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Measurement of three-dimensional mirror parameters by

polarization imaging applied to catadioptric camera calibration

Olivier Morel, Ralph Seulin, David Fofi

Abstract

A new efficient method of calibration for catadioptric sensors is presented in this paper. The

method is based on an accurate measurement the three-dimensional parameters of the mirror

by means of polarization imaging. While inserting a rotating polarizer between the camera and

the mirror, the system is automatically calibrated without any calibration patterns. Moreover,

this method permits most of the constraints related to the calibration of catadioptric systems to

be relaxed. We show that, contrary to our system, the traditional methods of calibration are

very sensitive to misalignment of the camera axis and the symmetry axis of the mirror. From

the measurement of three-dimensional parameters, we apply the generic calibration concept to

calibrate the catadioptric sensor. The influence of the disturbed measurement of the parameters

on the reconstruction of a synthetic scene is also presented. Finally, experiments prove the validity

of the method with some preliminary results on three-dimensional reconstruction.

PACS numbers:

1



I. INTRODUCTION

Conventional perspective cameras have limited fields of view that make them restrictive

in some applications such as robotics, video-surveillance, and so on. One way to enhance

the field of view is to place a mirror with a surface of revolution in front of the camera so

that the scene reflects on the mirror omnidirectionally. Such a system, comprised of both

lenses (dioptric) and mirrors (catoptric) for image formation, is called catadioptric. Several

configurations exist and those satisfying the single viewpoint constraint are described in [1].

Catadioptric vision systems available on the market have been extensively studied. Com-

mercial devices are not adapted to our requirements, because optical components need to

be placed between the camera and the mirror. Mirrors have therefore been produced in our

own facilities thanks to the Plateform3D department [32]. A high speed machining centre

has been used to produce a very high quality surface, which is polished after production.

We developed a new approach of calibrating catadioptric sensors by polarization imaging.

This method enables the calibration of any mirror shape, since it is based on the measure-

ment of three-dimensional parameters such as height and normal orientations of the surface.

The only constraint is that an orthographic camera has to be used. To calibrate the system,

we apply the generic calibration concept developed by Sturm and Ramalingam [2, 3].

The article is structured as follows. The next section recalls previous work on paracata-

dioptric calibration, since the measurement of the surface normals by polarization imaging

induces orthographic projection, and most of the calibration methods developed for catadiop-

tric systems rely on the single viewpoint constraint. We show the misalignment sensitivity

of these methods for the reconstruction of a synthetic scene. Then, after presenting some

basic knowledge about polarization imaging, we detail how to calibrate the sensor with the

generic calibration concept. In section 4, simulations are presented to illustrate the influence

of the parameter measurement on the quality of the reconstruction. Preliminary results on

a calibrated spherical mirror are also described. The paper ends with a conclusion and a

few words about future work to be undertaken.
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II. CALIBRATION OF CATADIOPTRIC CAMERAS

A. Previous work

The most obvious calibration method that can be used is an approach based on the

image of the mirror’s bounding circle [4, 5]. It has the main advantage of being easily

automated, but the drawbacks are that the surface mirror has to be very accurate and the

mirror boundary has to accurately encode the intrinsic parameters. Other self-calibration

method can be found in [6, 7]. Another approach of calibrating catadioptric sensor is to use

geometric invariants on the image such as lines or circles [8, 9, 10, 11]. Finally the sensor

can also been calibrated by using some calibration pattern with control points whose 3D

world coordinates are known [12, 13, 14, 15, 16].

Since our approach requires a telecentric lens, we recall some methods devoted to para-

catadioptric camera calibration (the Single View Point constraint involve a telecentric lens

and a paraboloidal mirror). In this case, the more robust methods are based on the fitting

of lines projected onto the mirror [8, 17, 18]. This approach also has some shortcomings:

lines have to be precisely detected and the optical axis of the camera is assumed to be

aligned with the symmetry axis of the paraboloid. To illustrate the misalignment effect, the

three-dimensional reconstructions of a synthetic scene based on calibrations using the three

preceding methods are simulated (Figure 1).

The scene represents a room of size 500× 500× 250 cm with elements such as windows,

doors, and a table. Three images of the catadioptric sensor are used to triangulate the points

of the scene. For the calibration process, 20 lines are computed and perfectly detected on the

mirror. Then the calibration parameters are used to reconstruct the scene, according to the

linear-eigen method [19]. As presented in Figure 2, the misalignment of the paracatadioptric

system leads to the introduction of an important error on the reconstruction even if the

calibration is performed with perfect line fittings.

To deal with the alignment errors between the mirror and the lens, more sophisticated

algorithms were introduced [20, 21, 22]. In [20, 21], the calibration process, which requires a

large number of parameters to estimate, involves a three step algorithm in order to compute

all the extrinsic and intrinsic parameters. In [22], a more flexible solution based on caustic

curves is proposed: the main advantage of this method is that it is applicable for every surface
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Figure 1: Simulation of the three-dimensional reconstruction: the theoretical scene, in blue, repre-

sents a room with elements such as windows, door and table ; black dots depict the three locations

of the sensor. The reconstructed scene with the Vanderportaele calibration method (misalignment

of 2°) is drawn in red.
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Figure 2: Reconstruction error induced by the misalignment between the optical axis of the cam-

era and the symmetry axis of the paraboloid. Calibration method used are Geyer, Barreto and

Vanderportaele. (room of size 500× 500× 250 cm)

of revolution. In order to relax constraints on the mirror shape, the method presented in

this paper is based on the generic calibration concept: it leads to a flexible, easy-to-perform,

and shape-independent method of calibration.

B. The generic calibration concept

The previous calibration methods for omnidirectional catadioptric sensors assume that:

(i) the mirror shape is perfectly known; (ii) the alignment of the sensor is perfect so that
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the single viewpoint constraint is satisfied; and (iii) the projection model can be easily pa-

rameterized. Some methods relax the second constraint and a few relax the first one, but

before recent work [3, 12, 23] calibrating methods always underlie an explicit parametric

model of projection. This new model has the advantage of working for any type of camera

(catadioptric systems, central cameras with or without distortion, axial cameras, etc.) and

of handling heterogeneous systems [2] (for instance, a sensor composed of an omnidirec-

tional camera and a perspective camera). However, developing an efficient and easy-to-use

calibration method based on this model is not trivial. In this paper, the proposed new

method enables catadioptric sensor calibration by polarization imaging. It relaxes the three

constraints listed above ((i), (ii), and (iii)). Moreover, the calibration can even be performed

by a non-specialist as it only requires an optical apparatus and no image processing.

III. POLARIZATION IMAGING

Polarization imaging enables the study of the polarization state of a light wave. The

most common applications in artificial vision involve segmenting dielectric and metallic

objects [24] and to detect transparent surfaces. Polarization imaging likewise enables

three-dimensional information of specular objects to be detected (“Shape from polariza-

tion” method [25, 26]). The physical principle behind “Shape from polarization” is the

following: after being reflected, an unpolarized light wave becomes partially linearly polar-

ized, depending on the surface normal and the refractive index of the media it impinges on.

Partially linearly polarized light has three parameters: the light magnitude I, the degree of

polarization ρ and the angle of polarization ϕ.

To calibrate the mirror used in our catadioptric sensor, the polarization state of the

reflected light has to be measured. A rotating polarizer placed between the camera and

the mirror is used. The complete sensor (mirror and camera) and the polarizer are placed

into a diffuse light environment composed of a backlit cylindrical diffuser (Figure 3). The

light intensity of each pixel is linked to the angle of the polarizer and to the polarization

parameters by the following equation:

Ip(α) =
I

2
(ρ cos (2α− 2ϕ) + 1) , (1)

where α is the polarizer angle. The purpose of polarization imaging is to compute the three
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Figure 3: Polarization imaging: after being reflected by the mirror, the light becomes partially

linearly polarized.

(a) (b)

Figure 4: Images of the polarization parameters that are needed to reconstruct the mirror shape:

(a) degree of polarization (ρ ∈ [0, 1]), (b) angle of polarization (ϕ ∈ [0, π]).

parameters, I, ϕ, and ρ, by interpolating this formula. Because three parameters need to be

determined, at least three images are required. Images are taken with different orientations

of the polarizer. To get an automatic calibration of the catadioptric system, a liquid-crystal

polarization rotator is used instead of the polarizer. It acts as a rotating polarizer, which

has the ability to be electrically controlled. Figure 4 shows an image of the degree and the

angle of polarization of a spherical mirror.
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A. The relationship between the polarization parameters and the normals

Wolff and Boult have demonstrated how to determine constraints on surface normals

by using the Fresnel reflectance model [27]. The surface of the mirror is assumed to be

continuous and described by a Cartesian expression: z = f(x, y). Therefore, each surface

normal is given by the following non-normalized expression:

~n =




−∂f(x,y)
∂x

−∂f(x,y)
∂y

1


 =




p = tan θ cos φ

q = tan θ sin φ

1


 . (2)

The aim of the “Shape from polarization” technique is to compute the normals from the

angles θ and φ. By combining the Fresnel formulae and the Snell-Descartes law one can find

a relationship between the degree of polarization ρ and the zenith angle θ [25]. For specular

metallic surfaces, the following formula can be applied [28]:

ρ(θ) =
2n tan θ sin θ

tan2 θ sin2 θ + |n̂|2 , (3)

where n̂ = n(1 + iκ) is the complex refractive index of the mirror. In the case of a perfect

specular mirror, the formula (3) can be directly used if the complex refractive index of

the material is known. However, if the refractive index is unknown or if the mirror is not

perfectly specular a pseudo-refractive index [29] can be applied. This consists of estimating

a pseudo-refractive index that best fits the relation between the angle θ and the degree

of polarization ρ measured on a known shape of the same material. Finally, this pseudo-

refractive index, which has no physical meaning, enables the degree of polarization image of

the new object to be computed using the same relation (3).

The azimuth angle φ is linked to the angle of polarization ϕ since the reflected light

becomes partially linearly polarized according to the normal of the plane of incidence. Be-

cause our imaging system uses a telecentric lens, orthographic projection onto the sensor is

assumed and the azimuth angle φ can be inferred from the angle of polarization ϕ according

to the following equation:

φ = ϕ± π

2
. (4)
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(a) (b)

Figure 5: Disambiguation of the azimuth angle: (a) segmented image (Iquad ∈ {0, 1, 2, 3}), (b)

image of the resulting azimuth angle φ (φ ∈ [−π/2, 3π/2]).

B. Disambiguation of the normals

From equations (3) and (4), the surface normals are determined with an ambiguity.

Since mirrors used in catadioptric vision are of convex and revolution shape, a segmented

image Iquad can be directly computed from the near center of the mirror (Figure 5(a)). This

segmented image is an image with four gray levels that represent the four quadrants oriented

with an angle in ]0, π/2[. The algorithm of the disambiguation process described in [29] is

applied with the segmented image Iquad and with the angle of polarization image ϕ. The

azimut angle φ is computed as follows:

1. φ = ϕ− π
2
,

2. φ = φ + π if [(Iquad = 0) ∧ (φ ≤ 0)] ∨ [Iquad = 1] ∨ [(Iquad = 3) ∧ (φ ≥ 0)] ,

where ∧ and ∨ represent, respectively, the logical operators AND and OR. The result of the

disambiguation is presented in Figure 5(b).

C. Calibration

To calibrate our imaging system, we use the generic calibration concept introduced by

Sturm and Ramalingam [30]. The concept considers an image as a collection of pixels,

and each pixel measures the light along a particular 3D ray. Thus, calibration can be

seen as the determination of all projection rays and their correspondence with pixels. A

3D ray is represented here by a couple of points (A, B) that belong to the ray. The points’
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Figure 6: Description of the 3D-ray given by the points A and B.

coordinates are defined as described in equation (5):

A =




xa

ya

za


 , B =




xb

yb

zb


 . (5)

To calibrate the sensor, let us take point A, that belongs to both the mirror surface

and the 3D-ray, to be the first point of the ray (Figure 6). Since orthographic projection

is assumed, the xA and yA coordinates can be directly deduced from the (u, v) coordinates

of each pixel (up to a scale factor given by the lens). Finally, the computation of the za

coordinate requires the determination of the 3D mirror surface. The 3D surface of the mirror

can be computed from the normals (given by polarization imaging) thanks to the Frankot-

Chellappa algorithm [31]. Denoting the Fourier transforms of, respectively, the surface

height and the x, y gradients as f̃ , p̃ and q̃, we have:

∀ (u, v) 6= (0, 0) , f̃(u, v) =
−jup̃− jvq̃

u2 + v2
. (6)

The three-dimensional surface is obtained by taking the inverse Fourier transform of the

former equation. This integration process gives us the surface height of the mirror with a

constant of integration. Nevertheless, this constant is not required because of the ortho-

graphic projection assumption.

As shown in Figure 6, the second point B of the ray can be written as:

B = A + k




tan 2θ cos φ

tan 2θ sin φ

1


 , (7)

where k is a non-null constant.
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IV. EXPERIMENTS

In the previous section, we showed that the three-dimensional parameters of the mirror,

θ, φ, and z, are required to calibrate the catadioptric system, according to the generic

calibration concept introduced by Sturm. The azimuth and zenith angles, φ and θ, are

directly given by the measurement of the polarization parameters (ρ, ϕ) of the light reflected

by the mirror. The surface height z, that represents the 3D shape of the mirror, is obtained

by an integration process.

In this section, simulations are first presented to illustrate the influence of the param-

eters on reconstruction quality. Then, preliminary results on a calibrated spherical mirror

show the good accuracy of the three-dimensional parameters measurement by polarization

imaging. Experiments on the reconstruction of a real scene are also presented.

A. Simulations

To simulate the three-dimensional reconstruction error, the synthetic scene introduced in

Section 2, Figure 1 is reconstructed thanks to the generic calibration concept. The normals

angles θ and φ were computed from a perfect parabolic mirror with a 7° misalignment

between the optical axis and the symmetry axis of the mirror. The parameters are then

disturbed by adding various levels of Gaussian noise. At each level of noise, the experiment

is regenerated 50 times, and the average error reconstruction is computed. Figure 7(a)

and Figure 7(b) show, respectively, the reconstruction error of the scene induced by noisy

measurement of θ and φ. The synthetic scene is reconstructed with or without mirror

reconstruction, meaning that the integration process from equation (6) is carried out or not

(Figure 8).

Figure 7 shows that scene reconstruction is quite sensitive to the measurement of the

parameters θ and φ; on the other hand, the integration process is not required, and we can

assume that the z parameter is negligible. In addition, Figure 9 shows the reconstruction

error of the scene by only adding Gaussian noise to the mirror height z. In this case, the

normals are assumed to be perfectly measured and noise is only added on the surface height

of the mirror. The reconstruction quality remains good even if the mirror height is very

noisy (the mirror height is 1 cm and the radius is 2 cm) or badly reconstructed.
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Figure 7: Reconstruction error induced by noisy measurement of the normals parameters: (a) θ

angle, (b) φ angle.

(a) (b)

Figure 8: Three-dimensional parameters used: (a) normals θ, φ and surface height z, (b) only

normals θ, φ (without integration process).
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(a) (b) (c)

Figure 10: Measurement errors of the three-dimensional parameters: (a) angle θ, (b) angle φ and

(c) deviation map of the mirror z.

B. Preliminary results

1. Simulated scene

Preliminary results were carried out with a catadioptric sensor made of a camera with a

telecentric lens and a calibrated spherical mirror (radius = 1 cm). Let us notice that our

system does not satisfy the single view point constraint. Nevertheless, this property is not

required here for the three-dimensional reconstruction of the scene. As described in section 3,

our catadioptric sensor is calibrated by measuring the three-dimensional parameters of the

mirror with a liquid crystal polarization rotator placed between the camera and the mirror.

To evaluate the accuracy of our system, we compare the parameters (θ, φ, and z) obtained

with our system to the theoretical parameters of the mirror (Figure 10).

The mean quadratic errors of the angles θ and φ are, respectively, 0.49° and 1.02°. Fig-

ure 11 shows the reconstruction of the synthetic scene by using the calibration made by

polarization imaging. Since the mirror is spherical, three-dimensional reconstruction errors

increase highly. Nevertheless, the synthetic scene is well reconstructed with an average error

of 9.68 cm.

2. Real scene

As presented in Figure 12, the three-dimensional reconstruction of a real scene was also

carried out. The imaging system is made of a CCD camera with a telecentric lens and a

spherical mirror. In order to precisely control its displacement, it has been placed on a

precision three axes stage. The x × y × z operating area is 1.5m × 1.6m × 0.4m, and the
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Figure 11: Simulation of the three-dimensional reconstruction by using the calibration done from

the polarization imaging.

(a) (b) (c) (d)

Figure 12: Three-dimensional reconstruction of a real scene with the catadioptric system: (a)

Experimental-set-up, (b,c,d) points of interest picking.

x×y×z room size to reconstruct is about 6m×5m×2.5m. After calibrating our catadioptric

sensor by polarization imaging, 3D points of interest have been triangulated by moving the

system.

Once the imaging system is automatically calibrated by polarization imaging, three im-

ages with three different known positions have been acquired. Several points of interest were

picked on each image: four rectangular targets, two edges of the ceiling, three windows and

one fluorescent light (Figure. 12(b,c,d)). The result of the triangulation process presented

in Figure 13 shows that the reconstruction is qualitatively satisfactory. The global topology

of the scene and the relative distances are respected; right angles appear as (near-) right

angles. In fact, the overall reconstruction is as expected, considering:
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Figure 13: Results of the three-dimensional reconstruction: reconstruction according to the linear-

eigen and mid-point methods are respectively drawn in red and blue, the gray points represent the

3 positions of the sensor.

� the small displacement of the sensor in comparison with the size of the scene;

� the fact that we only performed linear triangulation without refinement; and

� the reconstruction also depends on the accuracy of point picking (the correspondence

has been established manually and a slight error in the location of 2D points lead to

erroneous 3D reconstruction).

V. CONCLUSION

In this paper, a new efficient calibration method for catadioptric sensors has been pre-

sented. This method is based on the measurement of three-dimensional parameters of the

mirror thanks to polarization imaging. The calibration can be performed “in one click” even

by a non-specialist, because it only requires an optical apparatus, no image processing and

no calibration pattern. Contrary to traditional methods, it deals with misalignment of the

sensor and works for any shape mirror (regular or not). Experimental results prove that the

sensor is properly calibrated and a satisfactory three-dimensional reconstruction of the scene

can be obtained. We have also shown that the 3D-shape of the mirror can be neglected in

comparison with the normals orientations. The plateform3D department is currently man-

ufacturing a parabolic mirror and future work will consist of creating a paracatadioptric
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sensor in order to compare our method to other methods known in the literature for real

scenes.
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