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Semi-local Total Variation for Regularization of
Inverse Problems

Laurent Condat

Abstract— We propose the discrete semi-local total variation
(SLTV) as a new regularization for inverse problems in imaging.
We show that the corresponding optimization problems can be
efficiently solved by a primal-dual algorithm, which is easyto
implement. The SLTV favors piecewise linear images, so that
the main drawback of the total variation, its clustering effect, is
avoided.

Index Terms— total variation, non-local regularization, inverse
problems, convex optimization, primal-dual splitting, proximal
operator

I. I NTRODUCTION

We investigate the use of a regularization functional which
extends the popular total variation with non-local correlation
terms, for the problem of image denoising and beyond it, to
handle general inverse problems of imaging. Indeed, many
image processing problems can be formalized as the recovery
of an imageu = (u[k])k∈Z2 from noisy linear measurements

b = Au + ε (1)

where ε is a realization of noise. The linear operatorA
typically accounts for some blurring or sub-sampling so that
the recovery ofu from b is an ill-posed inverse problem. One
classical way to seek a solution is to rely on regularization.
That is, we solve the variational problem

û = argmin
v

J (v) +
λ

2
‖Av − b‖2, (2)

where the parameterλ controls the tradeoff between the fit to
the data and the prior knowledge thatJ (u) is small for the
class of images considered. We can note that the choice of the
best value ofλ given b and the noise variance is a problem
by itself [1]–[3].

When there is no noise, some problems, typically interpo-
lation problems, require to solve

û = argmin
v

J (v) s.t. Av = b. (3)

We note that the minimizer of (2) or (3) is not necessarily
unique, depending on the kernel of the operatorA.

Tikhonov regularization consists in choosing the quadratic
penalty J (v) = ‖∇v‖2

ℓ2
, which yields a linear solution.

The drawback of this simple model is over-smoothing of the
textures and edges for natural images. Another popular penalty
is (isotropic) total variation (TV), first introduced for denoising
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in [4] and then applied to many inverse problems [5]. In the
discrete setting,

JTV(v) = ‖∇v‖ℓ1 =
∑

k∈Z2

‖∇v[k]‖2 (4)

with

∇v[k] =
[

v[k1 + 1, k2] − v[k], v[k1, k2 + 1] − v[k]
]T

. (5)

and‖a‖2 =
√

|a1|2 + |a2|2. Note that boldface letters denote
vectors throughout the paper, e.g.k = [k1, k2]

T ∈ Z
2. TV

regularization yields images with sharp edges but the textures
are still over-smoothed, there are staircasing effects andthe
pixel values in smooth regions are clustered in piecewise
constant areas, which gives an unpleasant synthetical lookto
the reconstructed images.

To overcome the drawbacks of methods based on the
interactions of local pixel values solely, non-local methods
have become increasingly popular. Nonlocal image denoising
based on patch-distances was proposed by Buadeset al. [6].
This non-local averaging shares similarities with patch-based
computer graphics synthesis [7], [8]. Non-local filtering can be
understood as a quadratic regularization based on a non-local
graph [9]–[11]. This quadratic regularization can be extended
to non-smooth energies such as the TV on graphs, which has
been defined over the continuous domain by Gilboaet al. [12]
and over the discrete domain by Zhou and Schölkopf [13].
Elmoatazet al. [14] consider a larger class of non-smooth
energies involving ap-laplacian forp < 2.

Expressed in the discrete setting, the non-local functional
of Gilboa et al. [12], [15] can be written as

JNL(v) =
∑

k∈Z2

∑

l∈Z2

φ(|v[k] − v[l]|)w(k, l) (6)

for a positive convex functionφ. The positive and symmetric
weight functionw(k, l) can be understood as the proximity of
the image features at locationsk andl. Its choice is critical. It
can be obtained based on patch distances like in the Non-local
means denoising method, from a first estimate of the image
u obtained by solving (2) with Tikhonov regularization; or it
can be defined implicitely from the geometry ofv and updated
iteratively at the same time as the solution [16].

In this work, we focus instead on a functional similar
to (6) but based on gradient differences instead of pixel
values differences and without the introduction of the weight
function, which is difficult to determine. The functional isas
follows:

JSLTV(v) =
∑

k∈Z2

∑

l∈Z2 | l−k∈Ω

‖∇v[k] −∇v[l]‖2 (7)
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for some set of pixelsΩ ⊂ Z
2. JSLTV is semi-local, since the

gradient is compared to other gradients in its neighborhood.
This functional was proposed and studied in the continuous
domain by Kindermannet al. [17], as a semi-local extension
of the total variation. SinceJSLTV(v) = 0 if v represents
an affine function, it is expected that the minimization of
JSLTV will favor piecewise affine functions over piecewise
constant ones, avoiding staircasing. This has been confirmed
by experiments in [17].

In this work, we propose an efficient method to solve the
problems (2) and (3) withJ = JSLTV, to exploit the potential
of this functional and show that it provides superior perfor-
mances over the total variation. In [17], the computation was
done by an explicit Euler method for the steepest descent flow
of the problem (2). It is known that this optimization approach
is particularly slow. Moreover, in [17],‖a‖2 is replaced by
√

a2
1 + a2

2 + β for a smallβ > 0 in the expression (7), to make
the problem (2) differentiable. To solve (2) withJ = JNL

and in the specific case of denoising (A = Id) Gilboa
and Osher in [15] extended the dual algorithm developed by
Chambolle for TV denoising [18]. A split-Bregman approach
was also developed in [19]. However, these methods cannot
be extended to the case of inverse problems withA 6= Id.
In [16], a forward-backward splitting method is introduced
to solve (2) withJ = JNL, but this is an iterative method
with a non-local denoising problem to solve at each iteration,
which is computationally expensive. Recently, a breakthrough
in the field of convex optimization has appeared under the
form of new primal-dual methods proposed independently by
several authors [20]–[22]. To our knowledge, the primal-dual
framework of Chambolleet al. [20] outperforms all other
methods when solving (2) or (3) withJTV [5], [20]. In this
work, we show that this primal-dual framework is particularly
adequate to solve (2) or (3) with the functionalJSLTV and an
arbitrary operatorA. We detail the new algorithms in Sect. II
and show some examples of applications in Sect. III.

II. A G ENERIC PRIMAL -DUAL ALGORITHM FOR

SEMI-LOCAL TV M INIMIZATION

The two problems (2) and (3) can both be formulated under
the form

û = argmin
v

J (v) + F2(v) (8)

whereF2(v) = λ
2 ‖Av − b‖2 in (2) andF2(v) = ıAv=b(v) in

(3), where we introduce the indicator function of a property
P (v) as

ıP (v)(v) =

{

0 if P (v) is satisfied
+∞ else.

(9)

J and F2 are convex functions, but they are not differ-
entiable, which rules out conventional smooth optimization
techniques. Therefore, efficient optimization techniquesto
solve (8) proceed bysplitting, in that the functionsJ andF2

are used individually. They are calledproximal because each
nonsmooth function is involved via itsproximity operator. The
proximity operator of a functionalG is defined by

proxG(x) = argmin
y

G(y) +
1

2
‖x − y‖2. (10)

We refer the reader to the excellent review article [23] for
an introduction to proximal splitting methods. The classical
splitting methods, like the forward-backward method, can be
used to solve (8), but they involve the computation ofproxJ ,
which amounts to solve a denoising problem, at each iteration.
Thus, they are computationally expensive. Recently [20], the
following generic problem was studied:

û = argmin
v

F1(Kv) + F2(v) (11)

for some convex functionalsF1 andF2 and linear operatorK.
We define the Fenchel conjugateG∗ of a functionalG by [23]

G∗(x) = sup
y

〈x, y〉 − G(y). (12)

Then, the generic algorithm presented in [20] to solve (11) is
as follows:

First order primal-dual algorithm
1. Chooseδ, τ > 0 such thatδτ‖K‖2 ≤ 1 and the initial
estimateu(0), seta := (0)k∈Z2 , ū(0) := u(0), n := 0.
2. Iterate until stopping criterion is met
3. a

(n+1/2) := a
(n) + δKū(n)

4. a
(n+1) := proxδF∗

1

(a(n+1/2))

5. u(n+1/2) := u(n) − τK∗
a

(n+1)

6. u(n+1) := proxτF2
(u(n+1/2))

7. ū(n+1) := 2u(n+1) − u(n)

8. n := n + 1

u(n) converges to a minimizer̂u of (11) asn → +∞.

Now, the problem (8) withJ = JSLTV can exactly be
recast in the form (11). For this, letN = |Ω| be the number
of pixels in Ω andm1, . . . ,mN ∈ Z

2 be the elements ofΩ.
Then,K(v) = a with

a[k]i = ∇v[k]−∇v[k+mi] ∈ R
2, ∀k ∈ Z

2, ∀i = 1, . . . , N
(13)

and

F1(a) =
∑

k∈Z2

N
∑

i=1

‖a[k]i‖2. (14)

We also haveK∗(a) = v with, for everyk ∈ Z
2,

v[k] =
N

∑

i=1

a[k1 − 1, k2]i,1 − a[k]i,1 −

a[k1 − mi,1 − 1, k2 − mi,2]i,1 +

a[k1 − mi,1, k2 − mi,2]i,1 +

a[k1, k2 − 1]i,2 − a[k]i,2 − (15)

a[k1 − mi,1, k2 − mi,2 − 1]i,2 +

a[k1 − mi,1, k2 − mi,2]i,2.

Then, we have to make explicit the proximal operators of
δF∗

1 and τF2. For F2(v) = λ
2 ‖Av − b‖2, it is easy to show

that

proxτF2
(v) = (Id + λτA∗A)−1(v + λτA∗b). (16)
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Fig. 1. In grey, the pixels of the setsΩ1 (a) andΩ4 (b).

Note that ifAA∗ = Id, which is the case for some interpo-
lation problems, (16) simplifies to

proxτF2
(v) = (Id −

λτ

1 + λτ
A∗A)(v + λτA∗b) (17)

= v +
λτ

1 + λτ
A∗(b −Av). (18)

In the case where it is not convenient to apply the operator
(Id +λτA∗A)−1 in (16), it is possible to modify the primal-
dual algorithm so that only the operatorsA and A∗ are
required, see [20, eq. (74)].

When a functional is an indicator functionıP , its proximity
operator is the orthogonal projection onto the set{v | P (v)}.
Therefore, whenF2(v) = ıAv=b(v), we have

proxτF2
(v) = v + A+(b −Av), (19)

whereA+ is the Moore-Penrose pseudo-inverse ofA. If AA∗

is invertible, thenA+ = A∗(AA∗)−1.
We now determine the proximity operator ofδF∗

1 . For this,
we define the property

P (a) ≡ sup
k∈Z2

max
i=1,...,N

‖a[k]i‖2 ≤ 1 (20)

Then, we have

ı∗P (a)(a) = sup
b

〈a,b〉 − ıP (b)(b) (21)

= sup
0<ρ≤1

sup
b | sup

k∈Z2 maxi=1,...,N ‖b[k]i‖2=ρ

〈a,b〉

(22)

= sup
0<ρ≤1

ρ
∑

k∈Z2

N
∑

i=1

‖a[k]i‖2 (23)

=
∑

k∈Z2

N
∑

i=1

‖a[k]i‖2 = F1(a). (24)

Thus, ı∗P = F1. The bi-conjugate relationG∗∗ = G yields
δF∗

1 = δıP = ıP . Therefore,proxδF∗

1

is the orthogonal
projection

proxδF∗

1

(a) = b with b[k]i =
a[k]i

‖a[k]i‖2
, ∀k ∈ Z

2, ∀i = 1, . . . , N.

(25)
The last point to discuss is the choice of the setΩ in

the definition of the semi-local TV. We remark that ifΩ is
symmetric, (7) can be rewritten as

JSLTV(v) = 2
∑

k∈Z2

∑

l∈Z2 | l−k∈Ω,l<k

‖∇v[k] −∇v[l]‖2,

(26)
wherel < k is understood in the lexicographic order. There-
fore, we can chooseΩ as half of a symmetric set. This is

advantageous because the size of the memory buffer for the
dual variablea and the computation time are proportional to
the sizeN = |Ω| of Ω.

OnceΩ has been chosen, we can compute the operator norm
‖K‖, which is necessary to choose the time stepsδ, τ in the
algorithm. We have‖K‖2 = ‖K∗K‖ andK∗K is a linear shift-
invariant operator on images; that is, it corresponds to a con-
volution:K∗K(v) = v ∗h for some filterh. Hence,‖K∗K‖ =

sup
ω∈[−π,π]2 ĥ(ω), whereĥ(ω) =

∑

k∈Z2 h[k]e−jω
T
k is the

Fourier transform ofh. For the two setsΩ1 andΩ4 depicted
in Fig. 1, we have‖K‖2 = 64 and‖K‖2 ≈ 325.63. In all our
experiments withJSLTV, for pixel values in the range[0, 255],
we choseτ = 0.1 andδ = 1/‖K‖2/τ .

III. E XPERIMENTAL EXAMPLES

A. Denoising

We first consider the denoising problem, withA = Id.
In Fig. 2, four parts of popular test images are shown, along
with their noisy versions, where additive white Gaussian noise
(AWGN) of standard deviationσ = 20 has been added. The
third row of Fig. 2 shows the denoised images using total
variation (J = JTV), where the value ofλ has been tuned
manually to maximize the PSNR, for each image. This optimal
value of λ yields images where noise is still visible, while
some image details have disappeared, see e.g. the stripes of
the pants in image (j). When decreasing furtherλ to obtain
visually better images without remaining noise, even more
details are washed out, as shown in the fourth row of the
figure. Moreover, the classical drawback of total variation,
which is to yield images where the pixel values are clustered
into piecewise constant regions, is clearly visible on the face
of Barbara, see image (m).

The fifth-eighth row of Fig. 2 show the results with semi-
local total variation (J = JSLTV). The neighborhood setΩ1

depicted in Fig. 1 is too small to correctly capture the inter-
pixel correlations and a large part of noise remains in images
(q)–(t). Much better results are obtained withΩ = Ω4. As is
visible in images (u)–(x), the tradeoff between noise removing
and details preservation is better with SLTV than with TV.
When further decreasingλ, as shown in images (y)–(β), we
obtain smooth images where the sharpness of the strong edges
is maintained, without the clustering and staircasing effects
proper to total variation. We found that there is virtually no
improvement in choosing a setΩ larger thanΩ4.

B. Zooming

A zooming experiment by a factor4× 4 is shown in Fig. 3
on a part of the Boat image, see Fig. 2 (d). No noise is present,
so that we solve (3) whereA is the downscaling operator by
averaging over4 × 4 blocks. Note thatAA∗ = Id/16. As
result, with SLTV, the edges are slightly less sharp than with
TV, but the clustering effect of the latter is avoided. Note that
both TV and SLTV regularizations suffer from the intrinsic
lack of isotropy of the discrete gradient operator (5); thus,
in interpolation problems like zooming, the direction−45◦ is
privileged over the direction45◦ and a directional brushing
effect is visible both in Fig. 3 (b) and (c).
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original
(a) (b) (c) (d)

noisy,σ = 20
(e) (f) (g) (h)

denoised
J = JTV

optimal λ
(i) λ = 0.09, 27.03dB (j) λ = 0.09, 27.03dB (k) λ = 0.07, 28.88dB (l) λ = 0.07, 29.18dB

denoised
J = JTV

λ = 0.05
(m) 25.71dB (n) 25.71dB (o) 28.14dB (p) 28.60dB

Fig. 2. Denoising experiments using regularization with total variation and proposed semi-local total variation. Foreach denoised image, 100 iterations of
the primal-dual algorithm were run. The PSNR values correspond to the whole Barbara, Camera and Boat, images, not to the crops selected here.
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denoised
J = JSLTV

Ω = Ω1

optimal λ
(q) λ = 0.23, 27.23dB (r) λ = 0.23, 27.23dB (s) λ = 0.17, 28.44dB (t) λ = 0.12, 29.46dB

denoised
J = JSLTV

Ω = Ω4

optimal λ
(u) λ = 2.7, 27.59dB (v) λ = 2.7, 27.59dB (w) λ = 2.4, 28.86dB (x) λ = 2.2, 29.47dB

denoised
J = JSLTV

Ω = Ω4

λ = 1.7
(y) 26.41dB (z) 26.41dB (α) 28.22dB (β) 29.01dB

Fig. 2 (continued).

(a) (b) (c)

Fig. 3. Zooming experiment on a part of the Boat Image, by a factor 4 × 4. (a) by pixel replication (b) by solving (3) with TV. (c) by solving (3) with
SLTV. 100 iterations of the primal-dual algorithm were run and the image obtained by pixel replication was used as initial estimate by the algorithm.

C. Demosaicking

Another classical interpolation problem in imaging is de-
mosaicking, which consists in reconstructing a color image

u = [uR, uG, uB]T with red (R), green (G), blue (B) chan-
nels, knowing only one of these three values at each pixel
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TABLE I

PSNR (IN DB) FOR THE DEMOSAICKING EXPERIMENTS OVER THE24

IMAGES OF THE CLASSICALKODAK TEST SET.

image TV SLTV
1 39.20 39.72
2 38.24 39.92
3 41.32 42.52
4 39.19 40.52
5 35.95 37.61
6 38.72 39.44
7 39.78 42.07
8 35.00 35.67
9 40.80 42.06

10 40.41 41.84
11 38.00 39.55
12 42.38 43.36

13 35.75 36.36
14 34.95 36.68
15 37.99 39.33
16 42.31 42.67
17 40.08 41.27
18 35.88 37.33
19 38.74 39.38
20 40.09 41.27
21 38.82 39.73
22 36.85 38.09
23 40.80 42.62
24 33.26 34.93

mean 38.52 39.75

location [24]. That is,Au = b with b[k] = {uG[k] if k1 +
k2 is even, uR[k] else if k2 is even, uB[k] else}, ∀k ∈ Z

2.
Note that AA∗ = Id. In [25], the author proposed an
extension of the total variation to color images as follows:

JTV(u) = µJTV(uL) + JTV(uC), (27)

where uC = uG/M + j.uR/B is the complex chrominance
field and uL, uG/M , uR/B are the channels ofu expressed
in the luminance, green-magenta and red-blue chrominance
orthonormal basis [25]. The parameterµ < 1 in (27) ensures
that the reconstructed image has its chrominance channels
smoother than its luminance channel, a known property of
natural images. It is straightforward to extend the definition
of the SLTV to color images using the same definition as
the color TV in (27). Like in [25], we can use the primal-
dual strategy to minimize the color SLTV, by switching
between the representation of a color image in the R,G,B and
luminance,chrominance bases.

The results of solving (3) withJ = JTV andJSLTV are
reported in Tab. I. We usedµ = 0.625. The large average
improvement of1.2dB obtained with the SLTV over the
TV shows that the SLTV is a better regularization for the
demosaicking problem.

We can also consider the joint demosaicking-denoising
problem for which the mosaicked image is corrupted by
AWGN, with std. dev. 20. We solved (2) and illustrate the
result in Fig. 4. The visual quality of the images reconstructed
with the TV and the SLTV is comparable, but the latter is
free from the piecewise constant clustering effect of the TV.
Moreover, the SLTV tends to give images with more accurate
colors, while with the TV, the colors are desaturated, especially
on small objects. This can be seen on the blue rudder in the
man’s hands, which appears more blue in (c) than in (b).

IV. CONCLUSION

In this article, we proposed the semi-local total variation
(SLTV) as an alternative to the total variation (TV) for
regularization of inverse problems in imaging. We have shown
that the recent primal-dual framework proposed in [20] can be
efficiently applied to the minimization of the SLTV. Hence, for
a cost of about|Ω4| = 20 times the cost of the TV minimiza-
tion, we obtain restored images where piecewise constant areas

are favored, instead of the too rough piecewise constant model
underlying the TV. Other said, SLTV yields more pleasant
images where the sharpness of edges is maintained without
the clustering effect which is the main drawback of the TV.

We would like to stress that this work neither aims at
giving state-of-the-art results in inverse problems, nor pretends
proposing the best optimization strategy to solve the problems.
We instead showed how regularization by SLTV can be har-
nessed easily to a variety of applications, potentially yielding
better results than the popular TV.
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