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1. Introduction

The recent progress during the last decade in the context of superconducting solid-state

devices, whose system parameters can be controlled in situ to manipulate quantum

states coherently, has strengthened the idea that Josephson architectures are among the

best candidates both for the search of experimental evidence of nonclassical features

at mesoscopic level and for the practical implementation of logic gates and circuits.

Superconducting circuits indeed work well, and experiments have demonstrated single-

qubit operations [1, 2, 3, 4, 5, 6, 7] with reasonably long coherence times (of the order

of 1 µs [8, 9]) and that two-qubit entanglement can be produced [10, 11, 12, 13, 14]

and detected [15, 16, 17]. A current challenge is the generation of maximally entangled

states of more than two solid-state qubits, a powerful resource in quantum information

processing and communication. Numerous theoretical protocols for the preparation of

such states have been proposed [18, 19, 20] and very recently also some experimental

successes have been achieved. Indeed, tripartite interactions between two phase qubits

and a resonant cavity in circuit QED were demonstrated [21], as well as the generation

and detection of GHZ-class entanglement between three superconducting phase qubits

[22] and three charge qubits [23]. Quite often, the samples were designed with four

qubits to allow for future expansion of the multipartite entanglement generation schemes

[21, 22]. All these goals clearly highlight the need of theoretical analyses of the dynamics

of superconductive architectures on the basis of more realistic models, including the

effects of external environments which are unavoidably coupled to the systems under

study.

Indeed, every quantum system is coupled to one or more external environments.

Such a coupling may dramatically affect the predictions done under the hypothesis

of perfect isolation. When the external environment is included, the dynamics of the

open quantum system under study becomes non-unitary, and may suffer dissipation and

decoherence. In this context, the open system dynamics is usually described by means of

a Markovian master equation. Many master equations for interacting qubits have been

recently introduced in the literature, which may turn out to be useful for the study of

dissipative effects on multipartite entanglement [24, 25, 26, 27].

Very recently, in the framework of Josephson flux qubits, some of us have proposed

a scheme for the generation of multipartite entangled states [19]. This scheme operates

in such a way that, exploiting the sequential inductive interaction of each qubit with

one of them playing the role of an entanglement mediator, it generates an entangled W

state after a finite number of steps without requiring conditional measurements. Two

key requirements are the possibilities of both preparing the initial state of the qubits

and of switching on and off, at properly selected instant of times, the coupling constant

describing the interaction between each qubit and the mediator. The proposed scheme,

however, neglects the presence of external degrees of freedom.

In this paper we analyze the theoretical protocol presented in Ref. [19], focussing

in particular our attention on the case of three qubits. In our analysis we take into
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account from the very beginning the coupling between each qubit and the external

world by means of a generalization of a previous microscopic master equation for the

study of the dissipative dynamics of two coupled qubits [24].

The aim of this paper is twofold. On one hand we investigate the robustness of

the theoretical scheme against losses that, generally speaking, waste unitary scheme.

On the other hand, the study we develop allows us to give some insights on the

general problem of the choice of the effective master equation for the description of

open system dynamics. Indeed, while in this paper we propose to study the effects

of losses by means of a model microscopically derived, one may wonder what would

be the prediction of the phenomenological master equations which are usually adopted

in the literature on leaky coupled quantum systems. In particular, while our model

involves transitions between stationary states of the whole three-qubit system, the

phenomenological approach just describes those between the bare states of the system,

i.e., each transition involves one single qubit only. By means of a systematic comparison

between the predictions of these two models, we show that, while the models are actually

equivalent in the case of flat reservoir spectra, they give very different predictions in the

case of structured environments, so that a naive introduction of a phenomenological

model can be inappropriate.

The paper is organized as follows. In Sec. II we briefly describe the main features of

a tripartite flux qubit system and of a possible coupling scheme which allow us to control

at will the interaction between each flux qubit and one of them playing the role of a

mediator. We moreover give the microscopic master equation describing this tripartite

system. Section III is devoted to the solution of the master equation at zero temperature

whereas Sec. IV the analysis of the dynamics starting from appropriate initial conditions

exploiting both the microscopic and phenomenological approaches. Concluding remarks

are finally summarized in Sec. V.

2. The physical system and the microscopic Master equation

Let us begin by briefly illustrating the main features of the tripartite system sketched

in Fig. 1, extensively described in Ref. [19]. Two spatially separated flux qubits (named

2 and 3) are connected by tunable flux transformers to a third qubit (M) which plays

the role of an entanglement mediator.

Each qubit loop is interrupted by three Josephson junctions. Two of them are

characterized by the same Josephson energy EJ and the third one possesses a lower

Josephson energy αEJ , with α < 1. If the operating flux bias φ
(i)
x (i = M, 2, 3) applied by

a coil to each qubit is close to φ0/2, φ0 = h/2e being the flux quantum, a 3JJ qubit can be

described in terms of two quantum states |L(i)〉 and |R(i)〉 corresponding to a clockwise

and a counterclockwise supercurrent circulating in the loop, ±I
(i)
p = 2παE

(i)
J /φ0. In

other words, in such conditions it is possible to realize an effective two state system

whose Hamiltonian, in the basis of the energy eigenstates |0〉i = 1√
2
[|L(i)〉 + |R(i)〉] and

|1〉i = 1√
2
[|L(i)〉 − |R(i)〉], assumes the form H(i) = ωiσ

(i)
+ σ

(i)
− with σ

(i)
+ = |1〉i 〈0| and
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Figure 1. Schematic of the system setup.

σ
(i)
− = |0〉i 〈1|. Here the energy splitting ωi =

√
∆2

i + ε2
i , typically of the order of

5÷ 10 GHz, depends on the tunneling frequency ∆i between the two wells of the qubit

potential and on the corresponding asymmetry εi = 2I
(i)
p (φ

(i)
x − φ0/2). An inductive

coupling between the qubits 2 or 3 and the mediator M can be realized via the tunable

flux transformer described in Ref. [28]. As shown indeed by M. G. Castellano et al. [28]

it is possible to control the flux-transfer function R(φ
(i)
cx ), and therefore the inductive-

coupling constants, gM2 and gM3, by properly setting the critical current of the inner

dc-SQUID of each transformer via the additional bias fluxes φ
(2)
cx and φ

(3)
cx .

In this way we may turn on and off at will the coupling between each qubit and the

mediator, to realize as extensively discussed in Ref. [19], a unitary step-by-step scheme

which allows us to generate the following W state of the whole system:

|W 〉 =
1√
3

(
|100〉 − i |010〉 − i |001〉

)
. (1)

Here we want to investigate the effects of dissipation on this generation scheme caused

by environments. Let us start by briefly summarizing the scheme for the generation of

the state (1) starting from the initial condition |100〉 of the three qubits, in which only

the first qubit is excited, whereas the other two are in their ground states.

Calling M the first qubit and 2 and 3 the other two, the scheme consists of two

steps: in the first step the qubit M interacts for an interval of time τ1 with the qubit 2

and the qubit 3 evolves freely, while in the second step the qubit M interacts for a time τ2

with the qubit 3 and the qubit 2 evolves freely. The Hamiltonian models corresponding

to these two steps are respectively:

H1st =
∑

i=M,2,3

ωiσ
(i)
+ σ

(i)
− + gM2

(
σ

(M)
+ σ

(2)
− + σ

(M)
− σ

(2)
+

)
, (2)

and

H2nd =
∑

i=M,2,3

ωiσ
(i)
+ σ

(i)
− + gM3

(
σ

(M)
+ σ

(3)
− + σ

(M)
− σ

(3)
+

)
. (3)

The explicit expressions for the eigenstates of H1st (H2nd) denoted by |a〉 ⊗ |k〉3,
|b〉⊗|k〉3, |c〉⊗|k〉3 and |d〉⊗|k〉3 (|a′〉⊗|k〉2, |b′〉⊗|k〉2, |c′〉⊗|k〉2 and |d′〉⊗|k〉2), where

k = 0, 1, and the corresponding eigenvalues are given in the Appendix. During these

two steps, the three qubits suffer from environmental perturbations. We assume that
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each qubit interacts with a reservoir which is independent from the others, since the

three qubits are spatially separated, and we exploit the results presented in Ref. [24],

where a master equation for the evolution of two coupled qubits has been derived from a

microscopic Hamiltonian, following the standard approach [29]. More in detail, given the

Hamiltonian of a generic quantum system, the microscopically derived master equation,

in the Born-Markov and rotating wave approximations, describes jumps occurring

between the eigenstates of the Hamiltonian. Moreover in Ref. [24] the reservoirs are

assumed to be independent, which is justified in the case of spatially separated Josephson

qubits, since the noise in each device is due to impurities belonging to different parts of

the whole superconducting circuit.

Our idea is now to use the dissipator appearing in that paper to describe the

losses of the pair of coupled qubits both in the first and in the second step, while the

dissipation relative to the free i-th qubit (i is equal either to 2 or 3, depending on the

step considered) will be described as usual by terms like γi(σ
(i)
− ρσ

(i)
+ − 1

2
{σ(i)

+ σ
(i)
− , ρ}).

More in detail, exploiting the results presented in Ref.[24], in correspondence to the

first step we can write:

ρ̇ = −i[H1st, ρ] + DM2(ρ) + D3(ρ), (4)

while for the second step the master equation can be given as:

ρ̇ = −i[H2nd, ρ] + DM3(ρ) + D2(ρ). (5)

The two dissipators DM2 and DM3 describe the losses of the combined systems of qubits

M and 2, and qubits M and 3 respectively, and their structure can be directly obtained

starting from Ref. [24]. In particular the dissipator in Eq. (4) can be written as:

DM2(ρ) = cI

(
|a〉〈b|ρ(t)|b〉〈a| − 1

2
{|b〉〈b|, ρ(t)}

)

+cII

(
|a〉〈c|ρ(t)|c〉〈a| − 1

2
{|c〉〈c|, ρ(t)}

)

+cI

(
|b〉〈d|ρ(t)|d〉〈b| − 1

2
{|d〉〈d|, ρ(t)}

)

+cII

(
|c〉〈d|ρ(t)|d〉〈c| − 1

2
{|d〉〈d|, ρ(t)}

)

+c̄I

(
|b〉〈a|ρ(t)|a〉〈b| − 1

2
{|a〉〈a|, ρ(t)}

)

+c̄II

(
|c〉〈a|ρ(t)|a〉〈c| − 1

2
{|a〉〈a|, ρ(t)}

)

+c̄I

(
|d〉〈b|ρ(t)|b〉〈d| − 1

2
{|b〉〈b|, ρ(t)}

)

+c̄II

(
|d〉〈c|ρ(t)|c〉〈d| − 1

2
{|c〉〈c|, ρ(t)}

)

+ccr,I

(
|a〉〈b|ρ(t)|d〉〈c|+ |c〉〈d|ρ(t)|b〉〈a|

)
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+ccr,II

(
|a〉〈c|ρ(t)|d〉〈b| + |b〉〈d|ρ(t)|c〉〈a|

)

+c̄cr,I (|d〉〈c|ρ(t)|a〉〈b| + |b〉〈a|ρ(t)|c〉〈d|)

+c̄cr,II

(
|d〉〈b|ρ(t)|a〉〈c| + |c〉〈a|ρ(t)|b〉〈d|

)
, (6)

where |a〉, |b〉, |c〉 and |d〉 are given by Eqs. (A.1) in the Appendix. The decay rates

appearing in Eq. (6) are defined as:

cI = γI,M cos2 θ

2
+ γI,2 sin2 θ

2
, (7)

cII = γII,M sin2 θ

2
+ γII,2 cos2 θ

2
, (8)

ccr,I = γI,M cos2 θ

2
− γI,2 sin2 θ

2
, (9)

ccr,II = −γII,M sin2 θ

2
+ γII,2 cos2 θ

2
, (10)

where for brevity we have put γI,j = γj(ωI) and γII,j = γj(ωII), with

ωI =
1

2
(ωM + ω2) −

1

2

√
(ω2 − ωM)2 + g2

M2, (11)

the Bohr frequency relative to the transitions |d〉 → |c〉 and |b〉 → |a〉 and

ωII =
1

2
(ωM + ω2) +

1

2

√
(ω2 − ωM)2 + g2

M2, (12)

the Bohr frequency relative to the transitions |c〉 → |a〉 and |d〉 → |b〉. The functions

γj(ω) are the Fourier transforms of the bath correlation functions of the jth reservoir

(with j = M, 2, 3) [24], and are related to the j-th reservoir spectral density Jj(ω)

through the relation:

γj(ω) = Jj(ω)[1 + Nj(ω)], (13)

with Nj(ω) being the average number of photons in the mode of frequency ω. The

excitation rates c̄I , c̄II , c̄cr,I and c̄cr,II can be directly obtained from Eqs. (7)–(10)

correspondingly substituting γI,j by γ̄I,j = γI,j e−βjωI and γII,j by γ̄II,j = γII,j e−βjωII ,

with βj the inverse temperature of the j-th reservoir.

In the same way, the dissipator in Eq. (5) is given by:

DM3(ρ) = c′I

(
|a′〉〈b′|ρ(t)|b′〉〈a′| − 1

2
{|b′〉〈b′|, ρ(t)}

)

+c′II

(
|a′〉〈c′|ρ(t)|c′′〉〈a| − 1

2
{|c′〉〈c′|, ρ(t)}

)

+c′I

(
|b′〉〈d′|ρ(t)|d′〉〈b′| − 1

2
{|d′〉〈d′|, ρ(t)}

)

+c′II

(
|c′〉〈d′|ρ(t)|d′〉〈c′| − 1

2
{|d′〉〈d′|, ρ(t)}

)

+c̄′I

(
|b′〉〈a′|ρ(t)|a′〉〈b′| − 1

2
{|a′〉〈a′|, ρ(t)}

)
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+c̄′II

(
|c′〉〈a′|ρ(t)|a′〉〈c′| − 1

2
{|a′〉〈a′|, ρ(t)}

)

+c̄′I

(
|d′〉〈b′|ρ(t)|b′〉〈d′| − 1

2
{|b′〉〈b′|, ρ(t)}

)

+c̄′II

(
|d′〉〈c′|ρ(t)|c′〉〈d′| − 1

2
{|c′〉〈c′|, ρ(t)}

)

+c′cr,I

(
|a′〉〈b′|ρ(t)|d′〉〈c′| + |c′〉〈d′|ρ(t)|b′〉〈a′|

)

+c′cr,II

(
|a′〉〈c′|ρ(t)|d′〉〈b′| + |b′〉〈d′|ρ(t)|c′〉〈a′|

)

+c̄′cr,I

(
|d′〉〈c′|ρ(t)|a′〉〈b′| + |b′〉〈a′|ρ(t)|c′〉〈d′|

)

+c̄′cr,II

(
|d′〉〈b′|ρ(t)|a′〉〈c′| + |c′〉〈a′|ρ(t)|b′〉〈d′|

)
, (14)

where |a′〉, |b′〉, |c′〉 and |d′〉 are given by Eqs. (A.4) and:

c′I = γ′
I,M cos2 θ′

2
+ γ′

I,2 sin2 θ′

2
, (15)

c′II = γ′
II,M sin2 θ′

2
+ γ′

II,2 cos2 θ′

2
, (16)

c′cr,I = γ′
I,M cos2 θ′

2
− γ′

I,2 sin2 θ′

2
, (17)

c′cr,II = −γ′
II,M sin2 θ′

2
+ γ′

II,2 cos2 θ′

2
. (18)

The excitation rates c̄′I , c̄′II, c̄′cr,I and c̄′cr,II can be directly obtained from Eqs. (15)–(18)

correspondingly substituting γ′
I,j by γ̄′

I,j = γ′
I,j e−βjω′

I and γ′
II,j by γ̄′

II,j = γ′
II,j e−βjω′

II ,

where

ω′
I =

1

2
(ωM + ω3) −

1

2

√
(ω3 − ωM)2 + g2

M3, (19)

ω′
II =

1

2
(ωM + ω3) +

1

2

√
(ω3 − ωM)2 + g2

M3. (20)

Finally, we define the single qubit dissipators appearing in Eqs. (4) and (5)

D3(ρ) = γ3

(
σ

(3)
− ρσ

(3)
+ − 1

2
{σ(3)

+ σ
(3)
− , ρ}

)

+ γ̄3

(
σ

(3)
+ ρσ

(3)
− − 1

2
{σ(3)

− σ
(3)
+ , ρ}

)
, (21)

D2(ρ) = γ2

(
σ

(2)
− ρσ

(2)
+ − 1

2
{σ(2)

+ σ
(2)
− , ρ}

)

+ γ̄2

(
σ

(2)
+ ρσ

(2)
− − 1

2
{σ(2)

− σ
(2)
+ , ρ}

)
, (22)

where γ3 = γ3(ω3) and γ2 = γ2(ω2) (γ̄3 = γ3 e−βjω3 and γ̄2 = γ2 e−βjω2) are the decay

(excitation) rates of the qubits 3 and 2, which evolve freely during the first and second

step, respectively.
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Having at our disposal the master equation microscopically derived, we can analyze

the dynamics of the system putting into evidence the effects of the presence of the

external world on the generation of W states. In addition, the knowledge of such a

master equation gives us the possibility to test the validity of phenomenological master

equations generally used to describe physical systems like the one examined in the

present paper. A phenomenological approach would suggest us to adopt the following

equation to describe the dynamics of the system under scrutiny

ρ̇ = −i[H, ρ] +
∑

i=M,2,3

γi

(
σ

(i)
− ρσ

(i)
+ − 1

2
{σ(i)

+ σ
(i)
− , ρ}

)

+
∑

i=M,2,3

γ̄i

(
σ

(i)
+ ρσ

(i)
− − 1

2
{σ(i)

− σ
(i)
+ , ρ}

)
, (23)

where H is equal to either H1st or H2nd depending on the step considered, while the

dissipator is the same for both steps. In what follows we refer to Eq. (23) as the

phenomenological master equation.

3. Solution of the microscopic model at zero temperature

From now on, we will call a microscopic model the set of master equations (4) and (5),

while we will call a phenomenological model the master equation (23).

Let us start with the microscopic model. We will focus on the zero-temperature

case, i.e., we will put all the excitation rates equal to zero. The initial state we consider

is |100〉, which, in terms of the eigenstates of the first step corresponds to a density

operator where the only nonzero matrix elements are between |b0〉 and |c0〉

|100〉〈100| =
(

cos
θ

2
|b〉 + sin

θ

2
|c〉

)(
cos

θ

2
〈b| + sin

θ

2
〈c|

)
⊗ |0〉3〈0|

=

(
cos

θ

2
|b0〉 + sin

θ

2
|c0〉

) (
cos

θ

2
〈b0| + sin

θ

2
〈c0|

)
. (24)

Thus the only differential equations of interest, derivable from the master equation (4),

are the following ones:

ρ̇c0,c0 = γ3ρc1,c1 − cIIρc0,c0,

ρ̇c1,c1 = −(γ3 + cII)ρc1,c1, (25)

ρ̇b0,b0 = γ3ρb1,b1 − cIρb0,b0,

ρ̇b1,b1 = −(γ3 + cI)ρb1,b1, (26)

ρ̇a0,a0 = γ3ρa1,a1 + cIρb0,b0 + cIIρc0,c0,

ρ̇a1,a1 = −γ3ρa1,a1 + cIρb1,b1 + cIIρc1,c1, (27)
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ρ̇b0,c0 =

(
iωcb −

cI + cII

2

)
ρb0,c0 + γ3ρb1,c1,

ρ̇b1,c1 =

(
iωcb − γ3 −

cI + cII

2

)
ρb1,c1, (28)

where ωcb = Ec − Eb.

Solving these equations, we are able to demonstrate that at t = τ1, namely at the

end of the first step, the state of the system reads as

ρ(τ1) = ρa0,a0(τ1)|a0〉〈a0| + ρb0,b0(τ1)|b0〉〈b0| + ρc0,c0(τ1)|c0〉〈c0|
+ ρb0,c0(τ1)|b0〉〈c0| + ρ∗

b0,c0(τ1)|c0〉〈b0|, (29)

where

ρc0,c0(τ1) = ρc0,c0(0) e−cII τ1 , (30)

ρb0,b0(τ1) = ρb0,b0(0) e−cI τ1 , (31)

ρa0,a0(τ1) = 1 − ρb0,b0(0) e−cI τ1 − ρc0,c0(0) e−cII τ1 , (32)

ρb0,c0(τ1) = ρb0,c0(0) e(iωcb−
cI+cII

2 ) τ1 . (33)

The state described by Eq. (29) represents the initial condition for step 2. In the basis

of the eigenstates of the Hamiltonian (3), it reads:

ρ(τ1) = ρa′0,a′0(τ1)|a′0〉〈a′0| + ρb′0,b′0(τ1)|b′0〉〈b′0| + ρc′0,c′0(τ1)|c′0〉〈c′0|
+ ρa′1,a′1(τ1)|a′1〉〈a′1| + ρb′0,c′0(τ1)|b′0〉〈c′0| + ρ∗

b′0,c′0(τ1)|c′0〉〈b′0|
+ ρb′0,a′1(τ1)|b′0〉〈a′1| + ρ∗

b′0,a′1(τ1)|a′1〉〈b′0| + ρc′0,a′1(τ1)|c′0〉〈a′1|
+ ρ∗

c′0,a′1(τ1)|a′1〉〈c′0|, (34)

where

ρa′1,a′1(τ1) = ρb0,b0(τ1) sin2 θ

2
+ ρc0,c0(τ1) cos2 θ

2

− 2 Re[ρb0,c0(τ1)] sin
θ

2
cos

θ

2
, (35)

ρc′0,c′0(τ1) = ρb0,b0(τ1) cos2 θ

2
sin2 θ′

2
+ ρc0,c0(τ1) sin2 θ

2
sin2 θ′

2

+ 2 Re[ρb0,c0(τ1)] sin
θ

2
cos

θ

2
sin2 θ′

2
, (36)

ρb′0,b′0(τ1) = ρb0,b0(τ1) cos2 θ

2
cos2 θ′

2
+ ρc0,c0(τ1) sin2 θ

2
cos2 θ′

2

+ 2 Re[ρb0,c0(τ1)] sin
θ

2
cos

θ

2
cos2 θ′

2
, (37)

ρa′0,a′0(τ1) = ρa0,a0(τ1), (38)

ρb′0,c′0(τ1) =
(
ρb0,b0(τ1) cos2 θ

2
+ ρc0,c0(τ1) sin2 θ

2

+ 2 Re[ρb0,c0(τ1)] sin
θ

2
cos

θ

2

)
sin

θ′

2
cos

θ′

2
, (39)
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ρb′0,a′1(τ1) = [−ρb0,b0(τ1) + ρc0,c0(τ1)] sin
θ

2
cos

θ

2
cos

θ′

2

+ ρb0,c0(τ1) cos2 θ

2
cos

θ′

2
− ρ∗

b0,c0(τ1) sin2 θ

2
cos

θ′

2
, (40)

ρc′0,a′1(τ1) = [−ρb0,b0(τ1) + ρc0,c0(τ1)] sin
θ

2
cos

θ

2
sin

θ′

2

+ ρb0,c0(τ1) cos2 θ

2
sin

θ′

2
− ρ∗

b0,c0(τ1) sin2 θ

2
sin

θ′

2
. (41)

Starting from this initial condition, it is straightforward to see that the only

differential equations of interest, derivable from the master equation (5), describing

the dynamics of the system during the second step at T = 0 K, are

ρ̇c′0,c′0 = γ2ρc′1,c′1 − c′IIρc′0,c′0,

ρ̇c′1,c′1 = − (γ2 + c′II) ρc′1,c′1, (42)

ρ̇b′0,b′0 = γ2ρb′1,b′1 − c′Iρb′0,b′0,

ρ̇b′1,b′1 = − (γ2 + c′I) ρb′1,b′1, (43)

ρ̇a′0,a′0 = γ2ρa′1,a′1 + c′Iρb′0,b′0 + c′IIρc′0,c′0,

ρ̇a′1,a′1 = − γ2ρa′1,a′1 + c′Iρb′1,b′1 + c′IIρc′1,c′1, (44)

for the populations and for the coherences

ρ̇c′0,a′1 = −
(

iω′
II − ω2 +

γ2 + c′II

2

)
ρc′0,a′1 + c′cr,Iρd′0,b′1,

ρ̇d′0,b′1 = −
(

iω′
II + ω2 +

γ2 + 2c′I + c′II

2

)
ρd′0,b′1, (45)

ρ̇b′0,a′1 = −
(

iω′
I + ω2 +

γ2 + c′I
2

)
ρb′0,a′1 + c′cr,IIρd′0,c′1,

ρ̇d′0,c′1 = −
(

iω′
I + ω2 +

γ2 + c′I + 2c′II

2

)
ρd′0,c′1, (46)

ρ̇b′0,c′0 =

(
iωc′b′ −

c′I + c′II

2

)
ρb′0,c′0 + γ2ρb′1,c′1,

ρ̇b′1,c′1 =

(
iωc′b′ − γ2 −

c′I + c′II

2

)
ρb′1,c′1, (47)
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where ωc′b′ = E ′
c − E ′

b. Also in this case, it is possible to verify that the solutions of

these differential equations are given by

ρa′1,a′1(t) = ρa′1,a′1(τ1) e−γ2 (t−τ1), (48)

ρc′0,c′0(t) = ρc′0,c′0(τ1) e−c′II (t−τ1), (49)

ρb′0,b′0(t) = ρb′0,b′0(τ1) e−c′I (t−τ1), (50)

ρa′0,a′0(t) = 1 − ρb′0,b′0(τ1) ec′I (t−τ1) − ρc′0,c′0(0) ec′II (t−τ1)

− ρa′1,a′1(τ1) e−γ2 (t−τ1), (51)

ρc′0,a′1(t) = ρc′0,a′1(τ1) e

„
−iω′

II+iω2−
γ2+c′II

2

«
(t−τ1)

, (52)

ρb′0,a′1(t) = ρb′0,a′1(τ1) e

„
−iω′

I+iω2−
γ2+c′I

2

«
(t−τ1)

, (53)

ρb′0,c′0(t) = ρb0,c0(τ1) e

„
iωc′b′−

c′I+c′II
2

«
(t−τ1)

. (54)

At this point it is convenient to write the density matrix describing the system

during the second step, i.e. at a generic instant of time t > τ1 in the basis of the qubits

eigenstates {|klm〉} ≡ {|k〉1 ⊗ |l〉2 ⊗ |m〉3} with k, l, m = 0, 1:

ρ(t) = ρ000,000(t)|000〉〈000| + ρ100,100(t)|100〉〈100| + ρ010,010(t)|010〉〈010|
+ ρ001,001(t)|001〉〈001| + ρ100,010(t)|100〉〈010| + ρ∗

100,010(t)|010〉〈100|
+ ρ100,001(t)|100〉〈001| + ρ∗

100,001(t)|001〉〈100| + ρ001,010(t)|001〉〈010|
+ ρ∗

001,010(t)|010〉〈001|, (55)

where

ρ000,000(t) = ρa′0,a′0(t), (56)

ρ100,100(t) = ρb′0,b′0(t) cos2 θ′

2
+ ρc′0,c′0(t) sin2 θ′

2

+ 2 Re[ρb′0,c′0(t)] sin
θ′

2
cos

θ′

2
, (57)

ρ010,010(t) = ρa′1,a′1(t), (58)

ρ001,001(t) = ρb′0,b′0(t) sin2 θ′

2
+ ρc′0,c′0(t) cos2 θ′

2

− 2 Re[ρb′0,c′0(t)] sin
θ′

2
cos

θ′

2
, (59)

ρ100,010(t) = ρb′0,a′1(t) cos
θ′

2
+ ρc′0,a′1(t) sin

θ′

2
, (60)
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ρ100,001(t) = [−ρb′0,b′0(t) + ρc′0,c′0(t)] sin
θ′

2
cos

θ′

2

+ ρb′0,c′0(t) cos2 θ′

2
− ρ∗

b′0,c′0(t) sin2 θ′

2
, (61)

ρ001,010(t) = −ρb′0,a′1(t) sin
θ′

2
+ ρc′0,a′1(t) cos

θ′

2
. (62)

From Eqs. (55)–(62) one can obtain all the information about the effects of dissipation

on the system dynamics.

4. The system dynamics: microscopic and phenomenological approaches

Exploiting the results obtained in the previous section, we now analyze the effects of

the reservoirs on the generation of the W state given in Eq. (1). In what follows we

assume gM2 = gM3 and ωM = ω2 = ω3 = 10gM2, which are typical values for the current

superconducting technology [30].

The scope of the analysis will be twofold. On one hand we want to point out how

the losses affect the scheme for the generation of the W state. On the other hand, we

want to compare the predictions of our model given by Eqs. (4)-(5) with those predicted

by the phenomenological model in Eq. (23), in order to understand the limits of validity

of the latter. We calculate the fidelity F = 〈W |ρ(τ1, τ2)|W 〉 of the density matrix of the

system at the time t = τ1 + τ2 with respect to the target state |W 〉 in Eq. (1). Figure 2

displays the time dependence of this function with respect to the durations τ1 and τ2 of

the two steps of the generation scheme. The maximum of the fidelity, which is around

0.76, is calculated by considering decay rates of the order of 0.1gM2 and corresponds

to a choice of times very close to that in Ref. [19], i.e., τ̄1 = 2g−1
M2 arcsin(1/

√
3) and

τ̄2 = 2g−1
M3 arccos(1/

√
2). As foreseeable the interaction of each qubit with the reservoir

significantly affects the W-state generation scheme. For this reason, even if for some

purposes a value of 75% can be reasonable, it can be of interest to identify the state

reached at the time instants considered. A reasonable guess would be to assume that,

at the time instants τ̄1 = 2g−1
M2 arcsin(1/

√
3) and τ̄2 = 2g−1

M3 arccos(1/
√

2) the state is

described by a Werner-like state ρW = p|000〉〈000| + (1 − p)|W 〉〈W |, where p is the

(time-dependent) probability that at t = τ̄1 + τ̄2 the system is found in its ground

state |000〉 [31]. In order to verify that this is indeed the case, we calculate the

fidelity F (τ̄1, τ̄2) = Tr
(√√

ρW ρ(τ̄1, τ̄2)
√

ρW

)
, finding that it is about 0.98. We may

thus conclude that, when dissipative effects are not negligible, the step-by-step scheme

described in Ref. [19] can be exploited to generate the Werner-like state ρW instead of

the W state defined in Eq. (1).

Since one can wonder how the predictions change if one uses the phenomenological

model to describe losses, let us now compare the predictions of the microscopic model

just analyzed and the numerical solution of the phenomenological master equation (23).

A good measure of the discrepancy between the predictions of the two models is the
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Figure 2. Dependence of the fidelity F on the durations of the two steps τ1 and τ2.
Here ωM = ω2 = ω3 = 10gM2, the decay rates are of the order of 0.1gM2 and the times
are in units of g−1

M2 = g−1
M3.

trace distance [32]

D(ρmic, ρphen) =
1

2
Tr(|ρmic − ρphen|), (63)

which quantifies the imbalance between the probability distributions described by

the states ρmic, predicted by the microscopic model, and ρphen, predicted by the

phenomenological one.

We choose the same Lorentzian shape for the spectra of the three reservoirs

J(ω) =
γ0 λ2

(ω − ω0)2 + λ2
(64)

with ω0 = ωM = ω2 = ω3. For very large values of the width λ one recovers the

results for flat spectrum and the decay rates are all equal to the qubit-reservoir coupling

constant γ0. We calculate the trace distance (63) for two cases: a) λ = 1000 gM2

and γ0 = 0.1gM2, which corresponds to losses with flat spectrum; b) λ = 0.01 gM2

and γ0 = 0.1gM2, which corresponds to losses for a very structured reservoir. Numerical

simulations of the phenomenological model in the first case (not shown in figures), clearly

demonstrate that, when the spectra of the reservoirs are equal and flat, the distance

between the two states is very small. Therefore the effect of losses are essentially the

same for both models, so that we may claim that the microscopically derived master

equation is equivalent to the phenomenological one in such a case. A similar conclusion

was previously found in the context of cavity-QED, where a phenomenological model

of cavity losses, with the dissipative part of the master equation depending only on

the single-mode operators, turns out to be microscopically justifiable in the case of flat

reservoir spectrum [33, 34].

In the second case of structured spectrum, instead, the values of the decay rates are

very sensitive to the Bohr frequencies at which they are evaluated. As a consequence, as

shown in Fig. 3, the trace distance between the states predicted by the phenomenological

and microscopic models can reach very large values. In order to understand the origin

of the large distance between the states predicted in this last case, one can look at
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Figure 3. Distance between the microscopically and phenomenologically derived
states for λ = 0.01gM2 and γ0 = 0.1gM2 as a function of τ1 and τ2. The times
are in units of g−1

M2 = g−1
M3.

the dynamical behavior of the populations of the states of the system predicted by the

two models. Figures 4 (a), (b) and (c) show, as a function of the interaction times τ1

and τ2, the populations of the states |000〉, |010〉 and |001〉, correspondingly, calculated

exploiting the phenomenological (top) and the microscopic (bottom) models.

From Fig. 4(a) it is clear that, while in the phenomenological model (top), all

the excitations decay exponentially with the same rate with respect to both τ1 and

τ2, in the microscopic model (bottom) the role of the two interaction times is very

asymmetric: indeed, by varying the duration τ1 of the first step, one obtains initial

states for the second step characterized by very different decay rates, so that some

excitation is trapped or not in the system according to the value of τ1.

Consider now the decay properties of the population of the state |010〉 for the the

phenomenological and microscopic models. Figure 4(b) (bottom) in particular shows

that, depending on the choice of τ1, the initial condition of the second step oscillates

with almost no damping, and then the state decays with the single-qubit decay rate.

As far as the decay properties of the state |001〉 are concerned, Figs. 4 (c) show

that, while in the phenomenological model the oscillations between qubits M and 3 decay

rapidly, in the microscopic model the oscillations are conserved for much longer times:

this is due to the fact that in the microscopic model the decay rates are proportional

to the value of the spectrum at the Bohr frequencies between dressed states, as one can

see from Eqs. (13)–(12) and (15)–(20), and therefore, for the spectrum chosen in our

example, they are much smaller than the decay rates in the phenomenological model,

which are proportional to the value of the spectrum at the single-qubit frequencies, i.e.,

to its maximum. More in detail, for the spectrum and the value of λ we are considering

here (namely λ = 0.01gM2), the single qubit decay rate is equal to γ0 = 0.1gM2,

while it is straightforward to show that the decay rates of the states involving the

second qubit in the first step are equal to J(ωI) ' J(ωII) ' 0.4 · 10−4gM2. The very

small decay rates for the states involving the second qubit in the first step give rise

to phenomena of population trapping, whose consequence is the conservation of the
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Figure 4. Populations of states (a) |000〉, (b) |010〉 and (c) |100〉 calculated by
the phenomenological (top) and microscopic (bottom) models with λ = 0.01gM2 and
γ0 = 0.1gM2, as functions of the interaction times τ1 and τ2 (in units of g−1

M2 = g−1
M3).

population oscillations with respect to the interaction time τ1 in Fig. 4(b) (bottom).

This point is analogous to what was previously found during the study of a microscopic

non-Markovian model for cavity losses in cavity-QED [35].

5. Conclusions

In this paper, we have analyzed the effects of losses on a scheme of generation of

multipartite entanglement. At the time instants of interest, the fidelity between the

actual state of the system and the target state |W 〉 is about 75%. The deviation from

unity can simply be understood as due to the fact that the system has decayed to the

ground state |000〉. Thus, the scheme becomes a protocol aimed at the generation of a

Werner-like state ρW = P |000〉〈000|+ (1− P ) |W 〉〈W |. We wish to underline that this

statement is true when we consider a flat spectrum at T = 0 K.

Moreover, the comparison between our microscopic model and a naiver but more

popular phenomenological master equation has given us an occasion to understand the

limit of a phenomenological approach in the context of our problem. In fact, we found

that the predictions of the phenomenological and the microscopic approaches do not

differ much when the spectra of the reservoirs are flat. However, when the reservoirs

are structured the two models predict very different results, and in the microscopic

model, the population trapping phenomena can occur, due to the very different values

of the various decay rates involved, which cannot be predicted by the phenomenological

master equation. This is an example in which the phenomenological model can lead to
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very different phenomena from those predicted by the master equation derived from the

microscopic Hamiltonian.

Of course, at this stage of our study of structured reservoirs, we have only considered

effects which occur at times much longer than the correlation times of the reservoirs.

When this is not the case, a more complete non-Markovian theory must be adopted, for

instance by means of a time-convolutionless master equation. In this case, the various

decay rates would be time dependent, and would become stationary, and proportional

to the value of the spectra at the relevant Bohr frequencies, only at times much longer

than the memory times of the baths. This issue, as well as the study of other sources of

noise typical of Josephson junctions, such as 1/f and single impurity noise, will be the

subject of future work.
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Appendix A.

In this Appendix, we list the eigenstates and eigenvalues of the Hamiltonians (2) and (3),

corresponding to the first and second steps, respectively. Both sets of eigenstates and

eigenvalues can be obtained by a straightforward diagonalization of the Hamiltonians.

The eigenstates of the Hamiltonian (2) are |a〉 ⊗ |k〉3, |b〉 ⊗ |k〉3, |c〉 ⊗ |k〉3 and

|d〉 ⊗ |k〉3, where k = 0, 1 and

|a〉 = |0M 02〉,

|b〉 = cos
θ

2
|1M 02〉 − sin

θ

2
|0M 12〉,

|c〉 = sin
θ

2
|1M 02〉 + cos

θ

2
|0M 12〉,

|d〉 = |1M 12〉, (A.1)

with

sin θ =
|gM2|√

(ω2 − ωM)2 + g2
M2

, cos θ =
|ω2 − ωM |√

(ω2 − ωM)2 + g2
M2

. (A.2)

The corresponding eigenvalues are

Ea = 0,

Eb =
1

2
(ωM + ω2) −

1

2

√
(ω2 − ωM)2 + g2

M2,

Ec =
1

2
(ωM + ω2) +

1

2

√
(ω2 − ωM)2 + g2

M2,

Ed = ωM + ω2. (A.3)
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Similarly, the eigenstates of the Hamiltonian (3) are expressed as |a′〉 ⊗ |k〉2,
|b′〉 ⊗ |k〉2, |c′〉 ⊗ |k〉2 and |d′〉 ⊗ |k〉2, where k = 0, 1 and

|a′〉 = |0M 03〉,

|b′〉 = cos
θ′

2
|1M 03〉 − sin

θ′

2
|0M 13〉,

|c′〉 = sin
θ′

2
|1M 03〉 + cos

θ′

2
|0M 13〉,

|d′〉 = |1M 13〉, (A.4)

with

sin θ′ =
|gM3|√

(ω3 − ωM)2 + g2
M3

, cos θ′ =
|ω3 − ωM |√

(ω3 − ωM)2 + g2
M3

. (A.5)

The corresponding eigenvalues are

Ea′ = 0,

Eb′ =
1

2
(ωM + ω3) −

1

2

√
(ω3 − ωM)2 + g2

M3,

Ec′ =
1

2
(ωM + ω3) +

1

2

√
(ω3 − ωM)2 + g2

M3,

Ed′ = ωM + ω3. (A.6)
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