
Thus, observing that 1 -η2 ≤ 2(1 -η), the previous inequality takes the form

sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) ≤ L 2(1 -η) |a|(1 -δ 0 ) -̺α(1 + δ 0 ) α-1 |a| α-1 .
Let η be of the form 1 -η = |a| α η0 with small η0 < 1 4 . Choose accordingly δ 0 and η of the form

δ 0 = c 1 |a| α 1 η = c 2 |a| α 2 .
Recalling that η = 1-δ 0 -η 1+δ 0 we get that c 1 , c 2 , α 1 and α 2 must satisfy

c 2 |a| α 2 + 2c 1 |a| α 1 = c 1 η0 |a| α+α 1 + η0 |a| α .
Identifying the coefficients we obtain

δ 0 = 1 2
|a| α η0 and η = 1 2 |a| 2α η2 0 . Subsequently, the choice of parameters η, δ 0 and η0 gives us

sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) ≤ -L ̺α2 α-1 -1 |a| α-1 .
This leads to a negative upper bound of the integral term taken over the cone C η,δ (a):

C η,δ (a) sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) |z| 2 µ x(dz) ≤ -L ̺α2 α-1 -1 |a| α-1 C η,δ (a) 
|z| 2 µ x(dz).

Let Θ(̺, α) = ̺α2 α-1 -1 > 0 and use (M 2) and the fact that δ = |a|δ 0 to finally get (2-β) . Less technical estimates give us similar upper bounds for the other two integrals. More precisely, we have in view of assumption (M 3) (2-β) . For β > 1 and α > 0 such that γ > α(d + 1) the difference of the two nonlocal terms becomes negative:

C η,δ (a) sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) |z| 2 µ x(dz) ≤ -LΘ(̺, α)|a| α-1 C µ η d-1 2 δ 2-β = -LΘ(̺, α)C 1 µ |a| α-1 |a| α(d-1) |a| (1+α)
2ϕ ′ (|a|) B\B δ |z||µ x -µ ȳ|(dz) ≤ 2LC µ |a| γ δ 1-β = LC 2 µ |a| γ |a| (1+α)(1-β) and B δ \C η,δ (a) sup |s|≤1 ϕ ′ (|a + sz|) |a + sz| |z| 2 |µ x -µ ȳ|(dz) ≤ L C µ |a| γ δ 2-β |a|(1 -δ 0 ) ≤ LC 3 µ |a| γ-1 |a| (1+α)
I[x, p, u] -I[ȳ, p, v] ≤ -L|a| 1-β C 1 µ Θ(̺, α, µ)|a| α(d+2-β) -C 2 µ |a| γ+α(1-β) -C 3 µ |a| γ+α(2-β) + O( Cµ ) = -L|a| (1-β)+α(d+2-β) C 1 µ Θ(̺, α, µ) -o |a| (1) + O( Cµ ).
Proof of Corollary 10. Estimating the integrand of the nonlocal difference T 2 we get sup

|s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) = Lα 1 -(2 -α)η 2 inf |s|≤1 |a + sz| α-2 ≤ -Lα (2 -α)η 2 -1 (1 + δ 0 ) α-2 |a| α-2 .
Choose η and δ 0 sufficiently small such that

δ 0 < 1 2 (2 -α)η 2 = (2 -α) 1 -η -δ 0 1 + δ 0 2 > 1 2 .
Remark that, contrary to the Lipschitz case, η and δ 0 do not depend on |a|. We then obtain due to (M 2) a negative bound of the integral term over the cone C η,δ (a), for δ = |a|δ 0 :

C η,δ (a) sup |s|≤1 (1 -η2 ) ϕ ′ (|a + sz|) |a + sz| + η2 ϕ ′′ (|a + sz|) |z| 2 µ x(dz) ≤ -L α 2 (1 + δ 0 ) α-2 |a| α-2 C η,δ (a) |z| 2 µ x(dz) ≤ -LαC(µ)|a| α-β .
In addition, in view of (M 3) we have the estimates of the other two integral terms, when

β = 1 2ϕ ′ (|a|) B\B δ |z||µ x -µ ȳ|(dz) ≤ 2Lα|a| α-1 C µ |a| γ δ 1-β = LαC 2 µ |a| γ |a| α-β and for β = 1 2ϕ ′ (|a|) B\B δ |z||µ x -µ ȳ|(dz) ≤ LαC 2 µ |a| γ | ln(|a|δ 0 )||a| α-β . Similarly B δ \C η,δ (a) sup |s|≤1 ϕ ′ (|a + sz|) |a + sz| |z| 2 |µ x -µ ȳ|(dz) ≤ Lα (|a|(1 -δ 0 )) α-2 B δ \C η,δ (a) |z| 2 |µ x -µ ȳ|(dz) ≤ LαC 3 µ |a| γ |a| α-β .
Therefore the difference of the nonlocal term becomes negative, as bounded from above by

I[x, p, u] -I[ȳ, p, v] ≤ -L|a| α-β αC(µ) -o |a| (1) + O( Cµ ).
6.2. Lévy-Itô Operators. We now establish similar results for Lévy-Itô operators

J [x, u] = R d (u(x + j(x, z)) -u(x) -Du(x) • j(x, z)1 B (z))) µ(dz).
As before, we give a general result on concave estimates for the difference of two Lévy-Itô operators. Then we present the Lipschitz and Hölder estimates as corollaries. In addition, we provide the quadratic estimates that are used in the uniqueness argument, in the proof of the partial regularity result, Theorem 2.

Proposition 14 (Concave estimates -Lévy-Itô operators). Assume conditions (J1) and (J4) hold. Let u, v be two bounded functions, ϕ : [0, ∞) → R be a smooth increasing concave function and define

ψ(x, y) = u(x) -v(y) -ϕ(|x -y|).
Assume that ψ attains a positive maximum at (x, ȳ), with x = ȳ. Let a = x -ȳ, â = a/|a| and p = ϕ ′ (|a|)â. Then the following holds

J [x, p, u] -J [ȳ, p, v] ≤ 4 Cµ max(||u|| ∞ , ||v|| ∞ ) + 1 2 C sup |s|≤1 x=x,ȳ (1 -η2 ) ϕ ′ (|a + sj(x, z)|) |a + sj(x, z)| + η2 ϕ ′′ (|a + sj(x, z)|) |j(x, z)| 2 µ(dz) +2ϕ ′ (|a|) B\C |∆(z)|≥δ |∆(z)|µ(dz) + B\C |∆(z)|≤δ sup |s|≤1 ϕ ′ (|a + s∆(z)|) |a + s∆(z)| |∆(z)| 2 µ(dz)
where ∆(z) = j(x, z) -j(ȳ, z),

C = z; j( x + ȳ 2 , z) ≤ δ 2 and j( x + ȳ 2 , z) • â ≥ (1 - η 2 ) j( x + ȳ 2 , z) ) |a| 2 γ ≤ c 0 C 0 η 4 -η , δ = |a|δ 0 > 0, η = 1 -η -δ 0 1 + δ 0 > 0
with δ 0 ∈ (0, 1) and η ∈ (0, 1) both sufficiently small.

Corollary 15 (Lipschitz estimates). Let β > 1 ≥ 2(1 -γ) and assume that conditions (J1) -(J4) hold. Under the assumptions of Proposition 14 with

ϕ(t) = L t -̺t 1+α , t ∈ [0, t 0 ] ϕ(t 0 ), t > t 0 where α ∈ 0, min γβ d+1 , β-1 d+2-β , ̺ is a constant such that ̺α2 α-1 > 1, t 0 = max t (t - ̺t 1+α ) = α 1 ρ(1+α) and L > (||u||∞+||v||∞)(α+1) t 0 α
, the following holds: there exists a positive

constant C = C(µ) such that for Θ(̺, α, µ) = C ρα2 α-1 -1 we have J [x, p, u] -J [ȳ, p, v] ≤ -L|a| (1-β)+α(d+2-β) Θ(̺, α, µ) -o |a| (1) + O( Cµ ).
Remark 8. The condition β > 2(1 -γ) connects the singularity of the measure with the regularity of the jumps. It says that the more singular the measure is, the less regular the jumps can be.

Corollary 16 (Hölder estimates). Let β > 2(1-γ) and assume that conditions (J1)-(J4) hold. Under the assumptions of Proposition 8 with

ϕ(t) = Lt α , t ∈ [0, t 0 ] ϕ(t 0 ), t > t 0
where α ∈ (0, min(β, 1)), t 0 > 0, and L > ||u||∞+||v||∞ t 0 α , the following holds: there exists a positive constant C(µ) > 0 such that

J [x, p, u] -J [ȳ, p, v] ≤ -L|a| α-β αC(µ) -o |a| (1) + O( Cµ ).
Proof of Proposition 14. In this case, the difference of the nonlocal terms reads

J [x, p, u] -J [ȳ, p, v] = R d (u(x + j(x, z) -u(x) -p • j(x, z)1 B (z))) µ(dz) - R d (v(ȳ + j(ȳ, z) -v(ȳ) -p • j(ȳ, z)1 B (z))) µ(dz).
Similarly to general nonlocal operators we split the domain of integration into the cone C, its complementary in the unit ball B \ C and the region away from the origin R d \ B. Remark that the cone has the property

C := C δ/2,η/2 x + ȳ 2 ⊂ C δ,η (x) ∩ C δ,η (ȳ). (34) 
Indeed, for |a| sufficiently small such that |a|

2 γ ≤ c 0 C 0 , if z ∈ C then |j(x, z)| ≤ |j( x + ȳ 2 , z) -j(x, z)| + |j( x + ȳ 2 , z)| ≤ C 0 |z| |a| 2 γ + δ 2 ≤ δ 2 C 0 c 0 |a| 2 γ + δ 2 ≤ δ since c 0 |z| ≤ |j( x+ȳ 2 , z)| ≤ δ 2 .
At the same time, we use the fact that |a|

2 γ ≤ c 0 C 0 η 4-η , to get from (J4) |j(x, z) • â| ≥ |j( x + ȳ 2 , z) • â| -|j( x + ȳ 2 , z) -j(x, z)| ≥ (1 - η 2 )|j( x + ȳ 2 , z)| -|j( x + ȳ 2 , z) -j(x, z)| ≥ (1 - η 2 )|j(x, z)| -(2 - η 2 )|j( x + ȳ 2 , z) -j(x, z)|) ≥ (1 - η 2 )|j(x, z)| -(2 - η 2 )C 0 |z| |a| 2 γ ≥ (1 - η 2 )|j(x, z)| -(2 - η 2 ) C 0 c 0 |j(x, z)| |a| 2 γ ≥ (1 -η)|j(x, z)|.
Let φ(z) = ϕ(|z|). Then p = Dφ(a). Accordingly, we write the previous difference as the sum where

J [x, p, u] -J [ȳ, p, v] = T 1 (x, ȳ) + T 2 (x, ȳ) + T 3 (x, ȳ),
T 1 (x, ȳ) = R d \B (u(x + j(x, z)) -u(x)) µ(dz) - R d \B (v(ȳ + j(ȳ, z)) -v(ȳ)) µ(dz) T 2 (x, ȳ) = C (u(x + j(x, z)) -u(x) -p • j(x, z)) µ(dz) - C (v(ȳ + j(ȳ, z)) -v(ȳ) -p • j(ȳ, z)) µ(dz) T 3 (x, ȳ) = B\C (u(x + j(x, z)) -u(x) -p • j(x, z)) µ(dz) - B\C (v(ȳ + j(ȳ, z)) -v(ȳ) -p • j(ȳ, z)) µ(dz).
As before, we next estimate each of these integral terms. The first lemma is straightforward.

Lemma 17. T 1 (x, ȳ) is uniformly bounded with respect to all the parameters, namely

T 1 (x, ȳ) ≤ 4 max(||u|| ∞ , ||v|| ∞ ) sup x∈R d µ x (R d \ B).
Lemma 18. Let δ = |a|δ 0 and η ∈ (0, 1 2 ) such that 1 -η -δ 0 ≥ 0. We have

T 2 (x, ȳ) ≤ C sup |s|≤1, x=x,ȳ (1 -η2 ) ϕ ′ (|a + sj(x, z)|) |a + sj(x, z)| + η2 ϕ ′′ (|a + sj(x, z)|) |j(x, z)| 2 µ(dz) where η = (1 -η -δ 0 )(1 + δ 0 ) -1 .
Proof of Lemma 18. Writing the maximum inequality at points x, ȳ for the pair (z, z ′ ) = (j(x, z), 0) and (z, z ′ ) = (0, j(ȳ, z)) respectively, we have

u(x + j(x, z)) -u(x) -p • j(x, z) ≤ φ(a + j(x, z)) -φ(a) -Dφ(a) • j(x, z) -(v(ȳ + j(ȳ, z)) -v(ȳ) -p • j(ȳ, z)) ≤ φ(a -j(ȳ, z)) -φ(a) + Dφ(a) • j(ȳ, z). Therefore T 2 (x, ȳ) ≤ C (φ(a + j(x, z)) -φ(a) -Dφ(a) • j(x, z)) µ(dz) + C (φ(a -j(ȳ, z)) -φ(a) + Dφ(a) • j(ȳ, z)) µ(dz).
Taking into account that the set C is included in both C η,δ (x) and C η,δ (ȳ) (see (34)) we have, similarly to (32) and (33), the following upper and lower bounds for the jumps

|a|(1 -δ 0 ) ≥ |a + sj(x, z)| ≥ |a|(1 -δ 0 ) | (a + sj(x, z)) • z| ≥ η|j(x, z)|.
We then conclude as we did for general nonlocal operators, within the proof of Lemma 12.

Lemma 19. Denote by ∆(z) = j(x, z) -j(ȳ, z). Then

T 3 (x, ȳ) ≤ 2ϕ ′ (|a|) {z∈B\C; |∆(z)|≥δ} |∆(z)|µ(dz) + {z∈B\C; |∆(z)|≤δ} sup |s|≤1 ϕ ′ (|a + s∆(z)|) |a + s∆(z)| |∆(z)| 2 µ(dz).
Proof of Lemma 19. We use again the maximum inequality to obtain the bound

(u(x + j(x, z)) -u(x) -p • j(x, z)) -(v(ȳ + j(ȳ, z)) -v(ȳ) -p • j(ȳ, z)) ≤ φ(a + j(x, z) -j(ȳ, z)) -φ(a) -Dφ(a) • (j(x, z) -j(ȳ, z))
which in particular implies On the first set we use the monotonicity and the concavity of ϕ to deduce that

φ(a + ∆(z)) -φ(a) -Dφ(a) • ∆(z) ≤ 2ϕ ′ (|a|)|∆(z)|.
On {z ∈ B \ C; |∆(z)| ≤ δ} we use a second order Taylor expansion and we take into account that ϕ is a smooth increasing function with ϕ ′′ ≤ 0 to obtain the upper bound

sup |s|≤1 (φ(a + s∆(z)) -φ(a) -Dφ(a) • ∆(z)) ≤ 1 2 sup |s|≤1 D 2 φ(a + s∆(z))∆(z) • ∆(z) ≤ 1 2 sup |s|≤1 ϕ ′ (|a + s∆(z)|) |a + s∆(z)| |∆(z)| 2 .
Therefore we get the desired estimate.

The lemmas above yield the global estimate of the difference of the nonlocal terms.

Proof of Corollary 15. We first evaluate, as for general nonlocal operators, the expression Proof of Proposition 20. By definition of (x, ȳ), we have

u(x + j(x, z)) -v(ȳ + j(ȳ, z ′ )) - |x + j(x, z) -ȳ -j(ȳ, z ′ )| 2 ε 2 ≤ u(x) -v(ȳ) - |x -ȳ| 2 ε 2 . ( 35 
)
We split the difference of the integral terms into J [x, p, u] -J [ȳ, p, u] = T 1 q (x, ȳ) + T 2 q (x, ȳ) + T 3 q (x, ȳ)

where this time the integrals are taken over the ball B δ , the ring B \ B δ and the exterior of the unit ball R d \ B:

T 1 q (x, ȳ) = Taking into account (J5) we get the desired estimate.

From the three above lemmas and (J1) we conlcude.

Appendix

Lemma 24. Let X, Y and Z be block matrices of the form

A = A 1 0 0 A 2
such that they satisfy the inequality

X 0 0 -Y ≤ Z -Z -Z Z (36) 
Then the block matrices X i , Y i satisfy inequality (36) where Z is replaced with Z i , for i = 1, 2.

Proof. The previous matrix inequality can be rewritten in the form

Xz • z -Y z ′ • z ′ ≤ Z(z -z ′ ) • (z -z ′ ).
Due to the form of the block matrices, namely the secondary diagonal null, we can write the inequality on components, for z = (z 1 , z 2 ), z ′ = (z ′ 1 , z ′ 2 )

i=1,2

X i z i • z i -Y i z ′ i • z ′ i ≤ i=1,2 Z i (z i -z ′ i ) • (z i -z ′ i ) .
Thus, taking z = (z 1 , 0) and z ′ = (z ′ 1 , 0), respectively z = (0, z 2 ) and z ′ = (0, z ′ 2 ) we get the corresponding inequality for the block matrices X i , Y i , Z i .

In the next lemma, for a symmetric matrix A, A denotes max |ξ|≤1 |Aξ • ξ|.

Lemma 25. Let X, Y and Z be symmetric matrices satisfying inequality (36). Consider the sup-convolution X ε of X and the inf-convolution Y ε of Y , defined by

X ε z • z = sup ξ∈R d Xξ • ξ - |z -ξ| 2 ε and Y ε z • z = inf ξ∈R d Y ξ • ξ + |z -ξ| 2 ε .
Then there exists ε 0 = (max( X , Y , 2 Z )) -1 > 0 such that for any ε ∈ (0, ε 0 ), X ε , Y ε and Z 2ε satisfy as well inequality (36). In addition we have

- 1 ε I, X ≤ X ε and Y ε ≤ Y, 1 ε I. (37) 
Proof. Consider ε as in the statement of the lemma. Then the ε-sup-convolutions of the two quadratic forms associated with the matrix inequality (36) are finite. It must be checked that it gives the above mentioned inequality. As far as the left-hand side is concerned, writing matrix inequalities in terms of quadratic forms, we have for all ζ, α ∈ R d , sup ξ,η

X(ξ -ζ) • (ξ -ζ) -Y (η -α) • (η -α) - 1 ε |ξ| 2 - 1 ε |η| 2 = X ε ζ • ζ -Y ε α • α.
As far as the right-hand side is concerned, we get sup ξ,η

Z(ξ -η) • (ξ -η) - 1 ε |ζ -ξ| 2 - 1 ε |α -η| 2 = sup ξ Z ξ • ξ -inf η 1 ε |ζ -ξ -η -α| 2 + 1 ε |η| 2 = sup ξ Z ξ • ξ - 1 2ε |ζ -α -ξ| 2 = Z 2ε (ζ -α) • (ζ -α)
where we changed ξ in ξ = ξ -η and η in η = η -α. The additional matrix inequalities come directly from the definition of the inf/sup-convolution. The proof of the lemma is now complete. Taking the inner product with â in this identity, we have

ξ • â = 2 1 + ω z • â.
Taking now the inner product with z in the same identity, we have

ξ • z = 2|z| 2 -ω(z • â)( ξ • â) = 2|z| 2 - 2ω 1 + ω (z • â) 2 . Therefore Z α 2 z • z = 2 α ( ξ -z) • ξ -|z -ξ| 2 = 2 α ( ξ -z) • z = 2 α |z| 2 - 2ω 1 + ω (z • â) 2 .
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 0 |z| ≤ |j(x, z)| ≤ C 0 |z| and for all z ∈ B and x, y ∈ R d |j(x, z) -j(y, z)| ≤ C 0 |z||x -y| γ .

Figure 1 .

 1 Figure 1. Uniformly controlling the shift of u by φ(|x -y|) = L|x -y| α , for all

Figure 2 .

 2 Figure 2. Local diffusions occur only in x 1 -directions and fractional diffusions in x 2 -directions.

Figure 3 . 2 ⊂

 32 Figure 3. The middle cone C δ/2,η/2 x+ȳ 2 ⊂ C δ,η (x) ∩ C δ,η (ȳ).

T 3 (

 3 x, ȳ) ≤ B\C (φ(a + j(x, z) -j(ȳ, z)) -φ(a) -Dφ(a) • (j(x, z) -j(ȳ, z))) µ(dz).In order to estimate the integral terms corresponding to φ, we split the integral in two parts, as follows {z∈B\C; |∆(z)|≥δ} (φ(a + ∆(z)) -φ(a) -Dφ(a) • ∆(z)) µ(dz) + {z∈B\C; |∆(z)|≤δ} (φ(a + ∆(z)) -φ(a) -Dφ(a) • ∆(z)) µ(dz).

sup |s|≤1 ( 1 1 .( 1 ( 1 2 C 2 . 2 0 |a| 2γ ε 2

 |s|≤111112222 -η2 ) ϕ ′ (|a + sj(x, z)|) |a + sj(x, z)| + η2 ϕ ′′ (|a + sj(x, z)|) ≤ L 2(1 -η) |a|(1 -δ 0 ) -̺α(1 + δ 0 ) α-1 |a| α-For η = 1 -|a| α η0 with η0 <1 4 , consider the constant Θ(̺, α) = ̺α2 α-1 -1 > 0. Then, by (J2) we haveC sup |s|≤1 -η2 ) ϕ ′ (|a + sj(x, z)|) |a + sj(x, z)| + η2 ϕ ′′ (|a + sj(x, z)|) |j(x, z)| 2 µ(dz) ≤ -LΘ(̺, α)|a| C |j(x, z)| 2 µ(dz) ≤ -LΘ(̺, α, µ)|a| (1-β)+α(d+2-β) .Similarly, taking into account assumptions (J3) -(J4) and that δ = |a|δ 0 ∼ |a| α+1 we obtainϕ ′ (|a|) {z∈B\C; |∆(z)|≥δ} |∆(z)|µ(dz) ≤ LC 0 |a| γ {z∈B\C; R d \B δ |a| -γ } |z|µ(dz) ≤ LC 2 µ |a| γ |a| (1+α-γ)(1-β) and {z∈B\C; |∆(z)|≤δ} sup |s|≤1 ϕ ′ (|a + s∆(z)|) |a + s∆(z)| |∆(z)| 2 µ(dz) ≤ L |a|(1 -δ 0 ) {z∈B\C; |∆(z)|≤δ} |∆(z)| 2 µ(dz) ≤ LC 3 µ |a| 2γ-1 . Since β > 2(1 -γ), γβ > α(d + 1) and 2γ -2 + β > α(d + 2 -β) the difference of the nonlocal terms is negative, being bounded from above byJ [x, p, u] -J [ȳ, p, v] ≤ -L|a| 1-β Θ(̺, α, µ)|a| α(d+2-β) -C 2 µ |a| γ+(α-γ)(1-β) -C 3 µ |a| 2γ-2+β + O( Cµ ) = -L|a| (1-β)+α(d+2-β) Θ(̺, α, µ) -o |a| (1) + O( Cµ ).Proof of Corollary 16. Similarly to general nonlocal operators, we use (J2) to getC sup |s|≤1 -η2 ) ϕ ′ (|a + sj(x, z)|) |a + sj(x, z)| + η2 ϕ ′′ (|a + sj(x, z)|) |j(x, z)| 2 µ(dz) ≤ -Lα(1 -α)2 α-3 |a| α-|z| 2 µ(dz) ≤ -LαC(µ)|a| α-β .In addition, from (J3) -(J4) we have the estimatesϕ ′ (|a|) {z∈B\C; |∆(z)|≥δ} |∆(z)|µ(dz) ≤ Lα|a| α-1 C 0 |a| γ B\C; R d \B δ |a| -γ |z|µ(dz) ≤ LαC 2 µ |a| α-β+γβ if β = 1, respectively ϕ ′ (|a|) {z∈B\C; |∆(z)|≥δ} |∆(z)|µ(dz) ≤ LαC 2 µ |a| α-β |a| γ ln(|a|δ 0 )for β = 1. Finally, using again (J3) -(J4) we get{z∈B\C; |∆(z)|≤δ} sup |s|≤1 ϕ ′ (|a + s∆(z)|) |a + s∆(z)| |∆(z)| 2 µ(dz) ≤ Lα(|a|(1 -δ 0 )) α-2 {z∈B\C; |∆(z)|≤δ} |∆(z)| 2 µ(dz) ≤ LαC 3 µ |a| 2γ-2+β α-βFor α sufficiently small we thus haveJ [x, p, u] -J [ȳ, p, v] ≤ -L|a| α-β αC(µ) -o |a| (1) + O( Cµ ).Proposition 20 (Quadratic estimates -Lévy-Itô operators). Let (J1), (J4) and (J5) hold. Let u, v be two bounded functions and assume the auxiliary functionψ ε (x, y) = u(x) -v(y) -|x -y| 2 ε 2attains a positive maximum at (x, ȳ), with x = ȳ. Denote by a = x -ȳ and by p = 2 x-ȳ ε Then the following holds J [x, p, u] -J [ȳ, p, u] ≤ 2C 2 0 1 ε 2 B δ |z| 2 µ(dz) + C Cµ + 2C 0 |a| γ+1 ε 2 Cµ .

1 ε 2 2 - |x -ȳ| 2 ε 2 + 2 ≤ C 2 0 |z| 2 ε 2 . 2 0 |a| 2γ ε 2 2 - |x -ȳ| 2 ε 2 - 2 ≤ C 2 0|z| 2 |x -ȳ| 2γ ε 2 |a| γ+1 ε 2 R 2 - |x -ȳ| 2 ε 2 .

 122222222222222222 x + j(x, z)) -u(x) -p • j(x, z)) µ(dz) -B δ (v(ȳ + j(ȳ, z)) -v(ȳ) -p • j(ȳ, z)) µ(dz)T 2 q (x, ȳ) = B\B δ (u(x + j(x, z)) -u(x) -p • j(x, z)) µ(dz) -B\B δ (v(ȳ + j(ȳ, z)) -v(ȳ) -p • j(ȳ, z)) µ(dz) T 3 q (x, ȳ) = R d \B (u(x + j(x, z)) -u(x)) µ(dz) -R d \B (v(ȳ + j(ȳ, z)) -v(ȳ)) µ(dz).Lemma 21. The following estimate holdsT 1 q (x, ȳ) ≤ 2C 2 0 B δ |z| 2 µ(dz).Proof of Lemma 21. Taking z ′ = 0 and z = 0 in inequality (35), we have respectively j(ȳ, z ′ ) = 0, j(x, z) = 0. Hence, by direct computations and (J4) we haveu(x + j(x, z)) -u(x) -p • j(x, z) ≤ |x + j(x, z) -ȳ| 2 ȳ + j(ȳ, z ′ )) -v(ȳ) -p • j(ȳ, z ′ ) ≤ |x -ȳ -j(ȳ, z ′ )| 2 ε p • j(ȳ, z ′ ) = |j(ȳ, z)| 2ε Integrating on B δ we get the desired estimate.Lemma 22. The following estimate holdsT 2 q (x, ȳ) ≤ C B\B δ |z| 2 µ(dz).Proof of Lemma 22. Taking z = z ′ in inequality (35), subtracting the corresponding gradients and using (J4) we obtain the inequality(u(x + j(x, z)) -u(x) -p • j(x, z)) -(v(ȳ + j(ȳ, z)) -v(ȳ) -p • j(ȳ, z)) ≤ |x + j(x, z) -ȳ -j(ȳ, z)| 2 ε p • (j(x, z) -j(ȳ, z)) = |j(x, z) -j(ȳ, z)| 2ε Integrating on the ring B \ B δ , we get the desired estimate.Lemma 23. The following estimate holdsT 3 q (x, ȳ) ≤ C 2 0 |a| 2γ ε 2 R d \B µ(dz) + 2C 0 d \B µ(dz).Proof of Lemma 23. Once again, for z = z ′ in inequality (35) we obtain the inequality(u(x + j(x, z)) -u(x)) -(v(ȳ + j(ȳ, z)) -v(ȳ)) ≤ |x + j(x, z) -ȳ -j(ȳ, z)| 2 εIntegrating on R d \ B and computing the right hand side we getT 3 q (x, ȳ) ≤R d \B |p||j(x, z) -j(ȳ, z)| + |j(x, z) -j(ȳ, z)| 2 ε 2 µ(dz).

Lemma 26 . 2 z

 262 Let Z = 1 α (I -ωâ ⊗ â), where â ∈ S d-1 , α > 0 and ω ≥ 0. Then the following holds • z = sup ξ Zξ • ξ -2 |z -ξ| 2 αand the supremum is attained at points ξ satisfying Z ξ = 2 α ( ξ -z), or equivalently (I -ωâ ⊗ â) ξ = 2( ξ -z).

Lemma 27. Let X, Y, Z α 2 satisfy the block inequality (36), with Z α 2 given by equation (38), for some ω ≥ 1. Then the following holds:

Proof. Rewrite the matrix inequality in the form

whereas for any vector z orthogonal to â

.