
HAL Id: hal-00608848
https://hal.science/hal-00608848v1

Preprint submitted on 15 Jul 2011 (v1), last revised 5 Jan 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lipschitz Regularity of Solutions for Mixed
Integro-Differential Equations

Guy Barles, Emmanuel Chasseigne, Adina Ciomaga, Cyril Imbert

To cite this version:
Guy Barles, Emmanuel Chasseigne, Adina Ciomaga, Cyril Imbert. Lipschitz Regularity of Solutions
for Mixed Integro-Differential Equations. 2011. �hal-00608848v1�

https://hal.science/hal-00608848v1
https://hal.archives-ouvertes.fr


LIPSCHITZ REGULARITY OF SOLUTIONS FOR MIXED INTEGRO-DIFFERENTIAL

EQUATIONS

GUY BARLES∗, EMMANUEL CHASSEIGNE†, ADINA CIOMAGA‡, AND CYRIL IMBERT§

ABSTRACT. We establish new Hölder and Lipschitz estimates for viscosity solutions of a large class of

elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions’s method.

We thus extend the Hölder regularity results recently obtained by Barles, Chasseigne and Imbert

(2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-

differential equations. These equations are particularly interesting, as they are degenerate both in

the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction,

e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the

complementary one.
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integro partial-differential equations
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1. INTRODUCTION

Recently regularity results for integro-differential equations have been investigated by many
authors: we provide below some references but the list is by no means complete. In particular,

Hölder estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-

differential equations are obtained in [1], by the classical Ishii-Lions’s method.

The aim of this article is twofold: on one hand, we extend these results to provide Lipschitz

estimates in a similar framework and, on the other hand, we deal with a new class of nonlocal

equations that we call mixed integro-differential equations for which we also give complementary
Hölder estimates. The simplest example of such mixed integro-differential equations is given by

−∆x1 u + (−∆x2 )β/2u = f (x1, x2) (1)

where x1 ∈ R
d1 , x2 ∈ R

d2 , and (−∆x2 )β/2u denotes the fractional Laplacian with respect to the x2-

variables

(−∆x2 )β/2u =−
∫

Rd2

(
u(x1, x2 + z2)−u(x1, x2)−Dx2 u(x1, x2) · z21B d2 (z2)

) d z2

|z2|d2+β

where B d2 is the unit ball in R
d2 . In this case local diffusions occur only in the x1-directions and

fractional diffusions in the x2-directions.

To be more specific about our approach, we first recall that Ishii and Lions introduced in [11] a
simple method to prove C 0,α (0 <α≤ 1) regularity of viscosity solutions of fully nonlinear, possibly

degenerate, elliptic partial differential equations, which has the double advantage of providing

explicit C 0,α estimates combined with a light localization procedure.
1
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This simple method, closely related to classical viscosity solutions theory, was recently explored
by the first, second and fourth authors in [1] for second order, fully nonlinear elliptic partial integro-

differential equations, dealing with a large class of integro-differential operators, whose singular

measures depend on x. They prove that the solution is α-Hölder continuous for any α< min(β,1),

where β characterizes the singularity of the measure associated with the integral operator. How-
ever, in the case β≥ 1 the respective ad-literam estimates do not yield Lipschitz regularity.

In order to treat a large class of nonlinear equations, the authors of [1] assume the nonlinear-

ity satisfies a suitable ellipticity growth assumption. Roughly speaking, this assumption gives a

suitable meaning to a generalized ellipticity of the equation in the sense that at each point of the

domain, the ellipticity comes either from the second order term (the equation is strictly elliptic in
the classical fully nonlinear sense), or from the nonlocal term (the equation is strictly elliptic in a

nonlocal nonlinear sense).

In a recent study of the strong maximum principle for integro-differential equation [8], the third

author introduced another type of mixed ellipticity: at each point, the nonlinearity may be degen-

erate in the second-order term, and in the nonlocal term, but the combination of the local and the
nonlocal diffusions renders the nonlinearity uniformly elliptic. Equation (1) is the typical example

of such mixed integro-differential equations since the diffusion term gives the ellipticity in certain

directions, whereas it is given by the nonlocal term in the complementary directions. For this type

of nondegenerate equations, the assumptions in [1] are not satisfied.

1.1. Main results. Using Ishii-Lions’s viscosity method, we give both Hölder and Lipschitz regular-

ity results of viscosity solutions for a general class of mixed elliptic integro-differential equations of

the type

F0(u(x),Du,D2u,I [x,u]) + F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])

+ F2(x2,Dx2 u,D2
x2x2

u,Ix2 [x,u])= f (x) (2)

as well as evolution equations

ut +F0(u(x),Du,D2u,I [x,u]) + F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])

+ F2(x2,Dx2 u,D2
x2x2

u,Ix2 [x,u])= f (x). (3)

A point in x ∈ R
d is written as x = (x1, x2) ∈ R

d1 ×R
d2 , with d = d1 +d2. The symbols ut , Du, D2u

stand for the derivative with respect to time, respectively the gradient and the Hessian matrix with

respect to x. Subsequently, we write the gradient on components as Du = (Dx1 u,Dx2 u) and the

Hessian matrix D2u ∈S
d (with S

d the set of real symmetric d ×d matrices) as a block matrix of the

form

D2u =
[

D2
x1x1

u D2
x1x2

u

D2
x2x1

u D2
x2x2

u

]
.

I [x,u] is an integro-differential operator, taken on the whole space R
d , associated to Lévy pro-

cesses

I [x,u] =
∫

Rd
(u(x + z)−u(x)−Du(x) · z1B (z))µx (d z)

where 1B (z) denotes the indicator function of the unit ball B and
(
µx

)
x∈Rd is a family of Lévy mea-

sures, i.e. nonnegative, possibly singular, Borel measures on R
d such that

sup
x∈Rd

∫

Rd
min(|z|2,1)µx (d z) <∞.
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Accordingly, one has the directional integro-differential operators

Ix1 [x,u]=
∫

Rd1

(
u(x1 + z, x2)−u(x1, x2)−Dx1 u(x) · z1B d1 (z)

)
µ1

x1
(d z)

Ix2 [x,u]=
∫

Rd2

(
u(x1, x2 + z)−u(x1, x2)−Dx2 u(x) · z1B d2 (z)

)
µ2

x2
(d z).

where
(
µi

xi

)
xi∈Rdi , i = 1,2 are Lévy measures and 1B di is the indicator function of the unit ball B di

in R
di . We consider as well the special class of Lévy-Itô operators, defined as follows

J [x,u]=
∫

Rd

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
µ(d z)

where µ is a Lévy measure and j (x, z) is the size of the jumps at x satisfying

sup
x∈Rd

∫

Rd
min(| j (x, z)|2,1)µ(d z) <∞.

Similarly, we deal with directional Lévy-Itô integro-differential operators

Jx1 [x,u]=
∫

Rd1
(u(x1 + j (x1, z), x2)−u(x1, x2)−Dx1 u(x) · j (x1, z)1B d1 (z))µ1(d z)

Jx2 [x,u]=
∫

Rd2
(u(x1, x2 + j (x2, z))−u(x1, x2)−Dx2 u(x) · j (x2, z)1B d2 (z))µ2(d z).

We assume the nonlinearities are continuous and degenerate elliptic, i.e.

Fi (..., X , l )≤ Fi (...,Y , l ′) if X ≥ Y , l ≥ l ′,

for all X ,Y ∈S
di and l , l ′ ∈R, i = 0,1,2.

In addition, we suppose that the three nonlinearities satisfy suitable strict ellipticity and growth
conditions, that we omit here for the sake of simplicity, but will be made precise in the following

section. These structural growth conditions can be illustrated on the following example:

−a1(x1)∆x1 u −a2(x2)Ix2 [x,u]−I [x,u]+b1(x1)|Dx1 u1|k1 +b2(x2)|Dx2 u|k2 +|Du|n +cu = f (x)

where the nonlocal term Ix2 [x,u] has fractional exponent β ∈ (0,2) and ai (xi ) > 0, for i = 1,2. Thus

F0(u(x),Du,D2u,I [x,u]) = −I [x,u]+|Du|n +cu

F1(x1,Dx1 u,D2
x1x1

u,Jx1 [x,u]) = −a1(x1)∆x1 u +b1(x1)|Dx1 u1|k1

F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u]) = −a2(x2)Ix2 [x,u]+b2(x2)|Dx2 u|k2 .

When β > 1, we show that the solution is Lipschitz continuous for mixed equations with gradient

terms bi (xi )|Dxi u|ki having a natural growth ki ≤ β if bi bounded. If in addition bi are τ-Hölder
continuous, then the solution remains Lipschitz for gradient terms with natural growth ki ≤ τ+β.

When β≤ 1, the solution is α-Hölder continuous for any α<β. The critical case β= 1 is left open.

1.2. Known results. The classical theory for second order, uniformly elliptic integro-differential
equations includes a priori estimates, weak and strong maximum principles, etc. In particular,

existence and uniqueness results have been extended from elliptic partial differential equations to

elliptic integro-differential equations. For results in the framework of Green functions and classical

solutions we send the reader to the up-to-date book of Garroni and Menaldi [9] and the references
therein.

More recently there have been many papers dealing with C 0,α estimates and regularity of so-

lutions (not necessarily in the viscosity setting) for fully nonlinear integro-differential equations
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and the literature has been considerably enriched. It is not possible to give an exhaustive list of
references but we next try to give the flavour of the known results.

In the framework of potential theory (hence linear equations), Bass and Levin first establish
Harnack inequalities [3]. Then Kassmann [12, 13] adapted the de Giorgi theory to non-local opera-

tors. In the same spirit, Silvestre gave in [21] an analytical proof of Hölder continuity for harmonic

functions with respect to the integral operator.

In the setting of viscosity solutions, there are essentially two approaches for proving Hölder or

Lipschitz regularity: either by the Ishii-Lions’s method or by ABP estimates and Krylov - Safonov
and Harnack type inequalities. These methods do not cover the same class of equations, they have

different aims and each of them has its own advantages.

The powerful Harnack approach was first introduced by Krylov and Safonov [15, 16] for linear

equations under non-divergence form and then adapted to fully non-linear elliptic equations by

Trudinger [22] and Caffarelli [5]. This theory applies to uniformly elliptic, fully nonlinear equa-
tions, with rough coefficients. The existing theory for second order elliptic equations has been

extended to integro-differential equations by Caffarelli and Silvestre in [4]. Both for local and non-

local equations, this theory leads to further regularity such as C 1,α. But as far as nonlocal equations

are concerned, it requires in particular some integrability condition of the measure at infinity.

On the contrary, direct viscosity methods apply under weaker ellipticity assumptions but require

Hölder continuous coefficients and do not seem to yield further regularity. Finally these methods
allow measures which are only bounded at infinity.

Very recently, Cardaliaguet and Rainer showed Hölder regularity of viscosity solutions for non-

local Hamilton Jacobi equations with superquadratic gradient growth [7], using probablistic rep-

resentation formulas.

We would like to conclude this introduction by mentioning that this work was motivated by the

study of long time behaviour of periodic viscosity solutions for integro-differential equations, that

we are considering in a companion paper. We point out that long time behaviour comes to the
resolution of the stationary ergodic problem, which is basically the cell problem in homogeniza-

tion. The periodic homogenization for nonlinear integro-differential equations has been adressed

by Schwab in [18]. However, it is restricted to a certain family of equations, due to a lack of fine
ABP estimate. Recently, Schwab and Guillen provided [10] and ABP estimate that would help solve

the homogenization for a wider class of nonlinearities.

The paper is organized as follows. In Section §2 we give the appropriate definition of viscosity

solution, make precise the ellipticity growth conditions to be satisfied by the nonlinearities and

list the assumptions on the nonlocal terms. Section §3 is devoted to the main results, which for
the sake of clarity are given in the periodic setting. We state partial regularity results, provide the

complete proof, and then present the global regularity result. In the next Section §4 we consider

several significant examples and discuss the main assumptions required by the regularity results

and their implications. Extensions to the nonperiodic setting, parabolic versions of the equations,
Bellman-Isaacs equations and multiple nonlinearities are recounted in Section §5. At last we detail

in Section §6 the technical Lipschitz and Hölder estimates for the general nonlocal operators and

Lévy-Itô operators, which are essentially the backbone of the main results.
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2. NOTATIONS AND ASSUMPTIONS

2.1. Viscosity Solutions for Integro-Differential Equations. To overcome the difficulties imposed

by behavior at infinity of the measures (µx )x , as well as the singularity at the origin, we often need

to split the nonlocal terms into

I 1
δ [x,u] =

∫

|z|≤δ

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
µx (d z)

I 2
δ [x, p,u] =

∫

|z|>δ

(
u(x + z)−u(x)−p · z1B (z)

)
µx (d z)

respectively, in the case of Lévy-Itô operators,

J 1
δ [x,u] =

∫

|z|≤δ

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
µ(d z)

J 2
δ [x, p,u] =

∫

|z|>δ

(
u(x + j (x, z))−u(x)−p · j (x, z)1B (z)

)
µ(d z)

with 0 < δ< 1 and p ∈R
d .

There are several equivalent definitions of viscosity solutions [2], but we will mainly refer to the

following one, introduced by Sayah in [17].

Definition 1 (Viscosity solutions). An upper semi-continuous ( in short usc) function u : Rd → R is
a subsolution of (2) if for any φ ∈C 2(Rd ) such that u −φ attains a global maximum at x ∈R

d

F0(u(x),Dφ(x),D2φ(x),I 1
δ [x, t ,φ]+I 2

δ [x, t ,Dφ(x, t ),u])+

F1(x1,Dx1φ(x),D2
x1 x1

φ(x),I 1
x1,δ[x, t ,φ]+I 2

x1,δ[x, t ,Dφ(x, t ),u])+

F2(x2,Dx2φ(x),D2
x2 x2

φ(x),I 1
x2,δ[x, t ,φ]+I 2

x1,δ[x, t ,Dφ(x, t ),u])≤ f (x).

A lower semi-continuous (in short lsc) function u : Rd →R is a subsolution of (2) if for anyφ ∈C 2(Rd )
such that u −φ attains a global minimum at x ∈R

d

F0(u(x),Dφ(x),D2φ(x),I 1
δ [x, t ,φ]+I 2

δ [x, t ,Dφ(x, t ),u])+

F1(x1,Dx1φ(x),D2
x1 x1

φ(x),I 1
x1,δ[x, t ,φ]+I 2

x1,δ[x, t ,Dφ(x, t ),u])+

F2(x2,Dx2φ(x),D2
x2 x2

φ(x),I 1
x2,δ[x, t ,φ]+I 2

x1,δ[x, t ,Dφ(x, t ),u])≥ f (x).

The notion of sub- and super-jets will be used later on. This is the reason why we recall their
definitions now.

Notation 2 (Subjets).

J 2,−u(x)=
{

(p, X ) ∈R
d ×S

d ; u(x + z)≥ u(x)+p · z +
1

2
X z · z +o(|z|2)

}

Notation 3 (Superjets).

J 2,+u(x)=
{

(p, X ) ∈R
d ×S

d ; u(x + z)≤ u(x)+p · z +
1

2
X z · z +o(|z|2)

}

2.2. Ellipticity Growth Conditions. We assume that the nonlinearities Fi , with i = 0,1,2, satisfy
(one or more of) the next assumptions. The precise selection for each of the nonlinearities shall

be given later on, when the regularity result is stated. Further examples and comments upon the

restrictions of these nonlinearities are provided in Section §4.

(H0) There exists γ̃ ∈R such that for any u, v ∈R, p ∈R
d̃ , X ∈S

d̃ and l ∈R

F (u, p, X , l )−F (v, p, X , l )≥ γ̃(u −v) when u ≥ v.
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(H1) There exist two functions Λ1,Λ2 : Rd̃ → [0,∞) such that Λ1(x)+Λ1(x) ≥ Λ0 > 0 and some

constants k ≥ 0, τ ∈ (0,1] θ, θ̃ ∈ (0,1] such that for any x, y ∈R
d̃ , p ∈R

d̃ , l ≤ l ′ and any ε> 0

F (y, p,Y , l ′)−F (x, p, X , l )≤

Λ1(x)

(
(l − l ′)+

|x − y |2θ

ε
+|x − y |τ|p|k+τ+C1|p|k

)
+

Λ2(x)

(
tr(X −Y )+

|x − y |2θ̃

ε
+|x − y |τ|p|2+τ+C2|p|2

)

if X ,Y ∈S
d̃ satisfy the inequality

−
1

ε

[
I 0
0 I

]
≤

[
X 0
0 −Y

]
≤

1

ε

[
Z −Z
−Z Z

]
, (4)

with Z = I −ωâ ⊗ â, for some unit vector â ∈R
d̃ , and ω ∈ (1,2).

(H2) F (·, l ) is Lipschitz continuous, uniformly with respect to all the other variables.

(H3) There exists a modulus of continuity ωF such that for any ε> 0

F (y,
x − y

ε
,Y , l )−F (x,

x − y

ε
, X , l )≤ωF

( |x − y |2

ε
+|x − y |

)

for all x, y ∈R
d̃ , X ,Y ∈S

d̃ satisfying the matrix inequality (4) with Z = I and l ∈R.

2.3. Lévy Measures for General Nonlocal Operators. We recall that in this case, the nonlocal term

I [x,u] is an integro differential operator defined by

I [x,u]=
∫

Rd̃

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
µx (d z) (5)

where 1B denotes the indicator function of the unit ball and
(
µx

)
x is a family of Lévy measures. We

need to make a series of assumptions for the family of Lévy measures that we make precise now.

(M1) There exists a constant C̃µ > 0 such that

sup
x∈Rd̃

(∫

B
|z|2µx (d z)+

∫

Rd̃ \B
µx (d z)

)
≤ C̃µ.

(M2) There exists β ∈ (0,2) such that for every a ∈ R
d̃ there exist 0 < η< 1 and a constant Cµ > 0

such that the following holds for any x ∈R
d̃

∀δ> 0
∫

Cη,δ(a)
|z|2µx (d z) ≥Cµ η

d̃−1
2 δ2−β

with Cη,δ(a) := {z ∈ Bδ; (1−η)|z||a| ≤ |a · z|}.
(M3) There exist β ∈ (0,2), γ ∈ (0,1) and a constant Cµ > 0 such that for any x, y ∈R

d̃ and all δ> 0
∫

Bδ

|z|2|µx −µy |(d z) ≤Cµ|x − y |γ δ2−β

and ∫

B\Bδ

|z||µx −µy |(d z) ≤
{

Cµ|x − y |γ δ1−β if β 6= 1

Cµ|x − y |γ | lnδ| if β= 1.

At the same time, we assume that the directional Lévy measures satisfy similar assumptions.
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Example 1. To make precise the form of (M2) we consider the fractional Laplacian with exponent
β and compute in R

2

∫

Cη,δ(a)
|z|2

d z

|z|2+β
=

vol(Cη,δ(a))

vol(Bδ)

∫

Bδ

|z|2
d z

|z|2+β
=

vol(Cη,1(a))

vol(B1)

∫

Bδ

|z|2
d z

|z|2+β

= δ2−β vol(Cη,1(a))

vol(B1)

∫

B1

|z|2
d z

|z|2+β
= δ2−β θ

π

∫

B1

|z|2
d z

|z|2+β
,

where θ denotes the angle measuring the aperture of the cone. Taking into account the definition
of Cη,1(a) we have for small angles θ

η= 1−cos(θ) =
θ2

2
+o(θ2)

and hence θ ≃p
η, from where we deduce (M2).

In higher dimension d ≥ 3, the volume of the cone is given in spherical coordinates, with normal

direction a = (0,0, ...,1), polar angle φ1 ∈ [0,π], and angular coordinates φ2, ...,φd−2 ∈ [0,π], φd−1 ∈
[0,2π], by the formula

vol(Cη,1(a)) =
∫θ

0
sind−2(φ1)dφ1...

∫π

0
sin(φd−2)dφd−2

∫2π

0
dφd−1

∫1

0
r d−1dr.

For small angles θ the volume can be approximated by

vol(Cη,1(a)) ≈
θd−1

d −1

∫π

0
sind−3(φ2)dφ2...

∫π

0
sin(φd−2)dφd−2

∫2π

0
dφd−1

∫1

0
r d−1dr.

Therefore there exists a positive constant C > 0 such that

vol(Cη,1(a))

vol(B1)
≥Cθd−1 =Cη

d−1
2

and hence, denoting by Cµ =C
∫

B1
|z|2 dz

|z|2+β , (M2) is satisfied
∫

Cη,δ(a)
|z|2

d z

|z|2+β
≥Cη

d−1
2 δ2−β

∫

B1

|z|2
d z

|z|2+β
=Cµη

d−1
2 δ2−β.

2.4. Lévy Measures for Lévy-Itô Operators. Lévy-Itô operators are defined by

J [x,u]=
∫

Rd̃

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
µ(d z). (6)

In the sequel, we assume that the jump function(s) satisfies the following conditions.

(J1) There exists a constant C̃µ > 0 such that for all x ∈R
d̃

∫

B
| j (x, z)|2µ(d z)+

∫

Rd̃ \B
µ(d z)≤ C̃µ.

(J2) There exists β ∈ (0,2) such that for every a ∈ R
d̃ there exist 0 < η< 1 and a constant Cµ > 0

such that the following holds for any x ∈R
d̃

∀δ> 0
∫

Cη,δ(a)
| j (x, z)|2µ(d z)≥Cµ η

d−1
2 δ2−β

with Cη,δ(a) := {z; | j (x, z)| ≤ δ, (1−η)| j (x, z)||a| ≤ |a · j (x, z)|}.
(J3) There exists β ∈ (0,2) such that for δ> 0 small enough

∫

B\Bδ

|z|µ(d z)≤
{

C̃µδ
1−β, if β 6= 1

C̃µ| lnδ| if β= 1.
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(J4) There exist γ ∈ (0,1] and two constants c0,C0 > 0 such that for any x ∈R
d̃ and z ∈R

d̃

c0|z| ≤ | j (x, z)| ≤C0|z|

and for all z ∈ B and x, y ∈R
d̃

| j (x, z)− j (y, z)| ≤C0|z||x − y |γ.

(J5) There exist γ ∈ (0,1] and a constant C̃0 > 0 such that for all z ∈R
d̃ \ B and x, y ∈R

d̃

| j (x, z)− j (y, z)| ≤ C̃0|x − y |γ.

When several assumptions hold simultaneously, the constants denoted similarly are considered to

be the same (e.g. β, Cµ, C̃µ).

3. LIPSCHITZ CONTINUITY OF VISCOSITY SOLUTIONS

In this section we present the main regularity results for mixed integro-differential equations.

We deal with general nonlinearities derived from the toy model, namely Equation (1), where the
fractional diffusion gives the ellipticity in certain directions and the classical diffusion in the com-

plementary ones. We first establish partial regularity results, namely Hölder and Lipschitz regular-

ity of the solution with respect to the x1-variables. This is because of the lack of complete local or

nonlocal diffusion. We then derive the global regularity of the solution.

For the sake of simplicity, we give the statements and proofs in the periodic setting. This yields
C 0,α regularity instead of local regularity. At the same time it allows us to avoid the localization

terms, meant to overcome the behavior at infinity of the solutions, which is related to the integra-

bility of the singular measure away from the origin.

3.1. Partial Regularity Results. We first give partial regularity estimates, in which case we use clas-

sical regularity arguments in one set of variables, and uniqueness type arguments in the other

variables. Regularity arguments apply for both general nonlocal operators and Lévy-Itô opera-
tors. However, uniqueness applies only for the latter. Consequently, we state two results: one for

equations that mix general nonlocal operators with Lévy-Itô ones, and another one for equations

dealing only with Lévy-Itô operators.

Theorem 4 (Partial regularity for periodic, mixed PIDEs - general nonlocal operators). Let f be

a continuous, periodic function. Assume the nonlinearities Fi , i = 0,1,2 are degenerate elliptic and

that they satisfy the following:

- F0 is Zd -periodic and satisfies assumptions (H0), (H2) with d̃ = d and some constant γ̃;
- F1 is Zd1 -periodic and satisfies (H1) with d̃ = d1, for some functions Λ1 , Λ2 and some pa-

rameters Λ0, k ≥ 0, τ,θ, θ̃ ∈ (0,1];

- F2 is Zd2 -periodic and satisfies (H2), (H3) with d̃ = d2.

Let µ0,
(
µ1

x1

)
x1

and µ2 be Lévy measures on R
d , Rd1 , Rd2 respectively associated to the integro - differ-

ential operators I [x,u], Ix1 [x,u] and Jx2 [x,u]. Suppose

-
(
µ1

x1

)
x1

satisfies (M1)− (M3) for some Cµ1 , C̃µ1 , β and γ, with

{
k ≤β, β> 1

k <β, β≤ 1;

- the jump function j (x2, z) satisfies (J1),(J4) and (J5) for some Cµ2 , C̃µ2 , and γ= 1.

Then any periodic continuous viscosity solution u of

F0(u(x),Du,D2u,I [x,u]) + F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u]) (7)

+ F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u])= f (x)
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(a) is Lipschitz continuous in the x1 variable if β> 1;

(b) is C 0,α continuous in the x1 variable with α< β−k
1−k , if β≤ 1.

The Lipschitz / Hölder constant L depends on ||u||∞, the dimension of the space d, the constants

associated to the Lévy measures as well as the constants required by the growth condition (H1).

Remark 1. In particular, when d1 = d and F0 ≡ 0,F2 ≡ 0 we extend to Lipschitz the Hölder regularity
result, recently obtained by Barles, Chasseigne and Imbert in [1].

Remark 2. When k = β = 1, the solution is α-Hölder continuous, with α small enough. Unfortu-

nately in this case we cannot characterize the Hölder exponent α.

Remark 3. When β< 1, if C1 = 0 in (H1) and β(k +τ)> k , then the solution is exactly C 0,β.

Since the concave estimates for Lévy-Itô operators are of the same order as those for general
nonlocal operators, similar regularity results hold. Namely, we have the following.

Theorem 5 (Partial regularity for periodic, mixed PIDEs - Lévy-Itô operators). Let f and Fi , i =
0,1,2 satisfy the same assumptions as in Theorem 4. Let µ0, µ1 and µ2 be Lévy measures on R

d , Rd1

and R
d2 , respectively associated to the integro-differential operators I [x,u], Jx1 [x,u] and Jx2 [x,u].

Suppose

- the jump function j 1(x1, z) satisfies assumptions (J1) - (J4), for some parameters β, Cµ1 , C̃µ1 ,

and γ ∈ (1−β/2,1], and in addition

{
k ≤β, β> 1

k <β, β≤ 1;

- the jump function j 2(x2, z) satisfies (J1),(J4) and (J5) for some Cµ2 , C̃µ2 , and γ= 1.

Then any periodic continuous viscosity solution u of

F0(u(x),Du,D2u,I [x,u]) + F1(x1,Dx1 u,D2
x1x1

u,Jx1 [x,u]) (8)

+ F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u])= f (x)

(a) is Lipschitz continuous in the x1 variable, if β> 1;

(b) is C 0,α continuous in the x1 variable with α< β−k
1−k , if β≤ 1.

The Lipschitz / Hölder constant L depends on ||u||∞, the dimension d of the space , the constants
associated to the Lévy measures as well as the constants required by the growth condition (H1).

Remark 4. In order to establish Lipschitz or Hölder regularity results for the solution u, we shift

the function and show that the corresponding difference can be uniformly controlled by

φ(t )= Ltα, for all α ∈ (0,1].

Roughly speaking, one has to look at the maximum of the function

(x, y) 7→ u(x)−u(y)−φ(|x − y |)

and, in the case of elliptic PDEs, follow the uniqueness proof with a careful analysis of the matrix

inequality given by Jensen-Ishii’s lemma. Precise computations show that we just need ellipticity

of the equation in the gradient direction. In the case of nonlocal diffusions, one has to translate
in a proper way the ellipticity in the gradient direction. This is reflected in the nondegeneracy

conditions (M2) (respectively (J2)) required by the family of Lévy measures.

Proof of Theorem 4. The proof of the regularity of u consists of two steps: we first show that the
solution u is C 0,α continuous for all α ∈ (0,1), then we check that in the subcritical case β > 1 this

implies the Lipschitz continuity. We use the viscosity method introduced by Ishii and Lions in [11].
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FIGURE 1. Uniformly controlling the shift of u by φ(|x − y |) = L|x − y |α, for all α∈ (0,1] .

STEP 1. We introduce the auxiliary function

ψ(x1, y1, x2) = u(x1, x2)−u(y1, x2)−φ(x1 − y1)

where φ is a radial function of the form

φ(z) =ϕ(|z|)

with a suitable choice of a smooth increasing concave function ϕ : R+ →R+ satisfying ϕ(0) = 0 and

ϕ(t0) ≥ 2||u||∞ for some t0 > 0. Our aim is to show that for all x2 ∈R
d2

ψ(x1, y1, x2) ≤ 0 if |x1 − y1| < t0. (9)

This yields the desired regularity result, for a proper choice of ϕ. Namely, ϕ = Ltα will give the
partial Hölder regularity of the solution

|u(x1, x2)−u(y1, x2)| ≤ L|x1 − y1|α, if |x1 − y1| < t0

and ϕ= L(t −ρt 1+α) the partial Lipschitz regularity

|u(x1, x2)−u(y1, x2)| ≤ L|x1 − y1|, if |x1 − y1| < t0.

STEP 2. To this end, we argue by contradiction and assume that ψ(x1, y1, x2) has a positive strict

maximum at some point (x̄1, ȳ1, x̄2) with |x̄1 − ȳ1| < t0:

M =ψ(x̄1, ȳ1, x̄2) = max
x1,y2∈Rd1 ,x2∈Rd2

|x1−y1|<t0

ψ(x1, y1, x2) > 0.

Denote by x̄ = (x̄1, x̄2) and by ȳ = (ȳ1, x̄2). Then

ϕ(|x̄ − ȳ |) ≤u(x̄)−u(ȳ) ≤ωu(|x̄ − ȳ |) (10)

ϕ(|x̄ − ȳ |) ≤u(x̄)−u(ȳ) ≤ 2||u||∞. (11)
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To be able to extract some valuable information hereafter, we need to construct test functions
defined on the whole space R

d . For this reason, we penalize ψ around the maximum by doubling

the variables, staying at the same time as close as possible to the maximum point. Therefore, we

consider the auxiliary function

ψε(x, y)= u(x1, x2)−u(y1, y2)−φ(x1 − y1)−
|x2 − y2|2

ε2

whose maximum is attained, say at (xε, yε). Denote its maximum value by

Mε =ψε(xε, yε) = max
x,y∈Rd

ψε(x, y).

Then the following holds.

Lemma 6. Up to a subsequence, the sequences of maximum points
(
(xε, yε)

)
ε and of maximum

values (Mε)ε satisfy as ε→ 0

Mε → M ,
|xε

2 − yε
2|

2

ε2
→ 0, (xε, yε) → (x̄, ȳ).

The proof of this lemma is classical and therefore omitted in this paper.

STEP 3. Let ā = (ā1, ā2) = x̄ − ȳ , p = (p1, p2) = (Dφ(ā1),0) and denote by

aε = (aε
1, aε

2) = xε− yε, âε =
aε

|aε|
, pε = (pε

1, pε
2) = (Dφ(aε

1),2
xε

2 − yε
2

ε2
).

Since xε
1 6= yε

1, for ε small enough the function φ is smooth and we can apply the Jensen-Ishii’s

lemma for integro-differential equations [2]. This yields the existence, for each ε > 0, of two se-
quences of matrices (X ε,ζ)ζ, (Y ε,ζ)ζ ⊂S

d of the form

X ε,ζ =
[

X ε,ζ
1 0

0 X ε,ζ
2

]
and Y ε,ζ =

[
Y ε,ζ

1 0

0 Y ε,ζ
2

]
, (12)

which correspond to the subjets and superjets of u at the points xε and yε. In addition the block
diagonal matrix satisfies

−
1

ζ

[
Id 0

0 Id

]
≤

[
X ε,ζ 0

0 −Y ε,ζ

]
≤

[
Z −Z

−Z Z

]
+oζ(1), (13)

with Z a block matrix of the form [
Z1 0

0 Z2

]
(14)

with blocks

Z1 = D2φ(aε
1) =

ϕ′(|aε
1|)

|aε
1|

Id1 +
(
ϕ′′(|aε

1|)−
ϕ′(|aε

1|)
|aε

1|

)
âε

1 ⊗ âε
1

Z2 =
2

ε2
Id2 .

By Lemma 26 the triple of block matrices (X ε,ζ
i ,Y ε,ζ

i , Zi ) for i = 1,2 satisfy (13). Then, by sup and inf
matrix convolution (see Lemmas 27 and 28 in Appendix) we build matrices, that we still denote by

X ε,ζ and Y ε,ζ, for which the corresponding blocks X ε,ζ
i and Y ε,ζ

i for i = 1,2 satisfy uniform bounds

−
2

ε̄

[
Id1 0

0 Id1

]
≤

[
X ε,ζ

1 0

0 −Y ε,ζ
1

]
≤

[
Z̃1 −Z̃1

−Z̃1 Z̃1

]
+oζ(1) (15)

−
4

ε2

[
Id2 0

0 Id2

]
≤

[
X ε,ζ

2 0

0 −Y ε,ζ
2

]
≤

4

ε2

[
Id2 0

0 Id2

]
+oζ(1) (16)
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with Z̃1 = Z
ε̄
2

1 , where

ε̄=
|aε

1|
ϕ′(|aε

1|)
.

In addition, from the monotonicity of the sup and inf convolution (37) the new block matrices X ε,ζ

and Y ε,ζ are still sub and superjets of u at xε, respectively yε

(pε, X ε,ζ) ∈J 2,+(u(xε))

(pε,Y ε,ζ) ∈J 2,−(u(yε)).

Since the bounds in (15) and (16) are uniform with respect to ζ, we can let ζ → 0 and obtain two

matrices X ε and Y ε satisfying the double inequality required by the ellipticity growth condition

(H1), which are still sub and superjets of u at xε and yε respectively. Hence, they satisfy the viscosity
inequalities

F0(u(xε), pε, X ε,I [xε, pε,u])+
∑

i=1,2
Fi (x̄ε

i , pε
i , X ε

i ,Ixi [xε, pε
i ,u])≤ f (xε)

F0(u(yε), pε,Y ε,I [yε, pε,u])+
∑

i=1,2
Fi (ȳε

i , pε
i ,Y ε

i ,Iyi [yε, pε
i ,u])≥ f (yε).

Subtracting the above inequalities and denoting

E0(xε, yε,u) = F0
(
u(yε), pε,Y ε,I [yε, pε,u]

)
−F0

(
u(xε), pε, X ε,I [xε, pε,u]

)
+ f (xε)− f (yε)

Ei (x̄ε
i , ȳε

i ,u) = Fi
(

ȳε
i , pε

i ,Y ε
i ,Iyi [yε, pε

i ,u]
)
−Fi

(
x̄ε

i , pε
i , X ε

i ,Ixi [xε, pε
i ,u]

)
, i = 1,2,

we get that

0 ≤E0(xε, yε,u)+E1(xε
1, yε

1,u)+E2(xε
2, yε

2 ,u). (17)

STEP 4. In the following we estimate each of these terms as ε→ 0, bringing into play the ellip-

ticity growth assumptions satisfied by each nonlinearity.

Since u(yε) ≤ u(xε), X ε ≤ Y ε, the monotonicity assumption (H0), the ellipticity (E ) with respect
to the second order term and the nonlocal term and the Lipschitz continuity (H2) of F0 with respect

to the nonlocal term yield

E0(xε, yε,u)≤ γ̃
(
u(yε)−u(xε)

)
+LF0

(
I [xε, pε,u]−I [yε, pε,u]

)
++ f (xε)− f (yε).

As the Lévy measures corresponding to the nonlinearity F0 do not depend on x, we immediately

deduce from the maximum condition that

u(xε+ z)−v(yε+ z) ≤u(xε)−v(yε)

renders nonpositive the difference of the nonlocal terms

I [xε, pε,u]−I [yε, pε,u] ≤ 0.

Therefore, passing to the limits as ε→ 0 and employing Lemma 6 we have

limsup
ε→0

E0(xε, yε,u)≤−γ̃M . (18)

The estimate of E2 does not depend on the choice of ϕ and is given by the growth condition (H3)

and the Lipschitz continuity (H2) of F2(·, l ), uniformly with respect to all the other variables

E2(xε
2, yε

2,u) ≤ ωF2

(
|aε

2|
2

ε2
+|aε

2|
)
+LF2

(
Ix2 [xε, pε

2,u]−Iy2[yε, pε
2,u]

)
+
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where LF2 is the Lipschitz constant of F2(·, l ). From Proposition 22 in Section 6 the quadratic esti-
mates for Lévy-Itô operators hold

Ix2 [xε, pε
2,u]−Iy2[yε, pε

2,u] ≤ C
1

ε2

∫

Bδ

|z2|2µ2(d z2)+CCµ2

|aε
2|

2

ε2
.

for some positive constant C . As δ→ 0, the estimate gives

Ix2 [xε, pε
2,u]−Iy2 [yε, pε

2,u] ≤CC̃µ2

|aε
2|

2

ε2
.

Letting now ε→ 0 and using Lemma 6 which ensures that
|aε

2|
2

ε2 → 0 we are finally lead to

limsup
ε→0

E2(xε
2, yε

2,u)≤ 0. (19)

For the estimate of E1, we use the ellipticity growth condition (H1)

E1(xε
1, yε

1,u) ≤ Λ1(xε
1)

((
Ix1 [xε, pε

1,u]−Iy1 [yε, pε
1,u]

)
+
|aε

1|
2θ

ε̄
+|aε

1|
τ|pε

1|
k+τ+C1|pε

1|
k
)

+Λ2(xε
1)

(
tr(X ε

1 −Y ε
1 )+

|aε
1|

2θ̃

ε̄
+|aε

1|
τ|pε

1|
2+τ+C2|pε

1|
2
)

(20)

where we recall that pε
1 = Dφ(aε

1) = Lϕ′(|aε
1|)âε

1. The goal is to show that, for each choice of ϕ

(measuring either the Hölder or the Lipschitz continuity), the right hand side quantity is negative,
arriving thus to a contradiction by combining (17), (18), (19) and (20).

STEP 5.1. Hölder continuity. In order to establish the Hölder regularity of solutions, we consider

the auxiliary function

ϕ= Ltα, with α< min(1,β).

In this case, we apply Corollary 12 from Section 6, to the functions u(·, x2) and u(·, y2), which yields

the following Hölder estimate for the difference of the nonlocal terms

Ix1 [xε, pε
1,u]−Iy1 [yε, pε

1,u] ≤−L|aε
1|
α−β

{
αC (µ1)−o|aε

1|(1)
}
+O(1).

Lemma 29 from Appendix applies with Z̃1 = Z
ǭ
2

1 , ε̄=
(
Lα|aε

1|
α−2

)−1, ω= 2−α and hence the trace is

bounded by

trace(X ε
1 −Y ε

1 ) ≤−8ω̄
(
Lα|aε

1|
α−2) (21)

where ω̄= ω−1
ω+1 is a constant in (0, 1

3 ). We plug these estimates into the inequality for E1. Letting ε

go to zero and employing the penalization Lemma 6 and (H4) we obtain the following bound

limsup
ε→0

E1(xε
1, yε

1,u) ≤Λ0 E 1(|ā|)+Λ0 E 2(|ā|)+O(1)

where for 2θ+β> 2

E 1(|ā|) = −L|ā|α−β
(
αC (µ1)−o|ā|(1)

)
+|ā|2θ

(
Lα|ā|α−2)+|ā|τ

(
Lα|ā|α−1)k+τ+C1

(
Lα|ā|α−1)k

= −L|ā|α−β
{
αC (µ1)−o|ā|(1)−αk+τ|ā|β−k (

L|ā|α
)k+τ−1−C1α

k |ā|β−k (
L|ā|α

)k−1
}

and

E 2(|ā|) = −8ω̄
(
Lα|ā|α−2)+|ā|2θ̃

(
Lα|ā|α−2)+|ā|τ

(
Lα|ā|α−1)2+τ+C2

(
Lα|ā|α−1)2

= −L|ā|α−2
{
α

(
8ω̄−|ā|2θ̃

)
−α2+τ (

L|ā|α
)1+τ−C2α

2L|ā|α
}

.

Using the fact that L|ā|α ≤ 2||u||∞ we have

E 2(|ā|) ≤ −L|ā|α−2
{
α

(
8ω̄−|ā|2θ̃

)
−α2+τ (2||u||∞)1+τ−C2α

2 (2||u||∞)
}

.
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As far as E 1 is concerned, we further argue differently for the subcritical and supercritical case,
with respect to the Lévy exponent β, and accordingly with respect to k and τ. Namely

(a) if 1 < k ≤β, in which case k +τ−1 > 0, k −1> 0, we have

E 1(|ā|) ≤ −L|ā|α−β
{
αC (µ1)−o|ā|(1)−αk+τ|ā|β−k (2||u||∞)k+τ−1

−C1α
k |ā|β−k (2||u||∞)k−1

}
.

(b) if k <min(1,β), then

(b.1) for 0 < k≤1−τ and β−k +α(k +τ−1) > 0

E 1(|ā|) ≤ −L|ā|α−β
{
αC (µ1)−o|ā|(1)−αk+τ|ā|β−k+α(k+τ−1)Lk+τ−1

−C1α
k |ā|β−k+α(k−1)Lk−1

}

= −L|ā|α−β
(
αC (µ1)−o|ā|(1)

)
.

(b.2) for 1−τ< k ≤ 1 and β−k +α(k +τ−1) > 0

E 1(|ā|) ≤ −L|ā|α−β
{
αC (µ1)−o|ā|(1)−αk+τ (2||u||∞)k+τ−1

−C1α
k |ā|β−k+α(k−1)Lk−1

}

= −L|ā|α−β
{
αC (µ1)−o|ā|(1)−αk+τ (2||u||∞)k+τ−1

}
.

This implies that for α small enough the two terms become (large) negative

lim
L→∞

E 1(|ā|) =−∞ and lim
L→∞

E 2(|ā|) =−∞.

Hence
lim

L→∞
limsup

ε→0
E1(xε

1, yε
1 ,u)=−∞. (22)

We now turn back to inequality (17), let first ε→ 0 and then L →∞. Plugging in the estimates (18)

- (22) we arrive to a contradiction. Therefore, we have proved up to this point the C 0,α regularity of
the solution, for α small enough. Note that the exponent α only depends on ||u||∞, k and τ.

We further use this first step to provide the C 0,α regularity for all α ∈ (0,1). To this end, we

estimate L|ā|α with the modulus of continuity of u and get

E 2(|ā|) ≤ −L|ā|α−2
{
α

(
8ω̄−|ā|2θ̃

)
−α2+τ (ωu(|ā|))1+τ−C2α

2ωu (|ā|)
}

.

Taking into account that ωu(|ā|) ≤ L̄|ā|ᾱ for some ᾱ small, we come back to the original estimates in
case k > 1 and to the estimates given in (b.1) when k ∈ (0,1−τ), respectively (b.2) when k ∈ (1−τ,1),

where α is everywhere replaced with ᾱ. By similar arguments we obtain

E 1(|ā|) ≤ −L|ā|α−β
(
αC (µ1)−o|ā|(1)

)

E 2(|ā|) ≤ −L|ā|α−2
(
αC (µ1)−o|ā|(1)

)
.

This yields (22) for L sufficiently large, and therefore completes the C 0,α regularity result.

STEP 5.2. Lipschitz continuity. In the case β > 1, we establish the Lipschitz regularity of solu-

tions. Therefore, we consider the auxiliary function

ϕ(t )=
{

L
(
t −̺t 1+α)

, t ∈ [0, t0]

ϕ(t0), t > t0
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where α ∈ (0,1) will be chosen small enough, ρ and t0 as in Corollary 11 in Section §6. We remind
that α is related to the aperture of the cone corresponding to η ∼ |ā|2α. In order to estimate the

difference of the nonlocal terms, we apply Corollary 11, to the same choice of functions u(·, x2)

and u(·, y2):

Ix1 [xε, pε
1,u]−Iy1 [yε, pε

1,u]≤−L|aε
1|

(1−β)+α(d1+2−β)
{
Θ(̺,α,µ1)−o|aε

1|(1)
}
+O(1).

At this point, we fix ρ such that the constant Θ(̺,α,µ1) is positive. We then apply Lemma 29 in

Appendix with Z̃1 = Z
ǭ
2

1 , where this time

ε̄=
|aε

1|
ϕ′(|aε

1|)
=

(
L|aε

1|
−1 −Lρ(1+α)|aε

1|
α−1)−1

.

Indeed ω= 1−ϕ′′(|aε
1|)ε̄ ∈ (1,2) for ε sufficiently small. Hence

trace(X ε
1 −Y ε

1 ) ≤ −
8

ε̄

ω−1

ω+1
=

8ϕ′′(|aε
1|)

2−ϕ′′(|aε
1|)ε̄

.

Note that in this case ω−1
ω+1 depends on |aε

1|. However there exists a positive constant ω̄ such that for

ε sufficiently small

8ϕ′′(|aε
1|)

2−ϕ′′(|aε
1|)ε̄

≤ 8ω̄ϕ′′(|aε
1|).

Hence, denoting by c = ρ(1+α), second order terms are bounded by

trace(X ε
1 −Y ε

1 ) ≤ −8cω̄
(
Lα|aε

1|
α−1) .

We plug these estimates into the inequality for E1. Letting ε go to zero and employing Lemma 6 we

arrive as before to

limsup
ε→0

E1(xε
1, yε

1,u)≤Λ0 E 1(|ā|)+Λ0 E 2(|ā|)+O(1),

where denoting by C (µ1) =Θ(̺,α,µ1) the terms E 1, E 2 are given by

E 1(|ā|) = −L|ā|(1−β)+α(d1+2−β) (C (µ1)−o|ā|(1)
)
+|ā|2θ

(
L|ā|−1(1−c |ā|α

))

+ |ā|τ
(
L
(
1−c |ā|α

))β+τ
+C1

(
L
(
1−c |ā|α

))β

E 2(|ā|) = −8 c ω̄
(
Lα|ā|α−1

)
+|ā|2θ̃

(
L|ā|−1(1−c |ā|α

))

+ |ā|τ
(
L
(
1−c |ā|α

))2+τ
+ C2

(
L
(
1−c |ā|α

))2
.

Whenever α(d1+3−β) < 2θ−2−β the second term in E 1 behaves like o
(
|ā|(1−β)+α(d1+2−β)

)
. Taking

L|ā|(1−β)+α(d1+2−β) as a common multiplier and using that 1−c |ā|α ≤ 1 we have

E 1(|ā|) ≤ −L|ā|(1−β)+α(d1+2−β)
{

C (µ1)−o|ā|(1)

−|ā|−α(d1+2−β)
(
L|ā|−cL|ā|α+1

)β+τ−1

−C1|ā|−α(d1+2−β)
(
L|ā|−cL|ā|α+1

)β−1}

≤ −L|ā|(1−β)+α(d1+2−β)
{

C (µ1)−o|ā|(1)

−2|ā|−α(d1+2−β)
(
ϕ(|ā|)

)β+τ−1

−2C1|ā|−α(d1+2−β)
(
ϕ(|ā|)

)β−1}
.
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On the other hand, similar techniques give us an estimate for E 2 :

E 2(|ā|) ≤ −L|ā|α−1
{

8cαω̄−|ā|2θ̃|ā|−α

−|ā|−α
(
L|ā|−cL|ā|α+1

)1+τ

−C2|ā|−α
(
L|ā|−cL|ā|α+1

)}

≤ −L|ā|α−1
{

8cαω̄−|ā|2θ̃|ā|−α

−2|ā|−α
(
ϕ(|ā|)

)1+τ

−2C2|ā|−α
(
ϕ(|ā|)

)}
.

When α is small enough we have |ā|2θ̃|ā|−α = o|ā|(1). Then

E 2(|ā|) ≤ −L|ā|α−1
{

C −o|ā|(1)−2|ā|−α
(
ϕ(|ā|)

)1+τ
−2C2|ā|−α

(
ϕ(|ā|)

)}
.

Since we have just seen that u is Hölder continuous for any α̃ ∈ (0,1), we have

ϕ(|ā|)|ā|−α̃ → 0, as L →∞.

Using this relation in the previous inequalities estimating E 1 and E 2 we get that, for L large enough

E 1(|ā|) ≤ −L|ā|(1−β)+α(d1+2−β)
(
C (µ1)−o|ā|(1)

)

E 2(|ā|) ≤ −L|ā|α−1
(
C −o|ā|(1)

)
.

Hence (22) holds and this further yields the desired contradiction. �

3.2. Global Regularity. It follows immediately from the previous results that as long as both non-
linearities F1 and F2 satisfy assumptions (H1)− (H3), the solution is global Lipschitz or Hölder

continuous.

Corollary 7 (Global regularity for periodic, mixed PIDEs). Let the nonlinearities Fi , i = 0,1,2 be

degenerate elliptic, continuous and periodic, f continuous and periodic. Assume the following:

• F0 satisfies assumptions (H0), (H2) with d̃ = d and some constant γ̃> 0;

• Fi with i = 1,2 satisfy assumptions (H1)− (H3) with d̃ = di , for some functions Λ1
i , Λ2

i and

some constants ki ≥ 0, τi ∈ [0,1],θi , θ̃i ∈ (0,1].

Let µ0, µi , with i = 1,2 be Lévy measures on R
d , Rdi respectively associated to the integro-differential

operators I [x,u], Jxi [x,u] and suppose the corresponding jump functions j i (xi , zi ) satisfy assump-

tions (J1)− (J5) for some constants βi , Cµi , C̃µi , with γ = 1. Then any periodic continuous viscosity

solution u of

F0(u(x),Du,D2u,I [x,u])+ (23)

F1(x1,Dx1 u,D2
x1x1

u,Jx1[x,u])+F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u])= f (x)

(a) is Lipschitz continuous, if βi > 1 and ki ≤βi for i = 1,2;

(b) is C 0,α continuous with α<min(β1−k1

1−k1
, β2−k2

1−k2
), if β≤ 1 and ki <βi for i = 1,2.

The Lipschitz / Hölder constant depends on ||u||∞, on the dimension d of the space and on the con-

stants associated to the Lévy measures and on the constants required by the growth condition (H1).
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At first glance, the fact that (H1) and (H3) must hold simultaneously seems to exclude a large
class of nonlinear equations dealing with directional gradient or drift terms such as |Dxi u|r or

|b(xi )|Dxi u|k+τ, r,k > 0. Indeed, taking in the ellipticity growth condition (H1) l = l ′, p = x−y
ε and

θ̃ = θ we get

F (y,
x − y

ε
,Y , l )−F (x,

x − y

ε
, X , l )≤Λ(x)

(
tr(X −Y )+

|x − y |2θ

ε
+
|x − y |k+2τ

εk+τ +
|x − y |r

εr

)
.

Hence (H3) would hold whenever k = r = 0, θ = 1. In this case (H1) and (H3) could be joined
together in assumption

(H ) There exist two functions Λ1,Λ2 : Rd̃ → [0,∞) such that Λ1(x)+Λ1(x) ≥Λ0 > 0 and a mod-
ulus of continuity ωF (r ) → 0, as r → 0 such that for any x, y ∈ R

d̃ , p ∈ R
d̃ , l ≤ l ′ and any

ε> 0

F (y, p,Y , l ′)−F (x, p, X , l )≤

Λ1(x)(l − l ′)+Λ2(x)tr(X −Y )+ωF

(
|x − y |(1+|p|)+

|x − y |2

ε

)

if X ,Y ∈S
d̃ satisfy inequality (4) with Z = I − ω̄ẑ ⊗ ẑ, for z ∈R

d̃ and ω̄≥ 1.

Nevertheless, one can argue under weaker growth assumptions, by a cut-off gradients argument
for equations of the type (23) where Fi , for i = 1,2 satisfy assumptions (H1)− (H2) and F0 satisfies

(H2) and (H0) with γ̃> 0.

Roughly speaking, one should look at the approximated equation with |Du| replaced by |Du|∧R ,

for R > 0 and remark that its solutions are Lipschitz continuous, with the Lipschitz norm indepen-
dent of R , thus the solution of the original problem is also Lipschitz continuous. This is made

precise by defining, for each i = 0,1,2 the following functions

F R
i (·, p, X , l )=

{
Fi (·, p, X , l ), if |p| ≤ R

Fi (·,R p
|p| , X , l ), if |p| ≥ R .

Consider then the approximated problem

F R
0 (uR (x),DuR ,D2uR ,I [x,uR ])+ (24)

F R
1 (x1,Dx1 uR ,D2

x1x1
uR ,Jx1 [x,uR])+F R

2 (x2,Dx2 uR ,D2
x2x2

uR ,Jx2 [x,uR ])= f (x)

and remark that (H3) holds. Thus the approximated problem (24) has a Lipschitz/Hölder viscosity

solution, whose continuity constant depends on ||uR ||∞ the constants required by the Lévy mea-

sures and those appearing in the ellipticity growth assumption (H1).
Let

M := |F1(0,0,0,0)|+ ||F1(x1,0,0,0)||∞+||F2(x2,0,0,0)||∞+|| f ||∞.

Since M (γ̃)−1 and−M (γ̃)−1 are respectively a supersolution and a subsolution of the approximated
problem (24), by a comparison result between sub and super-solutions we have due to (H0)

||uR ||∞ ≤
M

γ̃
.

Therefore, the Lipschitz constant of uR is independent of R . Observing that for R large enough the

solution uR of the approximated problem is as well a solution of the original, we conclude.

4. EXAMPLES AND DISCUSSION ON ASSUMPTIONS

In this section, we illustrate the partial and global regularity results on several examples. We

start with two examples of classical nonlinearities for which we deal with global regularity: a model
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equation as in [1] and the advection fractional diffusion. Then we present the partial and global
regularity results for pure mixed equations: first on the toy model and then on a general nonlin-

earity dealing with mixed gradient terms.

4.1. Classical Nonlinearities. As already presented in the introduction, the Lipschitz regularity

result applies for equations that are strictly elliptic in a generalized sense: at each point, the non-
linearity is either non degenerate in the second-order term, or is nondegenerate in the nonlocal term.

More precisely, by Theorem 4 we extend the Hölder regularity result in [1] to Lipschitz regularity

when the nonlocal exponent β> 1.

4.1.1. Model Equation. A model equation for such nondegenerate equations is

− tr(A(x)D2u)−c(x)I [x,u]+b(x)|Du|k +|Du|r = 0 in R
d , (25)

where A and c are continuous functions, b ∈ C 0,τ(Rd ), with 0 ≤ τ ≤ 1, k ,r ∈ (0,2+τ). I [x,u] is a
non-local term of type (5) or (6) of exponent β ∈ (0,2). In the following, we discuss the ellipticity

growth assumption (H1) and make precise the role of each term.

• One has to assume that equation (25) is strictly elliptic in the sense that

A(x) ≥Λ1(x)I and c(x)≥Λ2(x) in R
d (26)

with

Λ1(x)+Λ2(x) ≥Λ0 > 0.

Thus the equation may be degenerate in the local or the nonlocal term as for all x ∈ R
d ,

A(x) ≥ 0 and c(x) ≥ 0. However, at each point either A(x) is a positive definite matrix and

the equation is strictly elliptic in the classical sense, or c(x)> 0 and I [x,u] satisfies suitable

nondegeneracy assumptions (that we discuss below) and the equation is strictly elliptic

with respect to the integro-differential term.
• A = σT σ with σ a bounded, uniformly continuous function which maps R

d into the space

of N ×p-matrices for some p ≤ N . It can be checked that

−
(
tr(A(x)X )− tr(A(y)Y )

)
≤ d

ω2
σ(|x − y |)

ε

for any X ,Y ∈S
d satisfying inequality (4).

• The nonlocal term can be writen as a general nonlocal operator

c(x)I [x,u] = c(x)
∫

Rd

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
µx (d z)

=
∫

Rd

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
c(x)µx (d z)

where
(
µx

)
x is a family of Lévy measures, satisfying assumptions (M1)− (M3). When c :

R
d →R is γ-Hölder continuous the results for general nonlocal operators literally apply for

the new family of operators associated to the Lévy measures µ̃x = c(x)µx .

For a Lévy-Itô type operator, the nonlocal term can be writen as

c(x)I [x,u] = c(x)
∫

Rd

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
µ(d z)

=
∫

Rd

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
c(x)µ(d z)

where the jump function j (x, z) satisfies assumptions (J1)−(J5). In this case, the results for

general nonlocal operators do not apply ad-literram! Otherwise we could have considered

Lévy-Itô operators as a particular case of general integro-differential operators. However,
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when c is γ-Hölder continuous, combining estimates arguments (see Section §6) used for
Lévy-Itô operators with those for general nonlocal operators, we arrive to the same conclu-

sion.

• b : Rd → R is a τ-Hölder continuous function, or just a bounded continuous function. The

growth conditions k ,r on the gradient are related to the regularity of coefficients of b.
When β> 1, the solution is Lipschitz continuous for gradient terms b(x)|Du|k with nat-

ural growth k ≤β and b bounded. If in addition b is τ-Hölder continuous, then the solution

remains Lipschitz for gradient terms with growth k ≤ τ+β. Similarly, the solution is Lips-
chitz for any term gradient term |Du|r with r ≤β.

4.1.2. Advection Fractional Diffusion Equation. Several recent papers deal with the regularity of

solutions for the advection fractional diffusion equation

ut + (−∆x )β/2u +b(x) ·Du = f .

One distinguishes three cases, according to the order of fractional diffusion. The case β < 1 is
known as the supercritical case, since the fractional diffusion is of lower order than the advection;

conversely, β> 1 is the subcritical case. In between we have the critical value β= 1, when the drift

and the diffusion are of the same order.

In the critical case, it was shown by Caffarelli and Vasseur [6] by using De Giorgi’s approach that
the solution is smooth for L2 initial data, f ≡ 0, and divergence free vector fields b belonging to

the BMO class. The key step is to prove first that it is Hölder continuous. Their motivation comes

from the quasi-geostrophic model in fluid mechanics. We mention that for smooth periodic initial

data, Kiselev, Nazarov and Volberg [14] proved that the solution of the quasi-geostrophic equation
remains smooth.

Recently, Silvestre [19] proved Hölder estimates for solutions of this equation (and nonlinear

versions of it) by Harnack techniques. He also showed [20] that when β ≥ 1 and the vector field b

is C 1−β+τ, the solution becomes C 1,τ.

As we shall see in the following Section §5, our regularity results apply as well in the parabolic
and/or non-periodic setting. Hence for such an equation (and nonlinear versions of it), we obtain

that the solution is Lipschitz continuous in the subcritical case β > 1 with b bounded; hence the

fractional diffusion is stronger than the advection and prescribes the regularity of the solution. In

the supercritical case β≤ 1, the solution is β Hölder continuous whenever b is C 1−β+τ, where τ> 0.

4.2. Mixed nonlinearities. As discussed before, there is another interesting type of mixed elliptic-

ity: at each point, the nonlinearity is degenerate both in the second-order term, and in the nonlocal

term, but the combination of the local and the nonlocal diffusions renders the nonlinearity uni-
formly elliptic. For this type of equations, partial regularity results apply first and then they are

used to derive the global regularity.

4.2.1. A Toy-Model for the Mixed Case. The simplest example of pure mixed equations is given by

−∆x1 u + (−∆x2 )β/2u = f (x1, x2)

where (−∆x2 )β/2u denotes the fractional Laplacian with respect to the x2-variable

(−∆x2 )β/2u =−
∫

Rd2

(
u(x1, x2 + z2)−u(x1, x2)−Dx2 u(x1, x2) · z21B (z2)

) d z2

|z2|d2+β
.
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FIGURE 2. Local diffusions occur only in x1-directions and fractional diffusions in x2-directions.

It is clear that the equation is degenerate both with respect to the local and the nonlocal term,

as both the Laplacian and the fractional Laplacian are incomplete. Indeed, the directional classical
Laplacian has all of the eigenvalues corresponding to the x2 variable equal to zero, and therefore

the nonlinearity F is degenerate with respect to the second order term D2u. On the other hand,

the degeneracy with respect to the nonlocal term comes from the fact that

µ(d z2) =
d z2

|z2|d2+β

could be viewed as the restriction of the fractional Laplacian to the subspace {z1 = 0}

ν(d z)= 1{z1=0}(d z1)µ(d z2).

Therefore, for a cone whose direction a is orthogonal to the x2-direction, we have
∫

C d
η,δ

|z|2ν(d z)=
∫

C
d2
η,δ

|z2|2µ(d z2) = 0

where C
d2

η,δ = {z2 ∈ B d2

δ
; (1−η)|z2||a| ≤ |a2 · z2|}. Thus, (M2) and (J2) fail and the Hölder regularity

results of [1] do not apply.
Instead, the partial regularity results of Theorem 4 hold: the solution is Lipschitz continuous

with respect to the x2 variable when β≥ 1 and Hölder continuous when β < 1, and Lipschitz con-

tinuous with respect to the x1 variable.

Remark 5. If we try to argue directly in R
d and apply the regularity result as if we had only one

nonlinearity defined on the whole space, then the best result we can get is Hölder regularity of the
solution, except for the diagonal direction, i.e. for all ε ∈ (0,1] the following holds for all α ∈ (0,ε)

u(x)−u(y)≤C |x − y |α,∀x, y,∈R
d s.t. max

i=1,2

|xi − yi |
|x − y |

≥
√

1

2−ε
.

In addition, the further we go from the diagonal, the better the regularity of the solution is.

Let us check that when the gradient direction is the diagonal between x1 and x2 it is not possible

to retrieve Hölder continuity directly. For this purpose, consider two matrices X ,Y satisfying in-

equality (4), with Z = Dφ(a), where φ(z) = L|z|α. Let a = (a1, a2) = x̄ − ȳ be the gradient direction.
The matrix inequality can be rewritten as follows

X z · z −Y z ′ · z ′ ≤ D2φ(a)(z − z ′) · (z − z ′). (27)
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Estimate of the diffusion terms. Applying (27) to z = −z ′ = e1 = 1
|a1| (a1,0) and to z = z ′ = (e,0) for

any unit vector e orthogonal to e1 we obtain

tr
(
X1 −Y1

)
≤ 4D2φ(a)e1 ·e1.

Therefore taking into account the expression for D2φ(a) =ϕ′(|a|) 1
|a| (I − â⊗ â)+ϕ′′(|a|)â⊗ â, we get

tr
(
X1 −Y1

)
≤ 4

ϕ′(|a|)
|a|

(1−
|a1|2

|a|2
)+4ϕ′′(|a|)

|a1|2

|a|2
.

Using that φ(z) = L|z|α with α ∈ (0,ε) and L > 0 the previous inequality reads

tr
(
X1 −Y1

)
≤ 4Lα|a|α−2(1+ (α−2)

|a1 |2

|a|2
). (28)

This expression is negative only if
|a1|2

|a|2
>

1

2−ε
.

Hence, when the gradient direction is "closer“ to the x1-axis, the classical diffusion gains and the

regularity is driven by the classical Laplacian.

Estimate of the nonlocal terms. As already made precise, the ellipticity of the equation comes in this

case from the nondegeneracy assumption (M2) with respect to the Lévy measures. Accordingly,

the estimate that renders the nonlocal difference negative comes from the evaluation on the cone

in the gradient direction. In view of (M2) we have by rough approximations (see Proposition 10
and its Corollaries) that for e2 = 1

|a2| (0, a2)

Ix2 [x̄,u]−Ix2 [ȳ ,u] ≤
∫

Cη,δ

sup
|s|<1

(
D2

a2a2
φ(a + s(0, z2))z2 · z2

)
µ(d z2)+cLα|a|α−2

=
∫

Cη,δ

sup
|s|<1

(
(1− η̃2)

ϕ′(|a + s(0, z2)|)
|a + s(0, z2)|

+ η̃2ϕ′′(|a + s(0, z2)|)
)
|z2|2µ(d z)+cLα|a|α−2

≤ C
(
(1− η̃2)

ϕ′(|a|)
|a|

(1−
|a2|2

|a|2
)+ η̃2ϕ′′(|a|)

|a2|2

|a|2
)
+cLα|a|α−2

= C Lα|a|α−2
(
1+ η̃2(α−2)

|a2|2

|a|2

)
+cLα|a|α−2.

This expression is negative only if
|a1|2

|a|2
>

1

η̃2(2−ε)
.

Similarly, when the gradient direction is "closer“ to the x2-axis, the fractional diffusion gains and

the regularity is driven by the (directional) fractional Laplacian.

4.2.2. Mixed Integro-Differential Equations with First-Order Terms. Partial and global, Hölder and
Lipschitz regularity results apply for a general class of mixed integro-differential equations. As

pointed out in the previous theorems, the three nonlinearities must satisfy suitable strict elliptic-

ity and growth conditions. The typical examples one can solve under those assumptions can be
summed up by the following equation

−a1(x1)∆x1 u−a2(x2)Ix2 [x,u]−I [x,u]+b1(x1)|Dx1 u1|k1+b2(x2)|Dx2 u|k2 +|Du|n +cu = f (x)
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where for i = 1,2 ai (xi ) ≥ 0 and ai ∈C 0,γ(Rdi ), bi ∈C 0,τ(Rdi ) with 0 ≤ τ≤ 1, ki ∈ (0,2+τ), n ≥ 0 and
c > 0. We have thus considered

F0(u(x),Du,D2u,I [x,u]) = −I [x,u]+|Du|n +cu

F1(x1,Dx1 u,D2
x1x1

u,Jx1 [x,u]) = −a1(x1)∆x1 u +b1(x1)|Dx1 u1|k1

F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u]) = −a2(x2)Ix2 [x,u]+b2(x2)|Dx2 u|k2 .

Let us have a look at each of these terms and see the assumptions they have to satisfy, in order to

ensure partial or global regularity of solutions. To fix ideas, suppose the nonlocal term Ix2 [x,u] is

an integro-differential operator of fractional exponent β ∈ (0,2).

In both situations, the nonlocal term I [x,u] can either be a general nonlocal operator associ-

ated to some Lévy measures µ0 or a Lévy-Itô operator. We emphasize the fact that the associated
Lévy measure has no x-dependency. This explains as well the lack of any coefficient a0(x) in front

of the nonlocal term I [x,u]. The gradient term |Du|n is allowed to have any possible growth n ≥ 0.

As far as we are interested in partial regularity results, the constant c may be any real number,

since we just need cu to be bounded. Yet, when combining the partial regularity results to obtain

global regularity, F1 and F2 are submitted to rather restrictive assumptions, due to the uniqueness
requirements. Thus, when b1 and b2 depend explicitly on x1, respectively x2 the corresponding

gradient terms are restrained to sublinear growth. To turn around this difficulty and obtain regu-

larity of solutions in superlinear cases, one can argue by approximation, truncating the gradient
terms and using Corollary 7 for obtaining uniform gradient bounds. To perform this program, c

must be positive: c > 0.

We first discuss the partial regularity of the solution with respect to each of its variables. To

this end, we need classical regularity assumptions in one set of variables, and uniqueness type

assumptions in the other variables.

Partial regularity in x2-variable requires ellipticity of the equation in x2 direction:

∀x1 ∈R
d1 , x2 ∈R

d2 a1(x1)≥ 0 and a2(x2)> 0.

To ensure the uniqueness argument in x1-variable, we must take a1(x) =σ1(x)2 with σ1 a Lipschitz

continuous function. The nonlocal term Ix2 [x,u] is either a general integro-differential operator
or a Lévy-Itô operator.

When β> 1, the solution is Lipschitz continuous in the x2 variable for directional gradient terms

b2(x2)|Dx2 u|k2 having a natural growth k2 ≤ β if b2 is bounded and directional gradient terms

b1(x1)|Dx1 u|k1 with linear growth k1 = 1 if b1 is Lipschitz (or sublinear growth k1 < 1 if b1 ∈ C 0,k1 .
If in addition b2 is τ-Hölder continuous, then the solution remains Lipschitz for gradient terms up

to growth k2 ≤ τ+β. When β≤ 1, the solution is α-Hölder continuous for any α< β−k2

1−k2
.

Partial regularity in x1-variable requires nondegeneracy of the equation in x1 direction

a1(x1)> 0, ∀x1 ∈R
d1 .

In this case, in the x2 variable, we can only deal with nonlocal operators of Lévy-Itô type Ix2 [x,u]=
Jx2 [x,u], for which the jump function is Lipschitz continuous and satisfies the structural con-
ditions (J1), (J4) and (J5). The uniqueness constraint with respect to x2 does not allow any x2-

dependence of the Lévy-measure associated to the nonlocal term, and hence a2(x2) should be a

constant function.
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Then the solution is Lipschitz in the x1 variable, for directional gradient terms b1(x1)|Dx1 u|k1

having a natural growth k1 ≤ 2+τ with b1 ∈ C 0,τ(Rd1 ), 0 ≤ τ ≤ 1. Once again, the uniqueness hy-

pothesis forces directional gradient terms b2(x2)|Dx2 u|k2 to have growth k2 = 1 and b2 is Lipschitz

continuous.

Global regularity holds under slightly weaker assumptions than the partial regularity. It follows

by interchanging the roles of x1 and x2. Accordingly, the equation must be strongly elliptic both in
the local and nonlocal term

a1(x1) > 0 and a2(x2) > 0 ∀x1 ∈R
d1 , x2 ∈R

d2 .

The nonlocal term Ix2 [x,u] is necessarily a Lévy-Itô operator, satisfying the nondegeneracy as-

sumption (J2), as well as the rest of structural conditions (J1)− (J5). In addition

a1(x1)=σ1(x1)2 > 0

with σ1 Lipschitz continuous and a2(x) ≡ a2 > 0 constant function.

Joining the partial Lipschitz regularity results, we get Lipschitz continuity of the solution when-
ever b1 and b2 are Lipschitz continuous for linear, directional gradient terms b1(x1)|Dx1 u| and

b2(x2)|Dx2 u|. The linear growth is constraint by the uniqueness argument.

However, looking at the approximated equations with |Du| replaced by |Du|∧R , for R > 0 and
noting that the solutions are Lipschitz continuous, with the Lipschitz norm independent of R when

c > 0, we obtain Lipschitz continuous viscosity solutions for general equations, dealing with gradi-

ent terms of growth k1 ≤ 2,k2 ≤ τ+β, when b2 ∈C 0,τ(Rd2 ). Similarly, we get α-Hölder continuous

solutions, for any α< β−k2

1−k2
≤ 1.

5. EXTENSIONS

5.1. Non-periodic Setting.

Theorem 8. Let f be continuous, the nonlinearities Fi , i = 0,1,2 be degenerate elliptic, continuous,

such that F0 satisfies (H0) with γ̃> 0 and (H2), and that both Fi , for i = 1,2 satisfy assumptions (H2)

and (H1′), with d̃ = di , for some functions Λ1
i , Λ2

i and some constants ki ≥ 0, τi ,θi , θ̃i ∈ (0,1], where

(H1′) There exist two functions Λ1,Λ2 : Rd̃ → [0,∞) such that Λ1(x)+Λ
1(x) ≥Λ

0 > 0 and for each

0 < R <∞ there exist some constants k ≥ 0, τ,θ, θ̃ ∈ (0,1] such that for any x, y ∈R
d̃ , p, q ∈R

d̃ ,
|q | < R, l ≤ l ′ and any ε> 0

F (y, p,Y , l ′) − F (x, p+q, X , l )

≤ Λ1(x)

(
(l − l ′)+

|x − y |2θ

ε
+|x − y |τ|p|k+τ+C 1|p|k

)

+ Λ2(x)

(
tr(X −Y )+

|x − y |2θ̃

ε
+|x − y |τ|p|2+τ+C 2|p|2

)
+O(K ,R)

if X ,Y ∈S
d̃ satisfy, inequality

−
1

ε

[
I 0

0 I

]
≤

[
X 0

0 −Y

]
≤

1

ε

[
Z −Z

−Z Z

]
+K

[
I 0

−0 0

]
,

for some Z = I −ωâ ⊗ â, with â ∈R
d a unit vector, and ω ∈ (1,2).

Let µ0, µi , with i = 1,2 and j i (xi , zi ) satisfy assumptions (J1)− (J5) for some constants βi , Cµi , C̃µi ,

with γ= 1 in (J3). Then any bounded continuous viscosity solution u of (23) is

(a) locally Lipschitz continuous, if βi > 1 and ki ≤βi for i = 1,2, and
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(b) locally C 0,α continuous with α< min(β1−k1

1−k1
, β2−k2

1−k2
), if β≤ 1 and ki <βi for i = 1,2.

The Lipschitz/Hölder constant depends on ||u||∞, on the dimension d of the space and on the con-

stants associated to the Lévy measures and on the constants required by the growth condition (H1).

Sketch of the proof. The fact that the solution is not periodic anymore, requires a localization term
when measuring the shift of the solution. Thus, in order to prove the local continuity of the solu-

tion, either if it refers to Hölder or Lipschitz, we need to show that for each x0 in the domain, there

exists a constant K , depending on x0, such that for a proper choice of α (both in the Hölder in

the Lipschitz case) there exists a constant L, depending on x0, large enough such that the auxiliary
function

ψ(x1, y1, x2) = u(x1, x2)−u(y1, x2)−Lϕ(|x1 − y1|)−
K

2
|(x1, x2)− (x0

1 , x0
2)|2

attains a nonpositive maximum. The proof is technically the same, except that here there will be an

additional contribution in the estimate of the nonlocal terms, coming from the localization term.
The point is to show that this contribution is of order O(K ).

�

5.2. Parabolic Integro-Differential Equations. The techniques previously developed apply liter-
ally to parabolic integro-differential equations.

Corollary 9. Let f , the nonlinearities Fi and the jump functions j i (xi , zi ) satisfy the assumptions of

Corollary 7. Then any x −per i odi c continuous viscosity solution u of

ut+F0(u(x),Du,D2u,I [x,u])+ (29)

F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Ix2 [x,u])= f (x).

(a) is Lipschitz continuous with respect to x on [0,T ], if βi > 1 and ki ≤βi for i = 1,2;

(b) is C 0,α with respect to x on [0,T ], with α< min(β1−k1

1−k1
, β2−k2

1−k2
), if β≤ 1 and ki <βi for i = 1,2.

The Lipschitz / Hölder constant depends on ||u||∞, on the dimension d of the space and on the con-
stants associated to the Lévy measures and on the constants required by the growth condition (H1).

Sketch of proof. The key difference with the previous proof consists in considering the space-time
auxiliary function

ψ(t , x1, y1, x2) = u(t , x1, x2)−u(t , y1, x2)−φ(x1 − y1)

and show that maxt ,x1,x2,y2 ψ(t , x1, y1, x2) < 0. By small space-time perturbations

ψε,ς(x, y, s, t )=u(t , x1, x2)−u(s, y1, y2)−φ(x1 − y1)−
|x2 − y2|2

ε2
−

(t − s)2

ς2
,

this leads to considering in the nonlocal Jensen-Ishii’s lemma the parabolic sub and superjets

(r ε,ς, pε,ς, X ε,ς) ∈J 2,+
p (u(xε,ς))

(r ε,ς, pε,ς,Y ε,ς) ∈J 2,−
p (u(yε,ς))

with r ε,ς = 2 t−s
ς2 . Writing down the viscosity inequalities, note that the r ε,ς is the common term

corresponding to the first order time-derivative, and hence it vanishes by subtraction. Therefore,

when passing to the limits in inequality (17), we can first let ς go to zero. The rest of the proof is
literally the same. �
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5.3. Bellman-Isaacs Equations. These results can be extended to fully nonlinear equations, that
arise naturally in stochastic control problems for jump-diffusion processes. The following Bellman-

Isaacs type equation arises

sup
γ∈Γ

inf
δ∈∆

(
F
γ,δ
0 (...,J γ,δ[x,u])+F

γ,δ
1 (...,J

γ,δ
x1

[x,u])+F
γ,δ
2 (...,J

γ,δ
x2

[x,u])− f γ,δ(x)
)
= 0

where J γ,δ[x,u] is a family of Lévy-Itô operators associated with a common Lévy measure µ0 and

a family of jump functions j
γ,δ
0 (x, z), respectively J

γ,δ
xi

[x,u] are families of Lévy-Itô operators as-

sociated with the Lévy measures µi and the families of jump functions j
γ,δ
i (xi , z), for i = 1,2.

A typical (and practical) example is

F
γ,δ
0 = cu −

1

2
tr(Aγ,δ(x)D2u)−J γ,δ[x,u]−bγ,δ(x) ·Du

F
γ,δ
i = −

1

2
tr(a

γ,δ
i (xi )D2

xi xi
u)−J

γ,δ
xi

[x,u]−b
γ,δ
i (x) ·Dxi u.

Similar techniques to the previous ones yield the Hölder and Lipschitz continuity of solutions of

Bellman-Isaacs equations, provided that the structure condition (H1) is uniformly satisfied by Fγ,δ
i ,

for i = 1,2, as well as the assumptions (J1)− (J5) by the family of jump functions jγ,δ
i (xi , z). In oc-

currence, the constants and functions appearing therein must be independent of γ and δ. For the

above example, it is sufficient that Aγ,δ(x), a
γ,δ
i (x),b

γ,δ
i (x), f γ,δ(x) are bounded in W 1,∞, uniformly

in γ and δ.

The proof is based on the classical inequality

sup
γ

inf
δ

(
Fγ,δ(...,J γ,δ[x,u])

)
− sup

γ
inf
δ

(
Fγ,δ(...,J γ,δ[y,u])

)

≤ sup
γ,δ

(
Fγ,δ(...,J γ,δ[x,u])−Fγ,δ(...,J γ,δ[y,u])

)
.

5.4. Multiple Nonlinearities. The problem can be easily generalized to multiple nonlinearities

F0(u(x),Du,D2u,I [x,u])+
∑

i∈I
Fi (xi ,Dxi u,D2

xi xi
u,Jxi [x,u])= f (x). (30)

The proof can be reduced to the previous one, by grouping all the variables for which we employ

uniqueness type arguments.

6. ESTIMATES FOR INTEGRO - DIFFERENTIAL OPERATORS

All these results are based on a series of estimates for the nonlocal terms, that me make precise
in the following. They are similar to those in [1]. As we have seen, the proof of the Lipschitz regu-

larity of solutions uses Hölder continuity of solutions for small orders α ∈ (0, 1
d+1 ), where d is the

dimension of the space. For this reason, the estimates below are first given in a general form, such

that they can be used for both regularity proofs. We then state as corollaries their precise form for
Lipschitz and Hölder case.

6.1. General Nonlocal Operators. We first give some estimates for general nonlocal operators

I [x,u]=
∫

Rd
(u(x + z)−u(x)−Du(x) · z1B )µx (d z).

We begin with a general result on concave estimates for these integro-differential operators, under

quite general assumptions. We then derive finer estimates in the particular case of Lipschitz and
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Hölder control functions. However, these special forms will hold for family of Lévy measures (µx )x

which satisfy some additional assumptions.

Proposition 10 (Concave estimates - general nonlocal operators). Assume condition (M1) holds.

Let u, v be two bounded functions and ϕ : [0,∞) → R be a smooth increasing concave function.

Define
ψ(x, y)= u(x)−v(y)−ϕ(|x − y |)

and assume the maximum of ψ is positive and reached at (x̄, ȳ), with x̄ 6= ȳ . Let

a = x̄ − ȳ , â = a/|a|, p =ϕ′(|a|)â.

Then the following holds

I [x̄, p,u] − I [ȳ , p, v ] ≤ 4C̃µ max(||u||∞, ||v ||∞)

+
1

2

∫

Cη,δ(a)
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
|z|2

(
µx̄ +µȳ

)
(d z)

+2ϕ′(|a|)
∫

B\Bδ

|z|
∣∣µx̄ −µȳ

∣∣ (d z)+
∫

Bδ\Cη,δ(a)
sup
|s|≤1

ϕ′(|a + sz|)
|a + sz|

|z|2
∣∣µx̄ −µȳ

∣∣ (d z),

where
Cη,δ(a) =

{
z ∈ Bδ; (1−η)|z||a| ≤ |a · z|

}

and δ= |a|δ0 > 0, η̃= 1−η−δ0

1+δ0
> 0 with δ0 ∈ (0,1), η ∈ (0,1) small enough.

Remark 6. The aperture of the cone is given by η and changes according to |a|. In order to ensure

Lipschitz continuity of solutions, η must be chosen to behave like a power of |a|, i.e. η∼ |a|α, and
thus is diminishing as the modulus of the gradient approaches zero: lim|a|→0η(|a|) = 0. Remark

that as |a| → 0, Cη,δ(a) degenerates to the line whose direction is given by the gradient. This will

be made precise when proving Corollary 12 below.

Corollary 11 (Lipschitz estimates). Let (M1)− (M3) hold, with β > 1. Under the assumptions of

Proposition 10 with

ϕ(t )=
{

L
(
t −̺t 1+α)

, t ∈ [0, t0]

ϕ(t0), t > t0

whereα∈
(
0,min( γ

d+1 , β−1
d+2−β )

)
, ̺ is a constant such that ̺α2α−1 > 1, t0 = maxt (t−̺t 1+α) = α

√
1

ρ(1+α)

and L > (||u||∞+||v ||∞)(α+1)
t0α

, the following holds: there exists a positive constant C =C (µ) such that for

Θ(̺,α,µ) =C
(
ρα2α−1 −1

)
we have

I [x̄, p,u]−I [ȳ , p, v ]≤−L|a|(1−β)+α(d+2−β) {Θ(̺,α,µ)−o|a|(1)
}
+O(C̃µ).

Corollary 12 (Hölder estimates). Let (M1)− (M3) hold, with β ∈ (0,2). Under the assumptions of

Proposition 10 with

ϕ(t ) =
{

Ltα, t ∈ [0, t0]

ϕ(t0), t > t0

where α ∈ (0,min(β,1)), t0 > 0, and L > ||u||∞+||v ||∞
t0

α , the following holds: there exists a positive con-

stant αC (µ) > 0 such that

I [x̄, p,u]−I [ȳ , p, v ] ≤−L|a|α−β
{
αC (µ)−o|a|(1)

}
+O(C̃µ).
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Proof of Proposition 10. We split the domain of integration into three pieces and take the integrals
on each of these domains. Namely we part the ball Bδ of radius δ into the subset Cη,δ(a) with

η= η(|a|) andδ= δ(|a|), and its complementary Bδ\Cη,δ(a). We write the difference of the nonlocal

terms, corresponding to the maximum point (x̄, ȳ), as the sum

I [x̄, p,u]−I [ȳ , p, v ]=T 1(x̄, ȳ)+T 2(x̄, ȳ)+T 3(x̄, ȳ)

where

T 1(x̄ , ȳ) =
∫

Rd \B
(u(x̄ + z)−u(x̄))µx̄ (d z)

−
∫

Rd \B

(
v(ȳ + z)−v(ȳ)

)
µȳ (d z)

T 2(x̄ , ȳ) =
∫

Cη,δ(a)

(
u(x̄ + z)−u(x̄)−p · z

)
µx̄ (d z)

−
∫

Cη,δ(a)

(
v(ȳ + z)−v(ȳ)−p · z

)
µȳ (d z)

T 3(x̄ , ȳ) =
∫

B\Cη,δ(a)

(
u(x̄ + z)−u(x̄)−p · z

)
µx̄ (d z)

−
∫

B\Cη,δ(a)

(
v(ȳ + z)−v(ȳ)−p · z

)
µȳ (d z).

Let φ(z) =ϕ(|z|). Then p = Dφ(a). Since (x̄, ȳ) is a maximum point of ψ(·, ·), we have that

u(x̄ + z)−u(x̄)−p · z ≤ v(ȳ + z ′)−v(ȳ)−p · z ′

+φ(a + z − z ′)−φ(a)−Dφ(a) · (z − z ′). (31)

In the following we give estimates for each of these integral terms, using inequality (31) and prop-
erties of the Lévy measures

(
µx

)
x .

Lemma 13. T 1(x̄, ȳ) is uniformly bounded with respect to all parameters. More precisely

T 1(x̄, ȳ) ≤ 4max(||u||∞, ||v ||∞) sup
x∈Rd

µx (Rd \ B ).

Proof of Lemma 13. Since the functions u and v are bounded, we immediately deduce that

T 1(x̄, ȳ) ≤ 2||u||∞
∫

Rd \B
µx̄ (d z)+2||v ||∞

∫

Rd \B
µȳ (d z).

We conclude by recalling that the measures µx are uniformly bounded away from the origin, by

assumption (M1).

�

Lemma 14. Let δ= |a|δ0 with δ0 ∈ (0,1) small, η be small enough such that 1−η−δ0 > 0 and

η̃=
1−η−δ0

1+δ0
.

Then the nonlocal term T 2 satisfies

T 2(x̄, ȳ) ≤
1

2

∫

Cη,δ(a)
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
|z|2(µx̄ +µȳ )(d z).

Remark 7. The previous notations have been introduced to simplify the form of the estimates.
It is important to note however that the coefficients appearing in the convex combination of the

derivatives of ϕ depend explicitly on η̃ and not on the aperture of the cone, given in terms of η.

We eventually set η ∼ |a|2α and δ0 ∼ |a|α, thus we expect to have η̃≃ 1. Consequently, the second
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derivative of ϕ would dominate the nonlocal difference and would render T 2(x̄, ȳ) as negative as
needed.

Proof of Lemma 14. Taking z ′ = 0 and z = 0 in inequality (31) we have

u(x̄ + z)−u(x̄)−p · z ≤ φ(a + z)−φ(a)−Dφ(a) · z

−
(
v(ȳ + z ′)−v(ȳ)−p · z ′) ≤ φ(a − z ′)−φ(a)+Dφ(a) · z ′.

Therefore

T 2(x̄, ȳ) ≤
∫

Cη,δ(a)

(
φ(a + z)−φ(a)−Dφ(a) · z

)
µx̄ (d z)

+
∫

Cη,δ(a)

(
φ(a − z ′)−φ(a)+Dφ(a) · z ′)µȳ (d z ′).

Using Taylor’s formula with integral reminder, the right hand side can be rewritten as

1

2

∫1

0
(1− s)d s

∫

Cη,δ(a)

(
D2φ(a + sz)z · z

)
µx̄ (d z)

+
1

2

∫0

−1
(1+ s)d s

∫

Cη,δ(a)

(
D2φ(a+sz)z · z

)
µȳ (d z).

Remark that the first and second derivatives of φ(z) =ϕ(|z|) are given by the formulas

Dφ(z) = ϕ′(|z|)ẑ

D2φ(z) =
ϕ′(|z|)
|z|

(I − ẑ ⊗ ẑ)+ϕ′′(|z|)ẑ ⊗ ẑ,

and in particular

D2φ(a + sz)z · z =
ϕ′(|a + sz|)
|a + sz|

(
|z|2 −|á(a + sz) · z|2

)
+ϕ′′(|a + sz|)|á(a + sz) · z|2.

On the set Cη,δ(a) we have the following upper and lower bounds

|a + sz| ≥ |a|− |s||z| ≥ |a|−δ= |a|(1−δ0)

|a + sz| ≤ |a|+ |s||z| ≤ |a|+δ= |a|(1+δ0) (32)

|(a + sz) · z| ≥ |a · z|− s|z|2 ≥ |a · z|−δ|z| ≥ (1−η−δ0)|z||a|.

Hence we deduce that for all s ∈ (−1,1)

|á(a + sz) · z| ≥ η̃|z| with η̃=
1−η−δ0

1+δ0
. (33)

Recalling that ϕ is increasing and concave, we get

D2φ(a + sz)z · z ≤ (1− η̃2)
ϕ′(|a + sz|)
|a + sz|

|z|2 + η̃2ϕ′′(|a + sz|)|z|2.

This implies that the integral terms corresponding to φ are bounded by

1

2

∫

Cη,δ(a)
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
|z|2(µx̄ +µȳ )(d z).

which concludes the proof of the lemma. �

Lemma 15. The following estimate holds

T 3(x̄, ȳ)≤
∫

Bδ\Cη,δ(a)
sup
|s|≤1

ϕ′(|a + sz|)
|a + sz|

|z|2
∣∣µx̄ −µȳ

∣∣ (d z)+2ϕ′(|a|)
∫

B\Bδ

|z|
∣∣µx̄ −µȳ

∣∣ (d z).
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Proof of Lemma 15. When estimating the nonlocal term outside the cone, one has to keep it as
small as possible, though positive. Therefore we consider, as in [1] the signed measure µ=µx̄ −µȳ .

Consider its Jordan decomposition µ=µ+−µ− and denote by |µ| the corresponding total variation

measure. Then, if K is the support of the positive variation µ+, one can define the minimum of the

two measures as
µ∗ = 1K µȳ + (1−1K )µx̄ .

But then, the measures µx̄ and µȳ can be rewritten as µx̄ = µ∗+µ+ and µȳ = µ∗+µ−. With these

notations in mind, we rewrite the nonlocal term T 3 as

T 3(x̄, ȳ) =
∫

B\Cη,δ(a)

(
u(x̄ + z)−u(x̄)−p · z − (v(ȳ + z)−v(ȳ)−p · z)

)
µ∗(d z)

+
∫

B\Cη,δ(a)
(u(x̄ + z)−u(x̄)−p · z)µ+(d z)

−
∫

B\Cη,δ(a)
(v(ȳ + z)−v(ȳ)−p · z)µ−(d z).

Choosing successively z ′ = z, z ′ = 0 and z = 0 in (31) and noting that

u(x̄ + z)−u(x̄)−p · z ≤ v(ȳ + z)−v(ȳ)−p · z

we deduce that

T 3(x̄, ȳ) ≤
∫

B\Cη,δ(a)

(
φ(a + z)−φ(a)−Dφ(a) · z

)
µ+(d z)

+
∫

B\Cη,δ(a)

(
φ(a − z)−φ(a)+Dφ(a) · z

)
µ−(d z).

For estimating the integral terms corresponding to φ, we split the domain of integration into B \Bδ

and Bδ \Cη,δ(a). On the first set, from the monotonicity and the concavity of ϕ we have

φ(a + z)−φ(a)−Dφ(a) · z ≤ ϕ(|a|+ |z|)−ϕ(|a|)−ϕ′(|a|)â · z

≤ 2ϕ′(|a|)|z|.

On Bδ\Cη,δ(a) we use a second order Taylor expansion and we take into account that ϕ is smooth,
ϕ′ ≥ 0 and ϕ′′ ≤ 0 to obtain the upper bound

sup
|s|≤1

(
φ(a + sz)−φ(a)−Dφ(a) · z

)
≤ sup

|s|≤1
D2φ(a + sz)z · z

≤ sup
|s|≤1

ϕ′(|a + sz|)
|a + sz|

|z|2.

Therefore we get the estimate

T 3(x̄, ȳ)≤ 2ϕ′(|a|)
∫

B\Bδ

|z|
∣∣µx̄ −µȳ

∣∣ (d z)+
∫

Bδ\Cη,δ(a)
sup
|s|≤1

ϕ′(|a + sz|)
|a + sz|

|z|2
∣∣µx̄ −µȳ

∣∣ (d z).

�

From the three above lemmas, we obtain the final estimate for the nonlocal term. �

Proof of Corollary 11. Remark that |a| ≤ t0. Indeed, since the maximum of ψ is positive and in view
of the lower bound on L, we have

ϕ(|a|) < ||u||∞+||v ||∞ ≤ Lt0
α

1+α
=ϕ(t0)
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which by the strict monotonicity of ϕ implies the desired inequality. We first evaluate the estimate
that renders the integral difference negative, namely:

sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)

= L sup
|s|≤1

(
(1− η̃2)

1−̺(1+α)|a + sz|α

|a + sz|
− η̃2̺α(1+α)|a + sz|α−1

)

≤ L sup
|s|≤1

(
1− η̃2

|a + sz|
−̺(1+α)(1− η̃2 +αη̃2)|a + sz|α−1

)
.

Using the fact that η̃2 ≤ 1 ≤ 1
1−α2 we have that (1+α)(1− η̃2 +αη̃2) ≥α which further implies

sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
≤ L sup

|s|≤1

(
1− η̃2

|a + sz|
−̺α|a + sz|α−1

)
.

But this quantity has to be integrated over the cone Cη,δ(a), in which case |a + sz| satisfies

|a|(1−δ0) ≤ |a + sz| ≤ |a|(1+δ0).

Thus, observing that 1− η̃2 ≤ 2(1− η̃), the previous inequality takes the form

sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
≤ L

(
2(1− η̃)

|a|(1−δ0)
−̺α(1+δ0)α−1|a|α−1

)
.

Let η̃ be of the form
1− η̃= |a|αη̃0

with small η̃0 < 1
4 . Choose accordingly δ0 and η of the form

δ0 = c1|a|α1 η= c2|a|α2 .

Recalling that η̃= 1−δ0−η
1+δ0

we get that c1,c2,α1 and α2 must satisfy

c2|a|α2 +2c1|a|α1 = c1η̃0|a|α+α1 + η̃0|a|α.

Identifying the coefficients we obtain

δ0 =
1

2
|a|αη̃0 and η=

1

2
|a|2αη̃2

0.

Subsequently, the choice of parameters η,δ0 and η̃0 gives us

sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
≤−L

(
̺α2α−1 −1

)
|a|α−1.

This leads to a negative upper bound of the integral term taken over the cone Cη,δ(a):
∫

Cη,δ(a)
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
|z|2µx̄ (d z)

≤−L
(
̺α2α−1 −1

)
|a|α−1

∫

Cη,δ(a)
|z|2µx̄ (d z).

Let Θ(̺,α) =̺α2α−1 −1 > 0 and use (M2) and the fact that δ= |a|δ0 to finally get
∫

Cη,δ(a)
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
|z|2µx̄ (d z)

≤−LΘ(̺,α)|a|α−1Cµη
d−1

2 δ2−β

=−LΘ(̺,α)C 1
µ|a|

α−1|a|α(d−1)|a|(1+α)(2−β).
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Less technical estimates give us similar upper bounds for the other two integrals. More precisely,
we have in view of assumption (M3)

2ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z) ≤ 2LCµ|a|γδ1−β

= LC 2
µ|a|

γ|a|(1+α)(1−β)

and
∫

Bδ\Cη,δ(a)
sup
|s|≤1

ϕ′(|a + sz|)
|a + sz|

|z|2|µx̄ −µȳ |(d z) ≤ L
Cµ|a|γδ2−β

|a|(1−δ0)

≤ LC 3
µ|a|

γ−1|a|(1+α)(2−β).

For β> 1 and α> 0 such that γ>α(d +1) the difference of the two nonlocal terms becomes nega-

tive:

I [x̄, p,u]−I [ȳ, p, v ]

≤−L|a|1−β
{

C 1
µΘ(̺,α,µ)|a|α(d+2−β) −C 2

µ|a|
γ+α(1−β)−C 3

µ|a|
γ+α(2−β)

}
+O(C̃µ)

=−L|a|(1−β)+α(d+2−β)
{

C 1
µΘ(̺,α,µ)−o|a|(1)

}
+O(C̃µ).

�

Proof of Corollary 12. Estimating the integrand of the nonlocal difference T 2 we get

sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)

= Lα
(
1− (2−α)η̃2)

inf
|s|≤1

(
|a + sz|α−2)

≤−Lα
(
(2−α)η̃2 −1

)
(1+δ0)α−2|a|α−2.

Choose η and δ0 sufficiently small such that δ0 < 1
2

(2−α)η̃2 = (2−α)

(
1−η−δ0

1+δ0

)2

>
1

2
.

Remark that, contrary to the Lipschitz case, η and δ0 do not depend on |a|. We then obtain due to

(M2) a negative bound of the integral term over the cone Cη,δ(a), for δ= |a|δ0:
∫

Cη,δ(a)
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz|

+ η̃2ϕ′′(|a + sz|)
)
|z|2µx̄ (d z)

≤−L
α

2
(1+δ0)α−2|a|α−2

∫

Cη,δ(a)
|z|2µx̄ (d z)

≤−LαC (µ)|a|α−β.

In addition, in view of (M3) we have the estimates of the other two integral terms, when β 6= 1

2ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z) ≤ 2Lα|a|α−1Cµ|a|γδ1−β

= LαC 2
µ|a|

γ|a|α−β

and for β= 1

2ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z)≤ LαC 2
µ|a|

γ| ln(|a|δ0)||a|α−β.
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Similarly
∫

Bδ\Cη,δ(a)
sup
|s|≤1

ϕ′(|a + sz|)
|a + sz|

|z|2|µx̄ −µȳ |(d z)

≤ Lα(|a|(1−δ0))α−2
∫

Bδ\Cη,δ(a)
|z|2|µx̄ −µȳ |(d z)

≤ LαC 3
µ|a|

γ|a|α−β.

Therefore the difference of the nonlocal term becomes negative, as bounded from above by

I [x̄, p,u]−I [ȳ , p, v ] ≤−L|a|α−β
(
αC (µ)−o|a|(1)

)
+O(C̃µ).

�

6.2. Lévy-Itô Operators. We now establish similar results for Lévy-Itô operators

J [x,u]=
∫

Rd

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z))

)
µ(d z).

As before, we give a general result on concave estimates for the difference of two Lévy-Itô operators.

Then we present the Lipschitz and Hölder estimates as corollaries. In addition, we provide the
quadratic estimates that are used in the uniqueness argument, in the proof of the partial regularity

result, Theorem 4.

Proposition 16 (Concave estimates - Lévy-Itô operators). Assume conditions (J1) and (J4) hold.
Let u, v be two bounded functions,ϕ : [0,∞) →R be a smooth increasing concave function and define

ψ(x, y)= u(x)−v(y)−ϕ(|x − y |).

Assume that ψ attains a positive maximum at (x̄, ȳ), with x̄ 6= ȳ . Let a = x̄ − ȳ , â = a/|a| and p =
ϕ′(|a|)â. Then the following holds

J [x̄, p,u] − J [ȳ , p, v ] ≤ 4C̃µ max(||u||∞, ||v ||∞)

+
1

2

∫

C
sup
|s|≤1

x=x̄ ,ȳ

((
(1− η̃2)

ϕ′(|a + s j (x, z)|)
|a + s j (x, z)|

+ η̃2ϕ′′(|a + s j (x, z)|)
)
| j (x, z)|2

)
µ(d z)

+2ϕ′(|a|)
∫

B\C
|∆(z)|≥δ

|∆(z)|µ(d z)+
∫

B\C
|∆(z)|≤δ

sup
|s|≤1

ϕ′(|a + s∆(z)|)
|a + s∆(z)|

|∆(z)|2µ(d z)

where ∆(z) = j (x̄, z)− j (ȳ , z),

C =
{

z;

∣∣∣∣ j (
x̄ + ȳ

2
, z)

∣∣∣∣≤
δ

2
and

∣∣∣∣ j (
x̄ + ȳ

2
, z) · â

∣∣∣∣≥ (1−
η

2
)

∣∣∣∣ j (
x̄ + ȳ

2
, z)

∣∣∣∣)
}

( |a|
2

)γ
≤

c0

C0

η

4−η
, δ= |a|δ0 > 0, η̃=

1−η−δ0

1+δ0
> 0

with δ0 ∈ (0,1) and η ∈ (0,1) both sufficiently small.

Corollary 17 (Lipschitz estimates). Let β> 1 ≥ 2(1−γ) and assume that conditions (J1)−(J4) hold.

Under the assumptions of Proposition 16 with

ϕ(t )=
{

L
(
t −̺t 1+α)

, t ∈ [0, t0]

ϕ(t0), t > t0

whereα∈
(
0,min

(
γβ

d+1 , β−1
d+2−β

))
, ̺ is a constant such that̺α2α−1 > 1, t0 = maxt (t−̺t 1+α) = α

√
1

ρ(1+α)

and L > (||u||∞+||v ||∞)(α+1)
t0α

, the following holds: there exists a positive constant C =C (µ) such that for
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Θ(̺,α,µ) =C
(
ρα2α−1 −1

)
we have

J [x̄, p,u]−J [ȳ, p, v ] ≤−L|a|(1−β)+α(d+2−β) {Θ(̺,α,µ)−o|a|(1)
}
+O(C̃µ).

Remark 8. The condition β> 2(1−γ) connects the singularity of the measure with the regularity of
the jumps. It says that the more singular the measure is, the less regular the jumps can be.

Corollary 18 (Hölder estimates). Let β> 2(1−γ) and assume that conditions (J1)−(J4) hold. Under

the assumptions of Proposition 10 with

ϕ(t ) =
{

Ltα, t ∈ [0, t0]
ϕ(t0), t > t0

where α ∈ (0,min(β,1)), t0 > 0, and L > ||u||∞+||v ||∞
t0

α , the following holds: there exists a positive con-

stant C (µ) > 0 such that

J [x̄, p,u]−J [ȳ, p, v ] ≤−L|a|α−β
{
αC (µ)−o|a|(1)

}
+O(C̃µ).

Proof of Proposition 16. In this case, the difference of the nonlocal terms reads

J [x̄, p,u]−J [ȳ, p, v ] =
∫

Rd

(
u(x̄ + j (x̄, z)−u(x̄)−p · j (x̄ , z)1B (z))

)
µ(d z)

−
∫

Rd

(
v(ȳ + j (ȳ , z)−v(ȳ)−p · j (ȳ , z)1B (z))

)
µ(d z).

Similarly to general nonlocal operators we split the domain of integration into the cone C , its com-

plementary in the unit ball B \C and the region away from the origin R
d \ B . Remark that the cone

has the property

C :=Cδ/2,η/2

(
x̄ + ȳ

2

)
⊂Cδ,η(x̄)∩Cδ,η(ȳ). (34)

Indeed, for |a| sufficiently small such that
(
|a|
2

)γ
≤ c0

C0
, if z ∈C then

| j (x̄, z)| ≤ | j (
x̄ + ȳ

2
, z)− j (x̄, z)|+ | j (

x̄ + ȳ

2
, z)|

≤ C0|z|
( |a|

2

)γ
+
δ

2
≤

δ

2

C0

c0

( |a|
2

)γ
+
δ

2
≤δ

since c0|z| ≤ | j ( x̄+ȳ
2 , z)| ≤ δ

2 . At the same time, we use the fact that
(
|a|
2

)γ
≤ c0

C0

η
4−η , to get from (J4)

| j (x̄, z) · â| ≥ | j (
x̄ + ȳ

2
, z) · â|− | j (

x̄ + ȳ

2
, z)− j (x̄ , z)|

≥ (1−
η

2
)| j (

x̄ + ȳ

2
, z)|− | j (

x̄ + ȳ

2
, z)− j (x̄, z)|

≥ (1−
η

2
)| j (x̄ , z)|− (2−

η

2
)| j (

x̄ + ȳ

2
, z)− j (x̄, z)|)

≥ (1−
η

2
)| j (x̄ , z)|− (2−

η

2
)C0|z|

( |a|
2

)γ

≥ (1−
η

2
)| j (x̄ , z)|− (2−

η

2
)
C0

c0
| j (x̄, z)|

( |a|
2

)γ
≥ (1−η)| j (x̄ , z)|.

Let φ(z) =ϕ(|z|). Then p =Dφ(a). Accordingly, we write the previous difference as the sum

J [x̄, p,u]−J [ȳ, p, v ]=T 1(x̄, ȳ)+T 2(x̄, ȳ)+T 3(x̄, ȳ),
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FIGURE 3. The middle cone Cδ/2,η/2

(
x̄+ȳ

2

)
⊂Cδ,η(x̄)∩Cδ,η(ȳ).

where

T 1(x̄, ȳ) =
∫

Rd \B

(
u(x̄ + j (x̄, z))−u(x̄)

)
µ(d z)

−
∫

Rd \B

(
v(ȳ + j (ȳ , z))−v(ȳ)

)
µ(d z)

T 2(x̄, ȳ) =
∫

C

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄ , z)

)
µ(d z)

−
∫

C

(
v(ȳ + j (ȳ , z))−v(ȳ)−p · j (ȳ , z)

)
µ(d z)

T 3(x̄, ȳ) =
∫

B\C

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)
µ(d z)

−
∫

B\C

(
v(ȳ + j (ȳ , z))−v(ȳ)−p · j (ȳ , z)

)
µ(d z).

As before, we next estimate each of these integral terms. The first lemma is straightforward.

Lemma 19. T 1(x̄, ȳ) is uniformly bounded with respect to all the parameters, namely

T 1(x̄, ȳ) ≤ 4max(||u||∞, ||v ||∞) sup
x∈Rd

µx (Rd \ B ).

Lemma 20. Let δ= |a|δ0 and η ∈ (0, 1
2 ) such that 1−η−δ0 ≥ 0. We have

T 2(x̄, ȳ) ≤
∫

C
sup
|s|≤1,
x=x̄ ,ȳ

((
(1− η̃2)

ϕ′(|a + s j (x, z)|)
|a + s j (x, z)|

+ η̃2ϕ′′(|a + s j (x, z)|)
)
| j (x, z)|2

)
µ(d z)

where η̃= (1−η−δ0)(1+δ0)−1.

Proof of Lemma 20. Writing the maximum inequality at points x̄, ȳ for the pair (z, z ′) = ( j (x̄, z),0)

and (z, z ′) = (0, j (ȳ , z)) respectively, we have

u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄ , z) ≤ φ(a + j (x̄, z))−φ(a)−Dφ(a) · j (x̄ , z)

−
(
v(ȳ + j (ȳ , z))−v(ȳ)−p · j (ȳ , z)

)
≤ φ(a − j (ȳ , z))−φ(a)+Dφ(a) · j (ȳ , z).

Therefore

T 2(x̄, ȳ) ≤
∫

C

(
φ(a + j (x̄, z))−φ(a)−Dφ(a) · j (x̄ , z)

)
µ(d z)

+
∫

C

(
φ(a − j (ȳ , z))−φ(a)+Dφ(a) · j (ȳ , z)

)
µ(d z).
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Taking into account that the set C is included in both Cη,δ(x̄) and Cη,δ(ȳ) (see (34)) we have, simi-
larly to (32) and (33), the following upper and lower bounds for the jumps

|a|(1−δ0) ≥ |a + s j (x̄, z)| ≥ |a|(1−δ0)

| á(a + s j (x, z)) · z| ≥ η̃| j (x̄, z)|.

We then conclude as we did for general nonlocal operators, within the proof of Lemma 14. �

Lemma 21. Denote by ∆(z)= j (x̄, z)− j (ȳ , z). Then

T 3(x̄, ȳ) ≤ 2ϕ′(|a|)
∫

{z∈B\C ; |∆(z)|≥δ}
|∆(z)|µ(d z)

+
∫

{z∈B\C ; |∆(z)|≤δ}
sup
|s|≤1

ϕ′(|a + s∆(z)|)
|a + s∆(z)|

|∆(z)|2µ(d z).

Proof of Lemma 21. We use again the maximum inequality to obtain the bound
(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)
−

(
v(ȳ + j (ȳ , z))−v(ȳ)−p · j (ȳ , z)

)

≤ φ(a + j (x̄, z)− j (ȳ , z))−φ(a)−Dφ(a) · ( j (x̄ , z)− j (ȳ , z))

which in particular implies

T 3(x̄, ȳ) ≤
∫

B\C

(
φ(a + j (x̄, z)− j (ȳ , z))−φ(a)−Dφ(a) · ( j (x̄ , z)− j (ȳ , z))

)
µ(d z).

In order to estimate the integral terms corresponding to φ, we split the integral in two parts, as
follows ∫

{z∈B\C ; |∆(z)|≥δ}

(
φ(a +∆(z))−φ(a)−Dφ(a) ·∆(z)

)
µ(d z)

+
∫

{z∈B\C ; |∆(z)|≤δ}

(
φ(a +∆(z))−φ(a)−Dφ(a) ·∆(z)

)
µ(d z).

On the first set we use the monotonicity and the concavity of ϕ to deduce that

φ(a +∆(z))−φ(a)−Dφ(a) ·∆(z) ≤ 2ϕ′(|a|)|∆(z)|.

On {z ∈ B \C ; |∆(z)| ≤ δ} we use a second order Taylor expansion and we take into account that ϕ

is a smooth increasing function with ϕ′′ ≤ 0 to obtain the upper bound

sup
|s|≤1

(
φ(a + s∆(z))−φ(a)−Dφ(a) ·∆(z)

)
≤

1

2
sup
|s|≤1

D2φ(a + s∆(z))∆(z) ·∆(z)

≤
1

2
sup
|s|≤1

ϕ′(|a + s∆(z)|)
|a + s∆(z)|

|∆(z)|2.

Therefore we get the desired estimate. �

The lemmas above yield the global estimate of the difference of the nonlocal terms. �

Proof of Corollary 17. We first evaluate, as for general nonlocal operators, the expression

sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + s j (x, z)|)
|a + s j (x, z)|

+ η̃2ϕ′′(|a + s j (x, z)|)
)

≤ L

(
2(1− η̃)

|a|(1−δ0)
−̺α(1+δ0)α−1|a|α−1

)
.
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For η̃= 1−|a|αη̃0 with η̃0 < 1
4 , consider the constant Θ(̺,α) = ̺α2α−1−1 > 0. Then, by (J2) we have

∫

C
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + s j (x̄, z)|)
|a + s j (x̄, z)|

+ η̃2ϕ′′(|a + s j (x̄, z)|)
)
| j (x̄, z)|2µ(d z)

≤−LΘ(̺,α)|a|α−1
∫

C
| j (x̄, z)|2µ(d z)

≤−LΘ(̺,α,µ)|a|(1−β)+α(d+2−β).

Similarly, taking into account assumptions (J3)− (J4) and that δ= |a|δ0 ∼ |a|α+1 we obtain

ϕ′(|a|)
∫

{z∈B\C ; |∆(z)|≥δ}
|∆(z)|µ(d z) ≤ LC0|a|γ

∫

{z∈B\C ;Rd \Bδ|a|−γ}
|z|µ(d z)

≤ LC 2
µ|a|

γ|a|(1+α−γ)(1−β)

and
∫

{z∈B\C ; |∆(z)|≤δ}
sup
|s|≤1

ϕ′(|a + s∆(z)|)
|a + s∆(z)|

|∆(z)|2µ(d z) ≤
L

|a|(1−δ0)

∫

{z∈B\C ; |∆(z)|≤δ}
|∆(z)|2µ(d z)

≤ LC 3
µ|a|

2γ−1.

Since β> 2(1−γ), γβ>α(d +1) and 2γ−2+β >α(d +2−β) the difference of the nonlocal terms is

negative, being bounded from above by

J [x̄, p,u]−J [ȳ, p, v ]

≤−L|a|1−β
{
Θ(̺,α,µ)|a|α(d+2−β) −C 2

µ|a|
γ+(α−γ)(1−β)−C 3

µ|a|
2γ−2+β

}
+O(C̃µ)

=−L|a|(1−β)+α(d+2−β) {Θ(̺,α,µ)−o|a|(1)
}
+O(C̃µ).

�

Proof of Corollary 18. Similarly to general nonlocal operators, we use (J2) to get
∫

C
sup
|s|≤1

(
(1− η̃2)

ϕ′(|a + s j (x, z)|)
|a + s j (x, z)|

+ η̃2ϕ′′(|a + s j (x, z)|)
)
| j (x̄, z)|2µ(d z)

≤−Lα(1−α)2α−3 |a|α−2
∫

C
|z|2µ(d z)

≤−LαC (µ)|a|α−β.

In addition, from (J3)− (J4) we have the estimates

ϕ′(|a|)
∫

{z∈B\C ; |∆(z)|≥δ}
|∆(z)|µ(d z) ≤ Lα|a|α−1C0|a|γ

∫

B\C ; Rd \Bδ|a|−γ
|z|µ(d z)

≤ LαC 2
µ|a|

α−β+γβ

if β 6= 1, respectively

ϕ′(|a|)
∫

{z∈B\C ; |∆(z)|≥δ}
|∆(z)|µ(d z)≤ LαC 2

µ|a|
α−β|a|γ ln(|a|δ0)

for β= 1. Finally, using again (J3)− (J4) we get
∫

{z∈B\C ; |∆(z)|≤δ}
sup
|s|≤1

ϕ′(|a + s∆(z)|)
|a + s∆(z)|

|∆(z)|2µ(d z)

≤ Lα(|a|(1−δ0))α−2
∫

{z∈B\C ; |∆(z)|≤δ}
|∆(z)|2µ(d z)

≤ LαC 3
µ|a|

2γ−2+β|a|α−β
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For α sufficiently small we thus have

J [x̄, p,u]−J [ȳ, p, v ] ≤−L|a|α−β
(
αC (µ)−o|a|(1)

)
+O(C̃µ).

�

Proposition 22 (Quadratic estimates - Lévy-Itô operators). Let (J1), (J4) and (J5) hold. Let u, v be

two bounded functions and assume the auxiliary function

ψε(x, y)= u(x)−v(y)−
|x − y |2

ε2

attains a positive maximum at (x̄, ȳ), with x̄ 6= ȳ . Denote by a = x̄ − ȳ and by p = 2 x̄−ȳ
ε2 . Then the

following holds

J [x̄, p,u]−J [ȳ, p,u]≤ 2C 2
0

1

ε2

∫

Bδ

|z|2µ(d z)+C 2
0
|a|2γ

ε2
C̃µ+2C0

|a|γ+1

ε2
C̃µ.

Proof of Proposition 22. By definition of (x̄, ȳ), we have

u(x̄ + j (x̄, z))−v(ȳ + j (ȳ , z ′))−
|x̄ + j (x̄, z)− ȳ − j (ȳ , z ′)|2

ε2
≤ u(x̄)−v(ȳ)−

|x̄ − ȳ |2

ε2
. (35)

We split the difference of the integral terms into

J [x̄, p,u]−J [ȳ, p,u]=T 1
q (x̄, ȳ)+T 2

q (x̄, ȳ)+T 3
q (x̄, ȳ)

where this time the integrals are taken over the ball Bδ, the ring B \ Bδ and the exterior of the unit
ball Rd \ B :

T 1
q (x̄, ȳ) =

∫

Bδ

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)
µ(d z)

−
∫

Bδ

(
v(ȳ + j (ȳ , z))−v(ȳ)−p · j (ȳ , z)

)
µ(d z)

T 2
q (x̄, ȳ) =

∫

B\Bδ

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄ , z)

)
µ(d z)

−
∫

B\Bδ

(
v(ȳ + j (ȳ , z))−v(ȳ)−p · j (ȳ , z)

)
µ(d z)

T 3
q (x̄, ȳ) =

∫

Rd \B

(
u(x̄ + j (x̄, z))−u(x̄)

)
µ(d z)

−
∫

Rd \B

(
v(ȳ + j (ȳ , z))−v(ȳ)

)
µ(d z).

Lemma 23. The following estimate holds

T 1
q (x̄, ȳ) ≤ 2C 2

0
1

ε2

∫

Bδ

|z|2µ(d z).

Proof of Lemma 23. Taking z ′ = 0 and z = 0 in inequality (35), we have respectively j (ȳ , z ′) = 0,
j (x̄, z) = 0. Hence, by direct computations and (J4) we have

u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄ , z) ≤
|x̄ + j (x̄, z)− ȳ |2

ε2
−
|x̄ − ȳ |2

ε2
−p · j (x̄, z)

=
| j (x̄, z)|2

ε2
≤C 2

0
|z|2

ε2
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and

−
(
v(ȳ + j (ȳ , z ′))−v(ȳ)−p · j (ȳ , z ′)

)
≤

|x̄ − ȳ − j (ȳ , z ′)|2

ε2
−
|x̄ − ȳ |2

ε2
+p · j (ȳ , z ′)

=
| j (ȳ , z)|2

ε2
≤C 2

0
|z|2

ε2
.

Integrating on Bδ we get the desired estimate. �

Lemma 24. The following estimate holds

T 2
q (x̄, ȳ) ≤ C 2

0
|a|2γ

ε2

∫

B\Bδ

|z|2µ(d z).

Proof of Lemma 24. Taking z = z ′ in inequality (35), subtracting the corresponding gradients and

using (J4) we obtain the inequality
(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄ , z)

)
−

(
v(ȳ + j (ȳ , z))−v(ȳ)−p · j (ȳ , z)

)

≤
|x̄ + j (x̄, z)− ȳ − j (ȳ , z)|2

ε2
−
|x̄ − ȳ |2

ε2
−p · ( j (x̄ , z)− j (ȳ , z))

=
| j (x̄, z)− j (ȳ , z)|2

ε2
≤C 2

0
|z|2|x̄ − ȳ |2γ

ε2

Integrating on the ring B \ Bδ, we get the desired estimate. �

Lemma 25. The following estimate holds

T 3
q (x̄, ȳ) ≤ C 2

0
|a|2γ

ε2

∫

Rd \B
µ(d z)+2C0

|a|γ+1

ε2

∫

Rd \B
µ(d z).

Proof of Lemma 25. Once again, for z = z ′ in inequality (35) we obtain the inequality
(
u(x̄ + j (x̄, z))−u(x̄)

)
−

(
v(ȳ + j (ȳ , z))−v(ȳ)

)

≤
|x̄ + j (x̄, z)− ȳ − j (ȳ , z)|2

ε2
−
|x̄ − ȳ|2

ε2
.

Integrating on R
d \ B and computing the right hand side we get

T 3
q (x̄, ȳ) ≤

∫

Rd \B

(
|p|| j (x̄ , z)− j (ȳ , z)|+

| j (x̄, z)− j (ȳ , z)|2

ε2

)
µ(d z).

Taking into account (J5) we get the desired estimate. �

From the three above lemmas and (J1) we conlcude.

�

7. APPENDIX

Lemma 26. Let X , Y and Z be block matrices of the form

A =
[

A1 0

0 A2

]

such that they satisfy the inequality
[

X 0
0 −Y

]
≤

[
Z −Z
−Z Z

]
(36)

Then the block matrices Xi , Yi satisfy inequality (36) where Z is replaced with Zi , for i = 1,2.
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Proof. The previous matrix inequality can be rewritten in the form

X z · z −Y z ′ · z ′ ≤ Z (z − z ′) · (z − z ′).

Due to the form of the block matrices, namely the secondary diagonal null, we can write the in-
equality on components, for z = (z1, z2), z ′ = (z ′

1, z ′
2)

∑

i=1,2

(
Xi zi · zi −Yi z ′

i · z ′
i

)
≤

∑

i=1,2

(
Zi (zi − z ′

i ) · (zi − z ′
i )

)
.

Thus, taking z = (z1,0) and z ′ = (z ′
1,0), respectively z = (0, z2) and z ′ = (0, z ′

2) we get the correspond-

ing inequality for the block matrices Xi ,Yi , Zi .
�

Lemma 27. Let X , Y and Z be symmetric matrices satisfying inequality (36). Consider the sup-

convolution X ε and the inf-convolution Y ε, defined by

X εz · z = sup
ξ∈Rd

{
X ξ ·ξ−

|z −ξ|2

ε

}
and Yεz · z = inf

ξ∈Rd

{
Y ξ ·ξ+

|z −ξ|2

ε

}
.

Then X ε, Yε and Z ε satisfy aswell inequality (36). In addition we have

−
1

ε
I , X ≤ X ε and Yε ≤ Y ,

1

ε
I . (37)

Proof. Evaluating (36) at (ξ,−ξ) and using the triangular inequality we have
(

X ξ ·ξ−
|z −ξ|2

ε

)
−

(
Y ξ ·ξ+

|z ′+ξ|2

ε

)
≤ 4Zξ ·ξ−

|z − z ′−2ξ|2

ε
.

Taking the supremum over all ξ we get that

sup
ξ

(
X ξ ·ξ−

|z −ξ|2

ε

)
− inf

ξ

(
Y ξ ·ξ+

|z ′−ξ|2

ε

)
≤ sup

ξ

(
Zξ ·ξ−

|z − z ′−ξ|2

ε

)

that is exactly

X εz · z −Yεz ′ · z ′ ≤ Z ε(z − z ′) · (z − z ′).

Moreover, considering the particular values ξ= 0, respectively ξ= z we have from the definition of
sup and inf matrix convolutions the desired inequalities. �

Lemma 28. Let Z = 1
α (I −ωâ ⊗ â), where â ∈S

d−1, α> 0 and ω≥ 0. Then the following holds

Z
α
2 =

2

α

(
I −

2ω

1+ω
â ⊗ â

)
. (38)

Proof. By definition

Z
α
2 z · z = sup

ξ

{
Zξ ·ξ−2

|z −ξ|2

α

}

and the supremum is attained at points ξ̄ satisfying Z ξ̄= 2
α

(ξ̄− z), or equivalently

(I −ωâ ⊗ â)ξ̄= 2(ξ̄− z).

Taking the inner product with â in this identity, we have

ξ̄ · â =
2

1+ω
z · â.

Taking now the inner product with z in the same identity, we have

ξ̄ · z = 2|z|2 −ω(z · â)(ξ̄ · â) = 2|z|2 −
2ω

1+ω
(z · â)2.
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Therefore

Z
α
2 z · z =

2

α

(
(ξ̄− z) · ξ̄−|z − ξ̄|2

)

=
2

α

(
(ξ̄− z) · z

)
=

2

α

(
|z|2 −

2ω

1+ω
(z · â)2

)
.

�

Lemma 29. Let X ,Y , Z
α
2 satisfy the block inequality (36), with Z

α
2 given by equation (38), for some

ω≥ 1. Then the following holds:

trace(X −Y )≤−
8(ω−1)

α(1+ω)
.

Proof. Rewrite the matrix inequality in the form

X z · z −Y z ′ · z ′ ≤ Z
α
2 (z − z ′) · (z − z ′).

Taking z =−z ′ = â we have

X â · â −Y â · â ≤ 4Z
α
2 â · â

whereas for any vector z orthogonal to â

X z · z −Y z · z ≤ 0.

Therefore

trace(X −Y ) ≤
8

α

(
|â|2 −

2ω

1+ω
|â|2

)
=−

8(ω−1)

α(ω+1)
.

�
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