
HAL Id: hal-00608673
https://hal.science/hal-00608673v1

Preprint submitted on 13 Jul 2011 (v1), last revised 26 Jul 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Ellipsoid Abstract Domain for Linear Time
Invariant Systems

Pierre Roux, Romain Jobredeaux, Pierre-Loïc Garoche, Eric Féron

To cite this version:
Pierre Roux, Romain Jobredeaux, Pierre-Loïc Garoche, Eric Féron. A Generic Ellipsoid Abstract
Domain for Linear Time Invariant Systems. 2011. �hal-00608673v1�

https://hal.science/hal-00608673v1
https://hal.archives-ouvertes.fr

A Generic Ellipsoid Abstract Domain

for Linear Time Invariant Systems⋆

Pierre Roux1, Romain Jobredeaux2, Pierre-Löıc Garoche1, and Éric Féron2

1 ONERA – The French Aerospace Lab, Toulouse, FRANCE
2 Georgia Institute of Technology, Atlanta, Georgia, USA

Abstract. Embedded system control often relies on linear systems, which
admit quadratic invariants. The parts of the code that host linear system
implementations need dedicated analysis tools since intervals or linear
abstract domains will give imprecise results, if any at all, on these sys-
tems. Reference [9] proposes a specific abstraction for digital filters that
addresses this issue on a specific class of controllers.
This paper aims at generalizing the idea, relying on existing methods
from Control Theory to automatically generate quadratic invariants for
linear time invariant systems, whose stability is provable. This class en-
compasses n-th order digital filters and, in general, controllers embedded
in critical systems.
While control theorists only focus on the existence of such invariants, this
paper proposes a method to effectively compute tight ones. The method
has been implemented and applied to some benchmark systems, giving
good results. It also considers floating points issues and validates the
soundness of the computed invariants.

Keywords: stable linear systems, ellipsoids, quadratic invariants, Lya-
punov functions, semi-definite programming, floating point errors, ab-
stract interpretation.

1 Control-command based critical systems

A wide range of today’s real-time embedded systems, especially their most crit-
ical parts, rely on a control-command computation core. The control-command
of an aircraft, a satellite or a car engine, is processed into a global loop repeated
indefinitely during the activity of the controlled device. This loop models the
acquisition of new input values via sensors, the update of internal state variables
and the generation of new outputs. The acquisition is made either from envi-
ronmental measurements (wind speed, acceleration, engine RPM, . . .) or from
human input via the brakes, the accelerator, the stick or wheel control.

Control command theorists are used to model both the environment and the
system behavior and, using their own set of tools, add the necessary elements to
obtain the target controlled system. After discretizing the system, they mathe-
matically prove its stability and its performance by exhibiting a quadratic form,

⋆ This work has been partially supported by the FNRAE Project CAVALE.

2 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

i.e. an ellipsoid, that over-approximates the system behavior with respect to a
given input. All these steps are well known by control theory specialists. Refer-
ence [15] is a good introduction to these approaches. In this paper, we focus on
a class of such systems where control is computed using stable linear systems,
i.e. the controller is open-loop stable.

The system control law is then compiled from its description to executable
code, like embedded C. This description is usually specified in Matlab Simulink,
Scilab Scicos or in a dedicated synchronous language such as Lustre or Scade.

Fig. 1 sketches the loop body of a coupled mass controller, as generated by
Matlab. It corresponds to a one step evaluation of the following linear system
xk+1 = Axk + Buk, where ||uk||∞ ≤ 1. Vector xk represents the state of the
system at a given time. Matrix A models the system update according to its
previous state, while matrix B expresses the effect of the input values uk.

system definition (A and B matrices)

loop body update

xk+1 = A× xk +B × uk

// D i s c r e t e S t a t e S p a c e A : A
r ea l T A[1 6] =

{ 0 .6227 , 0 .3871 , −0.113 , 0 .0102 ,
−0.3407 , 0 .9103 , −0.3388 , 0 .0649 ,
0 .0918 , −0.0265 , −0.7319 , 0 .2669 ,
0 .2643 , −0.1298 , −0.9903 , 0 .3331 } ;

// D i s c r e t e S t a t e S p a c e A : B
r ea l T B[8] =

{ 0 .3064 , 0 .1826 ,
−0.0054 , 0 .6731 ,
−0.0494 , 1 .6138 ,
−0.0531 , 0 .4012 } ;

stat ic void MIMO update (int T t id) {
stat ic r ea l T xnew [4] ;
xnew [0] = (A[0])∗ St [0] + (A[1])∗ St [1] + (A[2])∗ St [2] + (A[3])∗ St [3] ;
xnew [0] += (B[0]) ∗ INPUT [0] + (B[1])∗ INPUT [1] ;
xnew [1] = (A[4])∗ St [0] + (A[5]) ∗ St [1] + (A[6])∗ St [2] + (A[7])∗ St [3] ;
xnew [1] += (B[2]) ∗ INPUT [0] + (B[3])∗ INPUT [1] ;
xnew [2] = (A[8]) ∗ St [0] + (A[9])∗ St [1] + (A[1 0])∗ St [2] + (A[1 1])∗ St [3] ;
xnew [2] += (B[4]) ∗ INPUT [0] + (B[5])∗ INPUT [1] ;
xnew [3] = (A[1 2])∗ St [0] + (A[1 3])∗ St [1] + (A[1 4])∗ St [2] + (A[1 5])∗ St [3] ;
xnew [3] += (B[6]) ∗ INPUT [0] + (B[7])∗ INPUT [1] ;
(void) memcpy(St , xnew , s izeo f (r ea l T)∗4) ;

}

Fig. 1: System update for a coupled mass system controller generated by Matlab.

Once such controller source code is generated, it is embedded in the con-
trolled device, eg. an aircraft. Critical embedded systems are then a major target
for static analysis in order to ensure their good behavior. The success story of
Astrée [7] illustrates such needs: it targets the analysis of the control command
of the Airbus A380, and was used to formally prove the absence of any runtime
error on the 300kloc of the controller source code. It relies on the theory of
abstract interpretation [5,6] to compute a sound overapproximation of all pos-
sible values of the program variables in any reachable states. Then it is able to
ensure that this over-approximation does not reach any possible bad state like
overflows, division by zero, or invalid pointer dereferencing. In [7], the authors
enumerate the different abstractions used to compute this over-approximation:
intervals, octagons, . . . Among them, we focus here on digital filters abstractions
represented by ellipsoid abstract domains.

In [9], Feret proposes an analysis dedicated to stable linear filters in control
command programs. These short pieces of code correspond to the kind of systems
illustrated in Fig. 1, restricted to only one input argument, i.e. the matrix B is
a column vector, and specific types of matrices A, i.e. companion matrices.

A Generic Ellipsoid Abstract Domain 3

Most of the abstract domains available in actual tools only represent linear
properties and this kind of non linear invariant is a real need. For example, no
interval invariant exists for the example of Fig. 1. Thus analyzing it with inter-
vals will give the (−∞; +∞) over-approximation, whereas quadratic invariants
will bound all parameters in [−5; 5].

In this paper, we propose to generalize the approach of [9] by considering
any inherently stable linear system. In particular, we

– characterize quadratic forms, invariants of the linear system analyzed, with
techniques inspired by the control theory community;

– propose an open implementation of the analysis that handles floating point
rounding errors;

– validate the result using a sound external solver.

This paper focuses on the quadratic invariants (ellipsoids) computation. Any
reader interested in the reduction of the quadratic form obtained with the other
domains should refer to [9].

The paper is structured as follow: Section 2 introduces the reader to the
notion of stability based on Lyapunov invariants. Section 3 presents our global
approach and the steps of our algorithm. Sections 4, 5 and 6 detail the main
steps while Section 7 covers floating point issues and soundness. Finally concrete
results and related work are presented in Sections 8 and 9.

2 Introduction to Lyapunov stability theory

One common way to establish stability of a discrete, time-invariant closed (i.e.
with no inputs) system described in state space form, (i.e xk+1 = f(xk)) is to
use what is called a Lyapunov function. It is a function V : Rn → R which must
satisfy the following properties

V (0) = 0 ∧ ∀x ∈ R
n\{0}, V (x) > 0 ∧ lim

||x||→∞
V (x) = ∞ (1)

∀x ∈ R
n, V (f(x))− V (x) ≤ 0. (2)

It is shown for example in [14] that exhibiting such a function proves the so-
called Lyapunov stability of the system, meaning that its state variables will
remain bounded through time. Equation (2) expresses the fact that the function
k 7→ V (xk) decreases, which, combined with (1), shows that the state variables
remain in the bounded sublevel-set {x ∈ R

n|V (x) ≤ V (x0)} at all instants k ∈ N.

In the case of Linear Time Invariant systems (of the form xk+1 = Axk, with
A ∈ R

n×n), one can always look for V as a quadratic form in the state variables
of the system: V (x) = xTPx with P ∈ R

n×n a symmetric matrix such that

P ≻ 0 (3)

ATPA− P � 0 (4)

where “P ≻ 0” means that the matrix P is positive definite, i.e. for all non-zero
vector x, xTPx > 0.

4 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

{

x
∣

∣ xTPx ≤ 1
}

{

Ax
∣

∣ xTPx ≤ 1
}

{Axk +Bu | ||u||∞ ≤ 1}

xk

Axk

Fig. 2: Illustration of the stability con-
cepts: if xk is in the light gray el-
lipse, then, after a time step, Axk is
in the dark gray ellipse, which is ex-
actly what is expressed by Equation (4).
The white box represents the poten-
tial values of xk+1 after adding the ef-
fect of the bounded input uk.We see
here the necessity that the dark gray
ellipse be stricly included in the light
gray one, which is the stronger condi-
tion expressed by Equation (6).

Now, to account for the presence of
an external input to the system (which
is usually the case with controllers:
they use data collected from sensors
to generate their output), the model
is usually extended into the form

xk+1 = Axk +Buk, ||uk||∞ ≤ 1. (5)

To study this difference equation as
precisely as possible, another model,
expressing the behavior of the con-
trolled system (the plant), is usually
introduced. The two systems taken to-
gether form a closed system with no
inputs which can be analyzed by look-
ing for a P matrix matching the cri-
teria mentioned before. Such an anal-
ysis is refered to as ’closed loop sta-
bility analysis’. Here we seek not to
model the plant, instead we only re-
quire for ||u||∞ to remain bounded3.
Then, through a slight reinforcement
of Equation (4) into

ATPA− P ≺ 0 (6)

we can still guarantee that the state
variables of (5) will remain in a sub-
level set

{

x ∈ R
n
∣

∣ xTPx ≤ λ
}

(for
some λ > 0), which is an ellipsoid in
this case. This approach only enables us to study control laws that are inherently
stable, i.e stable when taken separately from the plant they control. Nevertheless
a wide range of controllers remain that can be analyzed, and this encompasses in
particular all those handled by Astrée. In addition, inherent stability is required
in a context of critical applications.

These stability proofs have the very nice side effect that they provide a
quadratic invariant on the state variables, which can be used at the code level to
find bounds on the program variables. Furthermore, there are many P matrices
that fulfill the equations described above. This gives some flexibility as to the
choice of such a matrix: by adding relevant constraints on P , one can obtain
increasingly better bounds.

3 While we could consider different bounds for each component of the input u, we will
only deal with ||u||∞ ≤ 1 for simplicity of the exposition.

A Generic Ellipsoid Abstract Domain 5

3 Overall method

3.1 Separate shape and ratio

We keep the same overall representation as Feret [9,10], representing an ellipsoid
by a pair (P, λ) where P ∈ R

n×n is a symmetric positive definite matrix giving
the shape of the ellipsoid and λ ∈ R a scalar giving its ratio. The represented
ellipsoid is then the set of all x ∈ R

n such that xTPx ≤ λ, i.e. the concretization
function γ is given by γ : (P, λ) 7→

{

x ∈ R
n
∣

∣ xTPx ≤ λ
}

. To avoid having
multiple representations for the same ellipsoid4 we can normalize P for instance
by requiring its largest coefficient to be 1. The underlying lattice also remains
the same. In particular the join of two abstract values (P, λ) and (P ′, λ′) is
(P,max(λ, λ′)) if P = P ′ and ⊤ otherwise.

This seemingly strange choice at first sight allows us to decompose the com-
putation in two successive steps

1. first determine the shape of the ellipsoid by choosing a well suited matrix P ;
2. then find the smallest possible ratio λ such that x ∈ γ(P, λ) is an invariant.

Various methods for both steps are detailed and compared in Sections 4 and 5.

3.2 Instrumentation: use of semidefinite programming

To perform the aforementioned computations we rely heavily on semidefinite
programming [4,12]. These tools allow us to compute in polynomial time a so-
lution to a linear matrix inequality (LMI) while minimizing a linear objective
function. A LMI is an inequality of the form

A0 +

k
∑

i=1

yiAi � 0

where the Ai are known matrices, the yi are the unknowns and “P � 0” means
that the matrix P is positive semidefinite, i.e. xTPx ≥ 0 for all vector x. Indeed
we can easily have unknown matrices since a matrix A ∈ R

n×n can be expressed
as
∑n,n

i=1,j=1
Ai,jE

i,j , where Ei,j is the matrix with zeros everywhere except a
one at line i and column j. Likewise multiple LMIs can be grouped into one

since A � 0 ∧B � 0 is equivalent to

(

A 0
0 B

)

� 0.

We will also have to deal with some implications which will be achieved by
transforming them into a LMI thanks to the following theorem.

Theorem 1 (S-Procedure). For any P ∈ R
n×n, a, a′ ∈ R

n and b, b′ ∈ R, the

two following conditions are equivalent

1. ∀x ∈ R
n, xTPx+ 2aTx+ b ≥ 0 ⇒ xTP ′x+ 2a′Tx+ b′ ≥ 0

4 For instance (P, 2λ) and
(

P

2
, λ

)

represent exactly the same ellipsoid.

6 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

2. ∃τ ∈ R, τ > 0 ∧

(

P ′ a′

a′T b′

)

− τ

(

P a

aT b

)

� 0

Proof. Soundness (2 ⇒ 1) is obvious. A proof of completeness (1 ⇒ 2) can be
found in [15].

4 Choosing the shape of the ellipsoid

As was presented in Sect. 2, any positive definite matrix P satisfying the Lya-
punov equation

ATPA− P ≺ 0 (7)

will yield a proof of stability and provide some bound on the variables. However,
additional constraints on P can be introduced that make it possible to obtain
better results than others.

While in Control Theory the existence of such ellipsoids is sufficient to prove
stability of the system, we are here interested in characterizing it concretely.
Investigating heuristically multiple possible shapes allows us to find one which
is more adequate, i.e. more precise, with respect to the analyzed system.

The following subsections describe three different types of additional con-
straints on P and their respective advantages.

4.1 Minimizing condition number

Graphically, the condition number of a positive definite matrix expresses a notion
similar to that addressed by excentricity for ellipses in dimension 2. It measures
how ’close’ to a circle (or its higher dimension equivalent) the resulting ellipsoid
will be. Multiples of the identity matrix, which all represent a circle, have a
condition number of 1. Thus one idea of constraint we can impose on P is to
have its condition number as close to 1 as possible. One reason is that ’flat’
ellipsoids can yield a very bad bound on one of the variables. This is done [3] by
minimizing a new variable, r, in the following matrix inequality

I � P � rI.

This constraint, along with the others (Lyapunov equation, positive definite-
ness, ...), can be expressed as an LMI, which is solved using the semi definite
programming techniques mentioned in Section 2.

4.2 Preserving the shape

Another approach [22] is to minimize r ∈ (0, 1) in the following inequality

ATPA− rP � 0.

Intuitively, this corresponds to finding the shape of ellipsoid that gets ’preserved’
the best when the update xk+1 = Axk is applied. This is the choice implicitly

A Generic Ellipsoid Abstract Domain 7

made in [9] for a particular case of 2×2 matrices A. With this technique however,
the presence of a quadratic term rP in the equation prevents the use of usual
LMI solving tools ’as is’. To overcome this we chose an approach where we try
a value for r and refine it by dichotomy. Only a few steps are required to obtain
a good approximation of the optimal value.

4.3 All in one

The two previous methods were based only on A, completely abstracting B away,
which could lead to rather coarse abstractions. We try here to take both A and
B into account by finding the smallest possible P such that

∀x, ∀u, ||u||∞ ≤ 1 ⇒ xTPx ≤ 1 ⇒ (Ax+Bu)
T
P (Ax+Bu) ≤ 1

which, using the S procedure, amounts to the existence of τi > 0 such that
(

−ATPA −ATPBei
−eTi B

TPA 1− eTi B
TPBei

)

− τi

(

−P 0
0 1

)

� 0

for all the vertices ei of the hypercube of dimension p, the number of inputs.
The rationale behind this formula is explained in section 5.2. This is not an LMI
since τ and P are both variables but a reasonably good solution can be found
by trying various values of τ between some τmin ∈ (0, 1), which can be found by
dichotomy, and 1.

4.4 Comparison and combination

There is no proof that one method always performs better than the others, and,
for each method, there exists examples where it performs better than the other
two, see Sect. 8. It appears, however, that the third method, albeit a little more
costly, yields the best bounds in general. In fact the cost is also debatable since,
despite being costlier, it does not require the search for the ratio, a necessary
step for the first two methods described in Sections 4.1 and 4.2.

In any case, the methods are not exclusive of each other and can be combined:
the resulting (sound) value will be the intersection of the projection of each ob-
tained ellipsoids. Having multiple, not-always-comparable values will only yield
more precise results.

5 Finding a stable ratio

Now that we have chosen a matrix P , we need to find a ratio λ such that
xTPx ≤ λ is an invariant for the whole system xk+1 = Axk+Buk with a bounded
input u that satisfies ||u||∞ ≤ 1. The existence of such a λ is guaranteed by the
choice of P as a solution of the Lyapunov inequality (7). Those λ are exactly the
fixpoints of the function mapping λk to the maximum of λk and the least λk+1

such that

∀xk ∈ R
n, uk ∈ R

p, ||uk||∞ ≤ 1 ⇒ xT
k Pxk ≤ λk ⇒ xT

k+1Pxk+1 ≤ λk+1 (8)

where xk+1 = Axk +Buk. We are of course interested in the least fixpoint.

8 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

5.1 Initial ratio λ0

Since the system starts in state x0, we initialize λ0 as xT
0 Px0. If instead of a

simple point the initial conditions are only known to lie in a polyhedron, we just
have to take the maximum of xTPx among all vertices x of the polyhedron.

5.2 One iteration

Given some λk, we want to compute the least λk+1 satisfying equation (8).
By a convexity argument5, it is enough to have the following for every vertex
ei, i ∈ J1, 2pK of the hypercube6 {uk | ||uk||∞ ≤ 1} of dimension p

∀xk ∈ R
n, xT

k Pxk ≤ λk ⇒ (Axk +Bei)
TP (Axk +Bei) ≤ λk+1.

Using the S-procedure7 we get the equivalent formulation

∀i ∈ J1, 2pK, ∃τi, τi ≥ 0∧

(

−ATPA −ATPBei
−eTi B

TPA λk+1 − eTi B
TPBei

)

−τi

(

−P 0
0 λk

)

� 0

which is an LMI in λk+1 and the τi which is solved by minimizing λk+1.
We can notice that, by a symmetry argument, we can forget about half of

the ei as depicted on figure 3, page 9.

5.3 Iterating to fixpoint and classical widening

Now we can compute Kleene iterates but it will be slow to converge to a fixpoint.
To accelerate, we can use a widening with thresholds, which allows us to find a
value for λ up to a factor q of the least one by using a sequence of powers of q
as thresholds.

5.4 An alternative to classical widening

When looking for a good postfixpoint we are indeed looking for a small λ satis-
fying the following equation

∀i ∈ J1, 2pK, τi > 0 ∧

(

−ATPA −ATPBei
−eTi B

TPA λ− eTi B
TPBei

)

− τi

(

−P 0
0 λ

)

� 0. (9)

This is not an LMI because of the τi but if we used the method described in
Sect. 4.2 for choosing the shape of P , we have obtained8 a parameter r ∈ (0, 1)
such that τi ∈ [r, 1]. Computing the smallest λ satisfying the following LMI then
directly gives a postfixpoint

∀i ∈ J1, 2pK,

(

−ATPA −ATPBei
−eTi B

TPA λ− eTi B
TPBei

)

−
r + 1

2

(

−P 0
0 λ

)

� 0.

5 See figure 2 for a graphical illustration of this.
6 A major drawback of the approach is that the number of vertices is exponential
in the number of inputs p. We could design a cheaper abstraction but it would be
coarser, in addition the number of inputs p often remains reasonable.

7 See theorem 1.
8 Otherwise we can still recompute such a parameter r.

A Generic Ellipsoid Abstract Domain 9

5.5 Refining a postfixpoint by dichotomy

Once we have found a postfixpoint λmax using widening with thresholds, we
can refine it through decreasing iterations with narrowing but this usually does
not lead quickly to anything close to the least fixpoint. However, an interesting
property of this least fixpoint λmin is that λk+1 ≤ λk exactly when λk ≥ λmin,
then enabling to efficiently and tightly overapproximate it by a dichotomy testing
satisfiability of the LMI 9 for values of λ between zero9 and λmax.

6 Back to intervals

xk

Axk

−xk

−Axk

Fig. 3: We can forget half of the vertices
of the white box as they will be taken
into account on the opposite side.

While quadratic forms precisely over-
approximate the set of reachable states
of linear systems subject to bounded
inputs, they are hardly usable as such
in conjunction with other abstractions.
We can solve LMIs to project the ob-
tained ellipsoid and get bounds on the
variables, xi ∈ [−a, a] with a the least
value such that
(

0 − ei
2

−
eT
i

2
a

)

− τ

(

−P 0
0 λ

)

� 0

where ei is the ith vector of the canon-
ical base.

This is not limited to intervals,
the same thing can be done for oc-
tagons [16] or more generally lin-
ear [20] or even quadratic [1,13] templates.

7 Floating point issues and soundness

Two fundamentally different issues with floating point numbers must be consid-
ered

the analyzed system contains floating point computations with rounding er-
rors making it behave differently from the way it would if the same compu-
tations were done with real numbers, this is discussed in section 7.1;

the implementation of the abstract domain is also carried out with float-
ing point computations for the sake of efficiency, this usually works well in
practice but can give erroneous results, hence the need for some a posteriori
validation, see section 7.2 for further details.

9 Or, better, the last prefixpoint encountered during the widening iterations.

10 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

7.1 Taking rounding errors into account

The sum of two floating point values is, in all generality, not representable as
a floating point value and must consequently be rounded. The accumulation
of rounding errors can potentially lead to far different results from the ones
expected with real numbers, thus floating point computations must be taken
into account in our analysis [17].

The rounding errors can be of two different types :

– for normalized numbers represented with a fixed number of bits, we get a
relative error: round(a+ b) ∈ [(1− ǫ)(a+ b), (1 + ǫ)(a+ b)];

– for denormalized numbers (i.e ones very close to 0), we get an absolute error:
round(a+ b) ∈ [a+ b− ω, a+ b+ ω].

A common and easy solution to take both possible errors into account is to sum
them which in practice leads only to a very slight overapproximation: round(a+
b) ∈ [(1−ǫ)(a+b)−ω, (1+ǫ)(a+b)+ω]. Although only addition is illustrated here,
the method works exactly the same way for any other floating point operation.
The actual values of ǫ and ω depend on the characteristics of the considered
floating point system. For instance we will take ǫ = 2−23 and ω = 2−149 for
single precision10.

Combining these elementary errors we get a simple postprocessing for each
iteration of Sect. 5.2 to soundly overapproximate rounding errors11.

7.2 Checking soundness of the result

Because the LMI solver is implemented with floating point computations, we
have no guarantee on the results it provides. Hence the need to check them.
This amounts to checking that a given matrix is actually positive definite.

We currently do this using Sylvester’s criterion, stating that a matrix A ∈
R

n×n is positive definite if and only if all its leading principal minors are positive,
and interval arithmetic to check their positiveness.

This is suited for small values of n but doesn’t scale well since computing
a determinant requires Ω (n!) arithmetic operations. While it remains an easy
early working solution, there is probably room for improvement on this point
and the use of an interval Cholesky decomposition [11] looks promising.

8 Experimental results

All the elements presented in this paper have been implemented as an au-
tonomous linear system analysis engine. The tool is composed of three parts:

10 Type float in C.
11 Further details can be found in the comments of our implementation.

A Generic Ellipsoid Abstract Domain 11

Method t1 λ λ∇ Bounds t2
Valid.
t3

Ex. 1
From [10, slides]
n=2, 1 input

I 0.07
fp 131072

105352 [140.4; 189.9]
0.48 0.04

τ ⊥ ⊥ ⊥

P 0.16
fp 128.0

96.0 [22.2; 26.5]
0.35 0.03

τ 96.8 0.28 0.03
U 0.35 1 + ǫ [16.2; 17.6] 0.20 0.03

Ex. 2
From [10, slides]
n=4, 1 input

I 0.09
fp 2048

1372 [18.1; 25.2; 24.3; 33.7]
0.49 0.07

τ 1376 0.40 0.07

P 0.27
fp 8.0

4.2 [6.3; 7.7; 2.2; 3.4]
0.35 0.07

τ 6.4 0.28 0.07
U 0.85 1 + ǫ [1.7; 2.0; 2.2; 2.5] 0.21 0.07

Ex. 3
Discretized
lead-lag
controller
n=2, 1 input

I 0.08
fp 262144

204654 [391.8; 21.6]
0.53 0.03

τ ⊥ ⊥ ⊥

P 0.18
fp 2048

1283 [36.2; 36.1]
0.47 0.03

τ 1632 0.35 0.04
U 0.35 1 + ǫ [31.7; 21.4] 0.20 0.03

Ex. 4 Linear
quadratic
gaussian
regulator
n=3, 1 input

I 0.09
fp 16.0

10.3 [1.2; 0.9; 0.5]
0.39 0.04

τ 10.9 0.33 0.05

P 0.19
fp 1.0

0.7 [0.9; 0.9; 0.9]
0.29 0.05

τ 1.1 0.25 0.04
U 0.50 1 + ǫ [0.7; 0.5; 0.4] 0.22 0.04

Ex. 5 Observer
based controller
for a coupled
mass system
n=4, 2 inputs

I 0.09
fp 512.0

304.6 [9.8; 8.9; 11.0; 16.8]
0.51 0.13

τ 323.0 0.43 0.12

P 0.25
fp 32.0

24.3 [5.7; 5.6; 6.4; 10.1]
0.42 0.12

τ 28.6 0.33 0.12
U 0.96 1 + ǫ [5.0; 5.0; 4.8; 4.7] 0.22 0.12

Ex. 6
Butterworth
low-pass filter
n=5, 1 input

I 0.10
fp 128.0

102.4 [7.5; 8.7; 6.1; 7.0; 6.5]
0.46 0.20

τ 113.1 0.38 0.20

P 0.31
fp 8.0

7.1 [3.6; 5.0; 4.7; 8.1; 8.9]
0.39 0.20

τ 7.7 0.29 0.20
U 1.17 1 + ǫ [2.2; 1.1; 1.9; 2.0; 2.9] 0.24 0.20

Ex. 7
Dampened
oscillator
from [1]
n=2, no input

I 0.07
fp 353.6

353.6 [1.7; 2.1]
0.22 0.03

τ 353.6 0.26 0.03

P 0.15
fp 3.0

3.0 [2.0; 2.0]
0.22 0.03 (⊥)

τ 3.0 0.20 0.03 (⊥)
U 0.34 1 + ǫ [1.5; 1.5] 0.16 0.03

Ex. 8
Harmonic
oscillator
from [1]
n=2, no input

I 0.08
fp 22.9

22.9 [1.5; 1.5]
0.24 0.03

τ 22.9 0.23 0.03

P 0.24
fp 2.0

2.0 [1.5; 1.5]
0.24 0.03 (⊥)

τ 2.0 0.22 0.03 (⊥)
U 0.31 1 + ǫ [1.5; 1.5] 0.16 0.14

Table 1: Result of the experiments: quadratic invariants computation. Times
are expressed in seconds, t1 is the time spent to compute the shape of the
ellipsoid, t2 is the time spend to find the appropriate ratio λ and project the
resulting invariant on intervals and t3 is the time needed to validate the stability
of the resulting ellipsoid with Gappa. I, P and U are respectively the methods
of Sections 4.1, 4.2 and 4.3. λ∇ denotes the refined value of λ by dichotomy.

12 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

(a) Ex. 1 (b) Ex. 2 (c) Ex. 3

(d) Ex. 4 (e) Ex. 5 (f) Ex. 6

(g) Ex. 7 (h) Ex. 8 (i) Ex. 4, 3D view

Fig. 4: Comparison of obtained ellipsoids by methods of Sections 4.1, 4.2 and 4.3
from lighter to darker, plus a random simulation trace ((b), (d), (e) and (f) are
cuts along some plane).

A Generic Ellipsoid Abstract Domain 13

– The core mathematical computations are done with Scilab [21], mainly with
the LMI solver [18] from an OCaml front-end. This part is a set of functions
that implement the algorithms presented in Sections 4, 5, 6 and 7.1, as well
as projections of ellipsoids over intervals. Computation in Scilab are done
using double precision floats.

– The front-end is an OCaml code using rational numbers (Num library). It
loads the A and B matrices and interacts with Scilab to compute the different
sequence of calls to Scilab functions.

– A last part, also in Ocaml, interfaces the obtained quadratic form with
Gappa [8] to ensure its stability as explained in Sect. 7.2. Gappa is a tool
intended to help verifying and formally proving properties on numerical pro-
grams dealing with floating-point or fixed-point arithmetic.

The code is released under a GPLv2 license and is available at http://cavale.
gforge.enseeiht.fr/.

Experiments were conducted on a set of stable linear systems. These systems
were extracted from [10], [1] or from basic controllers found in the literature.
Table 1 illustrates the value computed using the different techniques as well
as the time spent at each step. Figure 4 compares some plots of the obtained
quadratic forms depending on the approach used to find the ellipsoid.

9 Related work

Many work in abstract interpretation, and its use to analyze programs, focus
on linear patterns to abstract properties. However few work address non linear
invariant synthesis.

Feret’s work [9,10] on the one hand is a practical approach to the problem.
Its goal is to address the need by Astrée to handle the linear filters present in
Airbus’ real time software. As mentioned earlier, this effort is a strict subset of
ours and should be comparable on this subset.

On the other hand, there are work that target similar properties but are the-
ory oriented and motivated. One can cite the Lagrangian Relaxation approach
applied to program termination analysis as introduced by Cousot in [4] and
Roozbehani, Féron and Megretski in [19], or the works of Adjé et al. [1] and
Gawlitza and Seidl [12] on policy iterations and non linear forms. The latter two
aim at replacing a Kleene based fixpoint computation by a symbolic reasoning
based on semi-definite programming. They are more inspired by theoretical re-
sults leading to the analysis. [1,2] even cites the existence of Lyapunov based
invariant as a prerequisite for the method. These works are more general than
ours: they address the analysis of non linear systems, even with non convex
properties. However none of them automatically finds the appropriate shape:
templates need to be given, e.g by providing the Lyapunov functions, which we
are automatically computing. They also do not address the floating point issues.

Our work should be considered as an in-between solution. It takes ideas
from control theory results but targets the analysis of specific realistic systems.

http://cavale.gforge.enseeiht.fr/
http://cavale.gforge.enseeiht.fr/

14 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

Furthermore it addresses floating point errors as well as the validity analysis of
the obtained invariants.

10 Concluding remarks and perspectives

We have presented a set of analyses allowing us to characterize quadratic in-
variants, i.e. ellipsoids, for a subset of linear systems: inherently stable linear
systems subject to bounded inputs.

Most of the critical embedded control command systems rely on such linear
systems. But intervals and linear invariants in general will not allow to precisely
describe their state space.

This analysis is based on ideas from control theory. They are used to prove the
stability of the system by exhibiting a proof of existence of a so-called Lyapunov
quadratic form.

This work addresses the explicit computation of such a form by exploring the
instantiation of multiple generic templates to find the most appropriate ellipsoids
to bound the analyzed system.

Our effort also considers floating point errors and addresses the validity of
the computed solution. It has been implemented and applied on several exam-
ples. The reduced product between the different templates instantiated gives
extremely precise results as illustrated by the experimentations.

From here on, perspectives are easily identified: a first area of research would
be to enlarge the scope of considered systems and to handle saturation operators
that are often used in such critical embedded controllers; a second area would
be to integrate this ellipsoid analysis in our Lustre code analyzer to strengthen
its results.

References

1. Assalé Adjé, Stéphane Gaubert, and Eric Goubault. Coupling policy iteration
with semi-definite relaxation to compute accurate numerical invariants in static
analysis. In Andrew D. Gordon, editor, ESOP, volume 6012 of Lecture Notes in
Computer Science, pages 23–42. Springer, 2010.

2. Fernando Alegre, Eric Feron, and Santosh Pande. Using ellipsoidal domains to
analyze control systems software. 2009. http://arxiv.org/abs/0909.1977.

3. Stephen Boyd, Laurent El Ghaoui, Éric Féron, and Venkataramanan Balakrishnan.
Linear Matrix Inequalities in System and Control Theory, volume 15 of Studies in
Applied Mathematics. SIAM, Philadelphia, PA, June 1994.

4. Patrick Cousot. Proving program invariance and termination by parametric ab-
straction, lagrangian relaxation and semidefinite programming. In Sixth Inter-
national Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI’05), pages 1–24, Paris, France, LNCS 3385, January 17–19 2005. Springer.

5. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 238–252, Los Angeles, California,
1977. ACM Press, New York, NY.

A Generic Ellipsoid Abstract Domain 15

6. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 269–282, San Antonio,
Texas, 1979. ACM Press, New York, NY.

7. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. Combination of abstractions in the Astrée

static analyzer. In M. Okada and I. Satoh, editors, Eleventh Annual Asian Com-
puting Science Conference (ASIAN’06), pages 272–300, Tokyo, Japan, LNCS 4435,
2007. Springer.

8. Florent de Dinechin, Christoph Quirin Lauter, and Guillaume Melquiond. Cer-
tifying the floating-point implementation of an elementary function using gappa.
IEEE Trans. Computers, 60(2):242–253, 2011.

9. Jérôme Feret. Static analysis of digital filters. In European Symposium on Pro-
gramming (ESOP’04), number 2986 in LNCS. Springer-Verlag, 2004.

10. Jérôme Feret. Numerical abstract domains for digital filters. In International
workshop on Numerical and Symbolic Abstract Domains (NSAD 2005), 2005.

11. Jürgen Garloff. Pivot tightening for the interval cholesky method. In Proc. in
Applied Mathematics and Mechanics, pages 549–550, 2010.

12. Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy
iteration. In Rocco De Nicola, editor, ESOP, volume 4421 of Lecture Notes in
Computer Science, pages 300–315. Springer, 2007.

13. Thomas Martin Gawlitza and Helmut Seidl. Computing relaxed abstract semantics
w.r.t. quadratic zones precisely. In Radhia Cousot and Matthieu Martel, editors,
SAS, volume 6337 of Lecture Notes in Computer Science, pages 271–286. Springer,
2010.

14. Wassim M. Haddad and Vijay S. Chellaboina. Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach. Princeton University Press, 2008.

15. Ulf T. Jönsson. A lecture on the S-Procedure, 2001.
16. Antoine Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,

pages 310–319. IEEE CS Press, October 2001.
17. David Monniaux. The pitfalls of verifying floating-point computations. ACM

Trans. Program. Lang. Syst., 30(3), 2008.
18. Ramine Nikoukhah, François Delebecque, and Laurent El Ghaoui. LMITOOL: a

Package for LMI Optimization in Scilab User’s Guide. Research Report RT-0170,
INRIA, February 1995. Projet META2.

19. Mardavij Roozbehani, Eric Feron, and Alexandre Megretski. Modeling, optimiza-
tion and computation for software verification. In Manfred Morari and Lothar
Thiele, editors, HSCC, volume 3414 of Lecture Notes in Computer Science, pages
606–622. Springer, 2005.

20. Sriram Sankaranarayanan, Michael Colón, Henny B. Sipma, and Zohar Manna.
Efficient strongly relational polyhedral analysis. In E. Allen Emerson and Kedar S.
Namjoshi, editors, VMCAI, volume 3855 of Lecture Notes in Computer Science,
pages 111–125. Springer, 2006.

21. Scilab Team. Scilab. http://www.scilab.org.
22. Qinping Yang. Minimum Decay Rate of a Family of Dynamical Systems. PhD

thesis, Stanford University, 1992.

	A Generic Ellipsoid Abstract Domain for Linear Time Invariant Systems

