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Preface

The Quality issues, measures of interestingness and evaluation of data mining
models Workshop (QIMIE’09) focuses on the theory, the techniques and the practices
that can ensure that the discovered knowledge of a datamining process is of quality.
This first edition of QIMIE’09 is organized in association with PAKDD’09 confer-
ence (Pacific-Asia Conference on Knowledge Discovery and Data Mining, Bangkok,
Thailand, on April 27-30, 2009), a major international conference in the areas of data
mining and knowledge discovery.

QIMIE’2009 would not have been possible without the work of many people and
organizations. We wish to express our gratitude to: Telecom Bretagne, the University
of Lyon, the Chairs and Co-Chairs of PAKDD’09 (Thanaruk Theeramunkong from
SIIT/Thammasat University, Boonserm Kijsirikul from Chulalongkorn University,
Nick Cercone from York University and Ho Tu Bao from Japan Advanced Institute
of Science & Technology), the PAKDD’09 Workshop Chairs (Manabu Okumura from
Tokyo Institute of Technology and Bernhard Pfahringer from University of Waikato),
the QIMIE’09 Workshop facilitator (Juniar Ganis from from SIIT/Thammasat Uni-
versity), the QIMIE’09 Program Committee members & the external reviewers, the
keynote speakers (Einoshin Suzuki from Kyushu University and Nitesh V. Chawla
from University of Notre Dame), the QIMIE’09 Web master (Philippe Tanguy from
Telecom Bretagne).

Last but not least we would like to thank all authors of the submitted papers. Each
submission was reviewed by at least three members of the Program Committee. The
papers presented in these proceedings were selected after a rigorous review process.
At the end, the QIMIE’09 Program includes two keynote speakers and five regular
papers.

Einoshin Suzuki who is a well known specialist of exception rule/group discovery
gives an overview of Interestingness Measures, addressing Limits, Desiderata, and
Recent Results in this domain. He points out the pitfalls to avoid in order to obtain a
good quality of discovered patterns. In addition he proposes for a structured pattern an
interestingness measure which has exhibited high discovery accuracy. This measure
is parameter-free, exploits information from an initial hypothesis, and is based on the
minimum description length principle.
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It is important to understand the variability in data over time, since even the One
True Model might perform poorly when training and evaluation samples diverge.
Nitesh V. Chawla presents a very comprehensive framework to proactively detect
breakpoints in classifiers predictions and shifts in data distributions through a series
of statistical tests. He outlines and utilizes three scenarios under which data changes:
sample selection bias, covariate shift, and shifting class priors.

To improve the support-confidence framework José L. Balcázar studies a com-
plementary notion, to be employed jointly with the standard support and confidence
bounds, which has the goal of measuring a relative form of objective novelty or sur-
prisingness of each individual rule with respect to other rules that hold in the same
dataset.

Prachya Pongaksorn, Thanawin Rakthanmanon, and Kitsana Waiyamai propose
a new algorithm to discretize continuous attributes which uses both class informa-
tion and order between attributes to determine the discretization scheme with mini-
mum number of intervals. According to the experiments the new algorithm contains
a smaller number of intervals than other supervised algorithms using less execution
time, and the predictive accuracy is as high or higher.

Joan Garriga presents a new interestingness measure which is an alternative option
to the support-confidence framework. The biases of this measure have not yet been
thoroughly studied but the measure itself has proved to be quite effective as a heuristic
when searching to optimize a sample in a simultaneous multi-interval discretization of
continuous features. The empirical results show that the most relevant association or
classification rules are revealed.

The integration of semantic relationship from the data domain into the knowledge
evaluation is an important challenge in data mining. Jiye Li, Nick Cercone, Serene
W. H. Wong, and Lisa Yan propose to enhance the rule importance measure issued
from rough sets theory by incorporating a weight biased attribute concept hierarchy.
By using a geriatric care data set, the authors show that this enhanced rule importance
measure provides a knowledge oriented distinction of rules classified as important.

Sylvain Lespinats and Michaël Aupetit link different methods used to detect and
avoid the main mapping defaults, i.e false neighbourhoods and tears. In addition, they
suggest a new strategy to visualize tears and false neighbourhoods on a mapping by
adapting well-tried tools.

Philippe Lenca & Stéphane Lallich

QIMIE’09 Chairs
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Jérôme Azé, France David Olson, USA
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Interestingness Measures - Limits, Desiderata,
and Recent Results -

Einoshin Suzuki

Kyushu University, Fukuoka 819-0395, Japan,
suzuki@i.kyushu-u.ac.jp

http://www.i.kyushu-u.ac.jp/~suzuki

In the last two decades, interestingness measures, each of which estimates
the degree of interestingness of a discovered pattern, have been actively studied
e.g. [1–6, 8–16, 18–22]. A typical interestingness measure is more complex than
a machine-learning measure which can be computed from statistics of the given
data such as the accuracy, the recall, the precision, the F-value, and the area
under the ROC curve. Interestingness measures can be classified as either ob-
jective or subjective depending on whether the measure uses only discovered
patterns and the data from which the patterns are discovered, or the measure
uses additional information such as domain knowledge.

Defining human’s interestingness can be called as AI-hard as it is as diffi-
cult as all problems in artificial intelligence (AI). What is interesting depends
on various factors including the task, the individual, and the context; and any
problem and any combination of problems in AI can be used to invent a chal-
lenging situation for interestingness measures. We must beware of the hype of
omnipotent interestingness measures and we must settle realistic objectives for
research on interestingness measures.

Desiderata on interestingness measures can be classified into qualitative ex-
pressions such as generality, accuracy, simplicity, and comprehensibility; and
quantitative relations such as [11, 21]. We have pointed out desirable properties
in exception rule/group discovery such as interpretation of the evaluation mea-
sure, which supports the quality of discovered patterns [17]. Pitfalls to avoid are
much less known than the desiderata and include four biases in evaluation [18]
and a use of many parameters [7], the latter of which poses extra work on the
users and results in a problem that is analogous to overfitting in classification.

Recently we have proposed, for a structured pattern, an interestingness mea-
sure which is parameter-free, exploits information from an initial hypothesis,
and is based on the minimum description length principle [19]. The measure has
exhibited high “discovery accuracy“ i.e. the ratio that the measure discovers the
true hypothesis from several data with up to 30 % of noise using incomplete
initial hypotheses.
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Confidence Width: An Objective Measure for
Association Rule Novelty

José L. Balcázar

Departamento de Matemáticas, Estad́ıstica y Computación
Universidad de Cantabria, Santander, Spain

joseluis.balcazar@unican.es

Abstract. Most often, association rules are parameterized by lower
bounds on their support and confidence, even though many other mea-
sures exist that evaluate the intensity of implication of a single associ-
ation rule. We remain within the support-and-confidence framework in
an attempt at studying a complementary notion, to be employed jointly
with the standard bounds, which has the goal of measuring a relative
form of objective novelty or surprisingness of each individual rule with
respect to other rules that hold in the same dataset. To do this, we pro-
pose to measure the extent to which the confidence value is robust, taken
relative to the confidences of logically stronger rules, as opposed to the
absolute consideration of the single rule at hand.
Consider a statement such as: “any dataset in which this first rule holds
must obey also that second rule”; if the confidences are the same, the
second rule becomes redundant. It may still be nonredundant, though,
if its confidence is considerably higher than the confidence of the first
rule, whereas, if these quantities are very similar, the second rule is not
really contributing novel knowledge. We formalize and characterize this
intuition, show how it can be computed reasonably efficiently, and study
some of the properties of this parameter on two public datasets.

Keywords: association rules, redundancy, confidence, bases

1 Introduction

Data mining is described sometimes as a collection of processes that explore
existing data in order to find knowledge that is actionable, correct, and novel.
Actionability is a pretty difficult notion to formalize, in that it is closely related
to the human attitudes of the decision makers in front of the discovered knowl-
edge. However, one simple sufficient condition for actionability is based on a
plain syntactic condition: if knowledge is expressed in a form that is suggestive
of cause-effect relationships, educated users, even nonexperts, can grasp the in-
tuitions in an easy manner and proceed to take steps that, hopefully, redund in
some sort of advantage. Therefore, the notion of association rule mining makes
sense, even though the corresponding parameters measure co-occurrence rather
than causality (see the interesting discussion in [6]). Association rules have been
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long studied; their deterministic counterparts, implications, are actually a form
of Horn logic and some communities have developed important progress about
them [7]; the probabilistic approach was studied since [13], and fuzzy versions
have attracted attention for long as well [8]. Their pervasiveness came from the
support constraint, which allowed the design of algorithms able to handle very
large and dense datasets; see the survey [5] and the references there. Even for
confidence-bounded rules, the notions of frequent closed set (that cannot be en-
larged while keeping the same support) and minimal generator (that cannot be
reduced while keeping the same support), widely studied in the FCA field [7], re-
mains crucial from an algorithmic perspective [4], [10], [17], [21], [22]. We assume
the reader familiar with the Zaki basis and the exact min-max basis of [17], [18],
[20], [21]. We will build on a notion of redundancy, related to the entailment in
observation logics [8], proposed in terms of association rules in [1], [9], [19]. See
[2] for further discussion and relationship with the representative basis employed
below.

Correctness of association rules is often assessed, therefore, by a support pa-
rameter, that plays also an algorithmic role of pruning exploration of infrequent
rules, and some parameter measuring intensity of implication or deviation from
independence. The most frequently chosen such parameter is confidence, which
is the empirical conditional probability of the consequent of the rule given the
antecedent; but a large number of alternatives exist. We will denote c(X → Y )
the value of the confidence of the rule X → Y .

Even though we are aware of several objections raised against confidence, we
prefer to develop our proposal in that context, for several reasons. First, con-
ditional probability is a concept known to many educated users from a number
of scientific and engineering disciplines, so that communication with the data
mining expert is simplified. Second, as a very elementary concept, it is the best
playground to study other proposals, such as our contribution here, which could
be then lifted to other similar parameters. Third, we believe that, in fact, our rel-
ative measure will make up for many of the objections raised against confidence,
if not immediately, upon further research. Additionally, it must be taken into
account that the quantity of data is usually insufficient to test a large number
of hypothesis, even if schemes more efficient than the Bonferroni guarantees are
employed, and it has been observed and argued that the combination of support
and confidence offers already very good results at pruning off statistical artifacts
that do not really correspond to correlations in the phenomenon at the origin of
the dataset [15].

We focus, then, on the third intuition, namely that of novelty. Again, like
actionability, a wide spectrum of subjective considerations regarding the user’s
previous knowledge can be played, and, of course, novelty with respect to knowl-
edge existing previously to the data mining process is hard to formalize. But one
fact is clear: novelty cannot be evaluated in an absolute form; it refers to knowl-
edge that is somehow unexpected, and therefore some expectation, lower than
actually found, must exist, due to some alternative prediction mechanism. Ad-
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ditionally, an intuitive “rule of thumb” is that the amount of novel facts must
be low in order that novelty is actually useful.

We wish to offer here a complementary, objective proposal, to be combined
either with other objective measures such as support and confidence or with other
subjective measures of novelty, appropriate to the task at hand. We propose to
measure the novelty of each rule with respect to the rest of the outcome of
the same data mining process. To do this, we resort to recent advances in the
construction of irredundant bases and in mathematical characterizations of the
most natural notion of redundancy. As we shall see, a redundant rule is so because
we can know beforehand, from the information in a basis, that its confidence will
be above the threshold. Pushing this intuition further, an irredundant rule in the
basis is so because its confidence is higher than what the rest of the basis would
suggest: this opens the door to asking, “how much higher?”. If the basis suggests,
say, a confidence of 0.8 (or 80%) for a rule, and the rule has actually a confidence
of 0.81, the rule is indeed irredundant and brings in additional information, but
its novelty, with respect to the rest of the basis, is not high; whereas, in case
its confidence is actually 0.95, much higher than the 0.8 expected, the fact can
be considered novel, in that it states something different from the rest of the
information mined.

1.1 Related Work, Notation, Redundancy, and Bases

The main notion to be defined below has some surface similarity with the notion
of all-confidence [16] and the related concept of m-patterns [14]. However, a
strong point of these notions, namely, their antimonotonicity, is lacking in our
approach, so that we just employ a support bound and discuss our contribution
in terms of a standard frequent closed set miner. On the other hand, these
notions are very restrictive, and provide only strong “niches” where all the sets
of attributes within an output pattern depend heavily pairwise among them. We
wish to depart in lesser degree from the standard association rule setting: our
proposal discusses a parameter defined for one single rule, but relative to other
rules mined.

We denote itemsets by capital letters from the end of the alphabet, and use
juxtaposition to denote union, as in XY . For a given dataset D, consisting of
transactions, each of which an itemset labeled with a unique transaction identi-
fier, we can count the “support” s(X) of an itemset X, which is the cardinality
of the set of transactions that contain X. The confidence of a rule X → Y is
c(X → Y ) = s(XY )/s(X).

A set is closed if there is no proper superset with the same support. A set is
a minimal generator if there is no proper subset with the same support. In the
presence of a support threshold, frequent closed sets are closed sets whose sup-
port clears the threshold. Frequent closed sets are very crucial to the algorithmics
of association rules and to the identification of irredundant bases [4], [10], [17],
[21], [22]. Absolute optimality of certain versions of these bases is shown in [2].

Confidence Width: An Objective Measure for Association Rule Novelty
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We start our analysis from one of the notions of redundancy defined formally
in [1], but employed also, generally with no formal definition, in several papers on
association rules; thus, we have chosen to qualify this redundancy as “standard”.

Definition 1. [1] X0 → Y0 has standard redundancy with respect to X1 → Y1 if
the confidence and support of X0 → Y0 are always larger than or equal to those of
X1 → Y1, in all datasets. That is, for every dataset D, c(X0 → Y0) ≥ c(X1 → Y1)
and s(X0Y0) ≥ s(X1Y1).

This definition is akin to the definition of entailment in purely logic-based
studies, and we will use sometimes the phrase “logically stronger” to refer to a
rule that makes another one redundant with respect to standard redundancy.
Note that the rules X → Y and X → XY are mutually redundant, in fact
fully equivalent because their confidence s(XY )/s(X) and support s(XY ) al-
ways coincide. Therefore we consider all association rules where the right-hand
side always includes the left-hand side, although for the purpose of showing them
to the user the repeated items of the left-hand side will be removed from the
right-hand side. This simple convention greatly simplifies the mathematical de-
velopment.

There are several alternative notions of redundancy in the literature; many
are closely related to standard redundancy, like the “cover” notion described
briefly below; whereas others are somewhat different, such as those based on
closed sets: see [2] for further comparisons. For this particular notion we have
just given, the aim is clear: whatever the dataset under analysis, and the support
and confidence parameters, if we find that rule X1 → Y1 appears among the
mined rules by passing the support and confidence thresholds, any other rule
X0 → Y0 showing standard redundancy with respect to it is known to be also in
the set of mined rules without need to inspect them to check out. This is because
the support and confidence must be at least the same as those of rule X1 → Y1,
whence it passes the thresholds as well. We will not use in this paper any other
form of redundancy; therefore, we will omit often the adjective “standard”.

As an example, it will follow from Theorem 1 below, taken from [2], that,
for items A, B, C, and D, the rule AB → C is redundant with respect to rule
A → BC, and is also redundant with respect to AB → CD. It is easy to check
the inequalities in the definition.

This notion of redundancy suggests a notion of a basis, which turns out to
be already proposed, independently and in different but equivalent ways, in [1],
in [9], and in [19] (see again the discussion in [2]). We term the rules of this basis
“representative rules” as per some of these references.

Definition 2. Fix a dataset D and confidence and support thresholds. The cor-
responding basis of representative rules consists of all the rules that hold in D,
passing both thresholds, which are not redundant with respect to any other rule
that holds in D for the same thresholds.

Among several equivalent possibilities to define representative rules, we have
chosen a definition so that the following claim becomes intuitively clear: every

José L. Balcázar

– 8 –



rule that passes the thresholds for D is either a representative rule, or is redun-
dant with respect to a representative rule. Indeed, any given rule that is not
among the representative rules must be redundant with respect to some other
rule, that again must be redundant with respect to a third, and so on, until
finiteness enforces termination that can be only reached by finding a rule in the
basis, making redundant all the others found along the way. The formalization of
this argument can be found in [9] (Theorem 1 below must be taken into account).

Moreover, any basis, that is, any set of rules that makes redundant all the
rules mined from D at the given thresholds, must include all the representa-
tive rules, since there is no other way of making them redundant. Thus, the
representative rules form the smallest such basis.

The definitions given are not particularly operative in terms of providing
ways to efficiently compute the representative rules. However, in a later section
we will describe some properties of these definitions, taken from the references
indicated above, which allow one to efficiently compute the representative rules
and further quantities we will explain shortly.

2 Confidence Width

This section describes the foundations of our proposal. Our intuition is as follows:
consider a rule X → Y of a given confidence, say c(X → Y ) = γ ∈ [0, 1], in a
given dataset D. Assume a fixed support threshold is enforced throughout the
discussion, and consider what happens as we vary the confidence threshold.

If we set it higher than γ, the rule at hand will not play any role at all,
being of confidence too low for the threshold. As we lower the threshold and
reach exactly γ, the rule becomes part of the output of any standard association
mining process, but two different things may happen: the question is whether,
at the same confidence, some other “logically stronger” rule appears. If not,
X → Y will belong to the representative rules basis for that threshold; but it
may be that, at the same threshold, some other logically stronger rule is found.
For instance, it could be that both rules A → B and A → BC have confidence
γ: then A→ B is redundant and will not belong to the basis for that confidence.

Let’s then assume that the rule at hand does appear among the representative
rules at the confidence threshold given by its own confidence value γ; and let’s
keep decreasing the threshold. At some lower confidence, a logically stronger rule
may appear. If a logically stronger rule shows up early, at a confidence very close
to γ, then the rule X → Y is not very novel: it is too similar to the logically
stronger one, and this shows in the fact that the interval of confidence thresholds
where it is a representative rule is short.

To the contrary, a stronger rule may take long to appear: in that case, only
rules of much lower confidence entail X → Y , so the fact that it does reach
confidence γ is novel in this sense. The interval of confidence thresholds where
X → Y is a representative rule is large. For instance, if the confidence of A→ AB
is 0.9, and all rules that make it redundant all have confidences below 0.75, the

Confidence Width: An Objective Measure for Association Rule Novelty
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rule is a much better candidate to novelty than it would be if some rule like
A→ ABC would have a confidence of 0.88.

This motivates the following definition:

Definition 3. Fix a dataset D and a support threshold τ . Consider a rule X →
Y of confidence c(X → Y ) = γ in D, and assume that it has support at least τ
and that it belongs to the set of representative rules of confidence γ. Consider all
rules different from X → Y but such that X → Y is redundant with respect to
them, and pick one with maximum confidence in D among them, say X ′ → Y ′

(thus c(X ′ → Y ′) < γ). The confidence width of X → Y in D is

w(X → Y ) =
c(X → Y )
c(X ′ → Y ′)

Note that γ is not a confidence threshold here but just the exact value of
c(X → Y ): in order to check for the existence of X ′ → Y ′, one should mine
at lower confidence levels (but see Proposition 1 below). The confidence width
can be defined equivalently as the ratio between the extremes of the interval
of confidence thresholds that allow the rule to be representative. That is: the
highest value where the rule can belong to the representative rule basis is the
confidence of the rule; and the denominator is the highest value where there is a
different representative rule that makes it redundant, thus forcing it out of the
representative basis.

Observe that when X → Y is redundant with respect to X ′ → Y ′, its
confidence must be at least the confidence of the latter, which implies that the
confidence width is always greater than or equal to 1. For a rule X ′′ → Y ′′, the
confidence width is exactly 1 if and only if there is a rule making redundant
X ′′ → Y ′′ and having the same confidence: this is the same as saying that
X ′′ → Y ′′ is never among the representative rules.

Regarding upper bounds, in principle there is none, in that it may happen
that a rule of as large confidence as desired is only redundant with respect to
rules of as low confidence as desired. However, in many practical cases the width
stays between 1 and somewhere between 1.5 and 10, although we will see some
cases where width reaches the order of several hundreds.

3 Properties and Algorithms

We proceed to study some properties of the confidence width; by combining them
with known properties of the standard redundancy and of the representative
rules, we will obtain reasonably efficient ways to compute the width of the rules
in the basis.

Specifically, we will need first the following known property of the standard
redundancy. The formulation was proposed, in different but almost equivalent
forms, in [1], in [9], and in [19], as a candidate to a weaker notion of redundancy;
the equivalence with standard redundancy was proved only recently (see [2]).
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Theorem 1. Consider any two rules X0 → Y0 and X1 → Y1 where Y0 6⊆ X0.
The following are equivalent:

1. X1 ⊆ X0 and X0Y0 ⊆ X1Y1;
2. rule X0 → Y0 is redundant with respect to X1 → Y1.

This indicates that, in order to test for redundancy, it suffices to compare
itemsets by inclusion as in the first of these two statements. Moreover, the fol-
lowing holds:

Proposition 1. Consider a rule X → Y and a different rule X ′ → Y ′ that
makes it redundant; assume X ′ → Y ′ has maximum confidence as in the defi-
nition of width, say δ. Then X ′ → Y ′ can be chosen among the representative
rules for confidence δ.

This proposition can be proved easily by resorting to the known fact [9] that
every rule of confidence δ is redundant with respect to a representative rule of
the same confidence (possibly itself). As indicated in the previous section, rules
not in the representative basis have minimum width, namely 1. Thus, to know
the confidence width of all the rules it suffices to find it for representative rules.

We do not need to scan all frequent sets: it is known that if X → Y is a
representative rule, then XY is a closed set (any strictly larger set has strictly
smaller support) and X is a minimal generator (any strictly smaller set has
strictly larger support) [10]. There are several published algorithms that compute
the frequent closed sets and the minimal generators (see the survey [5]); in
one form or another, all of them employ the key and well-known fact of the
antimonotonicity of the frequent itemsets. These closures and minimal generators
can be used to find the representative rules whose width is to be computed,
by using the algorithm in [10]. (Note that the algorithm in [11], in principle
faster, may miss rules due to the incompleteness of the heuristic employed. This
observation will be further elaborated in a later paper. However, the ideas in
that paper will be crucial to our improvement in the next section.)

A naive algorithm follows immediately: combine these known algorithms to
construct the representative rules and scan them repeatedly, applying Proposi-
tion 1 to find, for each rule X → Y , the largest confidence c of any representative
rule that makes X → Y redundant; use Theorem 1 to test for standard redun-
dancy. Once this largest confidence c is known, the width of X → Y is clearly
w(X → Y ) = c(X→Y )

c by definition. However, notice that this algorithm requires
time quadratic in the number of representative rules.

3.1 An Improved Algorithm

We analyze now further properties of the confidence width to search for a faster
computation. The key is to avoid much of the exploration in the naive algorithm
by precomputing a small amount of side information in a single scan of the
closures lattice. We explain now what side information would be sufficient; it
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is the same as used as a heuristic in [11] to compute a large subset of the
representative rules faster. The first step is to find out more about the rules X ′ →
Y ′ that could be useful to compute the width of X → Y . Recall our assumption
that X ⊂ Y and X ′ ⊂ Y ′, that we discussed shortly after Definition 1.

Theorem 2. Let X → Y be a representative rule for a fixed dataset D at some
fixed values of support and confidence. Let X ′ → Y ′ be a different rule that makes
it redundant, and assume X ′ → Y ′ has maximum confidence as in the definition
of width. Then either X = X ′ and Y ′ is a closed set, immediate superset of Y
in the lattice of closed sets, and of maximum support among the closed supersets
of Y ; or else, Y = Y ′, and X ′ is a minimal generator properly included in X
and having minimum support among the proper subsets of X.

The proof is as follows. First apply Theorem 1, but assume that we are in
neither of the two cases, that is: X ′ ⊂ X ⊂ Y ⊂ Y ′ where all the inclusions are
proper. Consider the rules X ′ → Y and X → Y ′. Clearly, appealing again at
Theorem 1, both make X → Y redundant as well. However, since Y is closed,
s(Y ′) < s(Y ), and this implies that c(X ′ → Y ′) < c(X ′ → Y ); similarly, since
X is a minimal generator, s(X) < s(X ′), and again c(X ′ → Y ′) < c(X → Y ′).
Therefore, the confidence of c(X ′ → Y ′) is not maximum as required, and one of
the two rules X ′ → Y and X → Y ′ will be the one having maximum confidence
among those making X → Y redundant.

Now, the algorithmic alternative is as follows: along the antimonotonicity-
based construction of the frequent closures lattice and the minimal generators
(or along the reading from a file if constructed by a separate closed set miner),
we keep track of the largest existing support of the frequent closed supersets of
each frequent closed set Y , let us denote it mxs(Y ). Similarly, for each minimal
generator X, we keep track of the smallest existing support among the minimal
generators properly contained in X, let us denote it mns(X). Note that we
must compute mns(X) for all minimal generators regardless of whether they
are also closed, which is something that can happen (for instance, the empty
set is often closed, and is always a minimal generator of the smallest closed
set, possibly itself). Note that some closures Y may not have frequent closed
proper supersets, in the sense that all larger closures could fall below the support
threshold; likewise, some minimal generators X, namely, the empty set, will lack
minimal generators as proper subsets. For such cases, we leave mxs(Y ) and
mns(X) undefined. If we have all this information available, we can compute
rather easily the confidence width:

Proposition 2. Consider a rule X → Y , and assume that both mxs(Y ) and
mns(X) are defined. Then the width of X → Y is the minimum of the two
values: mns(X)

s(X) and s(Y )
mxs(Y ) . If only one of mxs(Y ) and mns(X) is defined, then

the corresponding quotient gives the width.

This follows directly from Theorem 2 since each of the two cases corresponds
to the two options for a rule of maximum confidence making X → Y redundant.
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Algorithm: fast computation of confidence widths
Given: dataset, support threshold, confidence threshold

find all frequent closed sets Y and all their minimal generators X
along the same pass, compute the values mxs(Y ) and mns(X)
for each representative rule X → Y

resort to Proposition 2 to compute w(X → Y )

Table 1. Algorithm to avoid quadratic exploration of the redundancy basis

Some rules may not have confidence width according to the definition. These
are exactly the same where both mxs(Y ) and mns(X) are undefined. They
have not arisen in our empirical analysis, and further theoretical development
regarding them is undergoing.

The properties just described lead us to the algorithm described in Table 1.

4 Empirical Validation

We have computed the widths of the association rules mined from two of the
standard FIMI benchmarks, of very different characteristics: chess, which is a
small but very dense dataset on which even high support constraints lead to
many many rules, and the largish, much sparser dataset retail coming from a
standard application domain (market basket analysis). We have computed the
representative rules and their widths and we have plotted the number of rules
passing each of a series of width thresholds. In all cases the computation has
taken just a few seconds in a mid-range laptop.

If comparatively larger width values are expected to correlate in some sense
with novelty, we wish the number of such rules above comparatively larger
thresholds to decrease substantially. This is indeed the behavior we have found.
With respect to the chess dataset, we have constructed rules of confidence 85%
out of the closures lattice formed by frequent closed sets at support 80%. Even
for such a large support, the number of closures is around 5083 and the repre-
sentative rules amount to a number of 15067. It is known from the theoretical
advances that all of them are fully irredundant, that is, omitting any of them
loses information; however, it makes no sense to expect a human analyst to look
at fifteen thousand rules.

We propose, instead, to look at the width values: for this dataset, they range
in the quite limited interval between 1 and 1.22; and we see that if we impose
a very mild bound of width above 1.005, only 2467 out of the 15067 rules reach
it. This means that all the others, even if they are indeed irredundant, this is
so due to a rather negligible confidence increase. Higher width bounds exhibit
an interesting phenomenon of discontinuity, represented by each plateau of the
graph in Figure 1 (left): the maximum confidence width of 1.22 is attained by two
rules; a third comes close, and all three have high confidences (between 97% and
99%). Then seventeen more rules show up together near width 1.18, and nothing
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Fig. 1. Chess: Number of rules per width and confidence

happens until the width bound gets below 1.13 where a bunch of 31 rules show
up together. Below 1.11 we are again at a stable figure of 134 rules, and seventy
more appear together at the already quite low confidence width bound of 1.075.
All the others, up to 15067, have extremely low width. But the same role cannot
be filled directly by confidence: the plot in Figure 1 (right) indicates that there
are no steep decreases, no plateau suggesting a good cutpoint shows up, no hint
that really any novelty is at play, and, above all, the following fact: the 51 rules
of width 1.13 or more all have confidence of 90% or higher, but there are around
1950 other rules, of lower width, attaining the same confidence. Just width is
able to focus on the 51 more novel ones.

With respect to retail, the behavior of the notion of width is very different,
and also very interesting. Huge widths are reached: there are 18 rules whose
width is beyond 560 (up to 855.94), whereas the highest next width is just
29: no rule has width between 29 and 560. Another impressive plateau has 7
additional rules of width 21, and from there on the number of rules at each
width threshold grows steadily. The different regimes below 29 (above or below
width 2) are shown in Figure 2 (left and right, respectively).

5 Conclusions

We have proposed an objective approach to the analysis of the novelty of asso-
ciation rules. Although modest and conceptually limited, in the sense that there
is no direct room to incorporate background knowledge, that must be the key
to a subjective novelty analysis, it already provides some promising behavior
on standard public benchmark datasets. We note an additional intuition that
seems can be gleaned from the current early developments: it is known that,
on the one hand, the standard support-and-confidence bound framework does a
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Fig. 2. Retail: Number of rules per width, mid and low ranges

good preliminary job for avoiding statistical noise, but, on the other hand, fail
somewhat to focus on the really interesting facts; and this is the main reason
that has led to a flourishing of variants of notions of intensity of implication
to replace confidence, blaming into it the problem. However, we consider now
that a viable alternative is to leave the standard support-and-confidence setting
on, and complement it, in order to gain further focus, with a measure that does
not check intensity of implication in an alternative way (thus, performing some-
thing intuitively analogous to confidence) but which checks a relative intensity
of implication compared to the other rules mined in the same process.

Our experimental analysis is, admittedly, somewhat limited, and we plan to
expand it and compare the two algorithms given here empirically, the naive one
and the one in Table 1; but our work so far already suggests several interesting
points. It shows that width has the ability to raise wide segments where a width
threshold is very robust, and fixing it at a close but different value may select
exactly the same rules. It tends to select rules of high confidence but is much
more selective. A currently submitted paper of ours proposes a way of selecting
in a consistent manner thresholds for confidence, support, confidence width,
and a variant of improvement ([3], [12]) that we call “blocking factor”. Also,
confidence width opens a door to a more human-centered development where
one can find ways of evaluating this formal notion of novelty with respect to
user-conceived naive notions of novelty. One potential development could be to
design an interactive knowledge elicitation tool that, on the basis of the theory
described here, could tune in, up to focusing on the user’s intuitions for novelty,
by showing a handful of rules of high width, asking the user to label them as
novel or not novel: we should develop further the theory to take into account
facts such as rules of high width (or support or confidence) being labeled as
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not novel, so that the labeling would have consequences on the values of these
parameters for the rest of the rules.
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Abstract. Discretization techniques for data set features have received 
increasing research attention. Results using discretized features are usually 
more compact, shorter, and accurate than using continuous values. In this paper, 
an algorithm called Discretization using Class information to Reduce number of 
intervals (DCR) is proposed. DCR uses both class information and order 
between attributes to determine the discretization scheme with minimum 
number of intervals. Attribute discretization order is determined based on 
information gain of each attribute with respect to the class attribute. The 
number of intervals is reduced by deleting training data at each step of attribute 
discretization. Experiments are performed to compare the predictive accuracy 
and execution time of this algorithm with several well-known algorithms. 
Results show that discretized features generated by the DCR algorithm contain 
a smaller number of intervals than other supervised algorithms using less 
execution time, and the predictive accuracy is as high or higher.  

Key words: discretization, continuous feature, data mining, classification 

1   Introduction 

Data mining is a powerful approach to extracting meaningful information from large 
and unwieldy databases. However, for efficiency, appropriate pre-processing of the 
input databases is needed. The majority of these databases usually come in a mixed 
format called “mixed-mode data” containing both discrete and continuous features, as 
shown in Table 1. In the table, feature2 is discrete while feature1, 3, and 4 are 
continuous. Some learning algorithms [4, 10, 12, 18] can handle only discrete-valued 
attributes, while some others can handle continuous attributes but still perform better 
with discrete-valued attributes [6, 11]. This drawback can be overcome by using a 
discretization algorithm as a pre-processing step for data mining.  

Discrete values offer several advantages over continuous ones, such as data 
reduction and simplification. Quality discretization of continuous attributes is an 
important problem that has effects on speed, accuracy, and understandability of the 
classification models [20]. 

Although much research has been done in the area of discretization, many 
algorithms still do not take advantage of class information to increase their 
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discretization performance. Thus, the resulting discretization schemes do not provide 
much efficiency when used in the classification process, e.g. they contain more 
intervals than necessary. Unsupervised discretization algorithms that do not use class 
information include the equal-width [1] and equal-frequency methods [17] that divide 
continuous ranges into sub-ranges. Supervised algorithms, such as statistics-based 
[11, 15], entropy-based [21], and class-attributes interdependency-based algorithms 
[13] use class information; however, these algorithms do not make use of relations 
between attributes in the database. 

Table 1. Data set contanning both decrete and continuous attributes 

ID feature1 feature2 feature3 feature4 Class 

1 17 Yes 49 33 Z 
2 19 No 48 21 Y 
3 21 No 50 50 Y 
4 21 No 53 19 X 
5 22 Yes 65 49 Y 
6 35 Yes 70 55 Y 
7 33 Yes 89 76 Z 
8 42 No 48 80 Z 
9 40 Yes 63 33 Y 

10 22 Yes 72 21 X 
11 23 Yes 80 10 X 
12 20 Yes 73 9 X 
13 19 No 65 43 Y 
14 25 Yes 90 95 Z 
15 29 Yes 73 21 Y 

 
There are algorithms [2, 5] that use both class information and relations between 

attributes in their discretization process, however, they are not computationally 
efficient. Also, discretizations with the same accuracy but with fewer number of 
intervals are preferable to those with large number of intervals since they cause less 
fragmentation of the data in the sub-nodes of decision trees [16]. The Discretization 
Using Class Information to Reduce Number of Intervals (DCR) algorithm presented 
here uses both class information and order between attributes to determine an efficient 
discretization scheme. The order of attribute discretization is determined based on 
information gain of each attribute with respect to the class attribute. The number of 
intervals is successively reduced by deleting training data at each step of 
discretization. DCR is able to find the minimum number of discrete intervals while 
maintaining the accuracy of the classifier. Experimental results show that the 
discretized features generated using DCR nearly achieve the smallest number of 
intervals for a given level of accuracy. Further, DCR uses less execution time than 
well-known supervised discretization techniques such as CAIM and ChiMerge.   
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In the next section, we present the class-based discretization process. In Section 3 
and 4 we present the DCR discretization concepts and algorithm, resp. we discuss the 
results of comparative experiments in Section 5. Finally, Section 6 gives the 
conclusion and further work. 

2   Class-based Discretization 

In this section, we present class-based discretization process. First we describe the 
discretization process for each attribute; then we describe the information gain used 
for sorting the attributes to be discretized by the process that we purpose; the order of 
attribute in discretization makes the result different. Lastly, we describe the quanta-
matrix [9] that shows the relation between class and discretization scheme.  

2.1   Univariate discretization process 

Discretization can be univariate or multivariate. Univariate discretization quantifies 
one continuous feature at a time while multivariate discretization simultaneously 
considers multiple features. We mainly consider univariate (typical) discretization in 
this paper. A typical discretization process broadly consists of four steps: 

1. Sort the values of the attribute to be discretized. 
2. Determine a cut-point for splitting or adjacent intervals for merging. 
3. Split or merge intervals of continuous values, according to some criterion. 
4. Stop at some point. 

2.2   Information Gain 

Information gain is used in C4.5 [7] to choose the best attribute (maximum 
information gain) for splitting the data, but this method can handle only discrete 
values. For continuous valued attributes, there is a need for a discretization algorithm 
that transforms continuous attributes into discrete ones. Using the data in Table 1 as 
an example, calculate information gain of features 1, 3, and 4 using the equal width 
discretization method, where the range of values of a feature is evenly divided into 
equi-width intervals, to discretize these attributes before calculating the information 
gain. If we discretize the features in Table 1 into five intervals, then the information 
gains of feature1, 3, and 4 are 0.78, 1.023, and 1.53, resp.  

2.3   Class-attribute interdependency discretization 

The main objective of this paper is to find the discretization scheme for each 
continuous attribute that contains the minimum number of intervals while minimizing 
the loss of class-attribute interdependency. The quanta-matrix plays a major role in 
achieving this purpose. Table 2 shows a quanta-matrix of feature f of a given 
discretization schema D. In this quanta-matrix, training dataset consists of M 
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examples, where each example belonging to only one of the S classes. If we discretize 
attribute fi -- for which d0 is the minimum value and dn is the maximum value -- into n 
intervals, then the discretization scheme of attribute fi is 

 

Di = {[d0,d1], (d1,d2], … , (dn-1,dn]} 
 

Using discretization scheme Di, each value of attribute fi can be classified into one 
of the n intervals.  

Table 2. Quanta-matrix of feature f of a given discretization scheme D 

Interval 
Class 

[d0,d1] .. (dr-1,dr] .. (dn-1,ddn] 
Class Total 

C1 q11 .. q1r .. q1n q1+ 
: : .. : .. : : 

Ci qi1 .. qir .. qin qi+ 
: : .. : .. : : 

CS qS1 .. qSr .. qSn qS+ 

Interval Total q+1 .. q+r .. q+n M 

 
In Table 2, qir is the total number of continuous values belonging to the ith class 

that are in interval (dr-1,dr] ; qi+ is the total number of objects belonging to the ith class, 
and q+r is the total number of continuous values of attribute fi that are within the 
interval (dr-1,dr], for i = 1, 2, ..., S and r = 1, 2, ..., n. Table 3 shows a quanta-matrix of 
feature4 (taken from Table 1) with discretization schema D4 = {[9,20], (20,65.5], 
(65.5,95]}. 

Table 3. Quanta-matrix of feature4 from Table 1 with the discretization schema D4 = {[9,20], 
(20,65.5], (65.5,95]} 

Interval 
Class 

[9,20] (20,65.5] (65.5,95] 
Class Total 

X 3 1 0 4 

Y 0 7 0 7 

Z 0 1 3 4 

Interval Total 3 9 3 15 
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3   Discretization using Class Information to Reduce Number of 
Intervals 

In this section, we describe the DCR supervised discretization algorithm whose 
objective is to maximize predictive accuracy while generating a (possibly) minimal 
number of discrete intervals. To maximize the predictive accuracy, DCR uses class 
intervals, reduces training transactions at each step of attribute discretization. 

3.1   Using class information to find the best cut points 

To evaluate the relation between the discretization scheme and class for each 
attribute, a criterion called DCR is defined as (using the notation as in Table 2): 

2

1 1

n S

ir r
r i

q q
DCR

n

+
= ==

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑
 

(1) 

The DCR value is the average of the distribution of class ( 1
n
r=∑ ) in each interval 

( 1
2S

i ir r
q q= +

∑ ). It has the following properties: 
• The algorithm is able to find the discretization scheme where each interval has one 

major class, consider each interval r in the quanta-matrix, qir value is in range [0, 
q+r]. Thus, an interval has the maximal one major class when qir equals q+r. Since 
DCR depends on 2

1
S
i irq=∑ , it achieves its maximum when each interval has all of its 

values grouped within a single class label. 

Table 4. Distribution of class for each interval 

 
 
• The 2

irq  values are used to compute the distribution of classes in each interval. To 
find the discretization scheme when each interval has one major class, the 
discretization scheme in Table 4(a) might be better than the scheme in Table 4(b). 
DCR is able to distinguish which of the two scenarios is better. Because the 
interval in 4(a) has a smaller distribution of classes and it may possibly use only 

 Interval  Class 
.. (dr-1,dr] .. 

Class Total

C1 .. 0 ..  
C2 .. 5 ..  
C3 .. 10 ..  

Total  15   

 Interval  Class 
.. (dr-1,dr] .. 

Class Total 

C1 .. 2 ..  
C2 .. 3 ..  
C3 .. 10 ..  

Total  15   

  (a)            (b) 
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one attribute to classify non-majority class. But the interval in Table 4(b) must use 
at least two attributes for classification. 

• The 2

irq  values are divided by q+r for normalization. Numerical overflow errors can 

be avoided by calculating 2

ir rq q
+

 as   (qir /q+r) qir, so the maximum value is qir. 

3.2   Deleting training transactions to generate the minimum number of discrete 
intervals 

We use the relation between attributes to reduce the size of training data by removing 
transactions for which the (continuous) values are in the interval having all of its 
values grouped within a single class label. Thus, the next continuous attribute has 
only unclassified transactions to be discretized. This process can also reduce the 
execution time for classifying other attributes. Further, the size of the training data is 
reduced at each attribute discretization. Fig. 1(a) shows the discretization scheme 
{[9,20], (20,27], (27,38], (38,65.5], (65.5,95]} of feature4. 

 

 
Fig. 1. At each attribute dicretization, trainning transactions are deleted to reduce the number of 
intervals 

In Fig. 1, the class of continuous values that are in intervals [9,20], (38,65.5], and 
(65.5,95] are grouped within a single class label X, Y, and Z, resp, so these 
transactions are removed as they are classifiable transaction. Fig. 1(c) shows the 
remaining transactions that are used in next attribute to discretization. 

In this method attributes are discretized one by one, and the order of attribute 
discretization may effect the final classifiers. Hence, the DCR algorithm uses the 
relation between attribute and class to compute the information gain value for each 
attribute with class and then discretize each attribute by its information gain value in 
descending order. 
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4   DCR Algorithm 

The optimal discretization scheme can be found by searching over the space of all 
discretization schemes for the one with the highest DCR value; however, such a 
search is highly combinatorial and time consuming. Instead, the DCR algorithm uses 
a greedy approach, which searches for the approximate optimal value of the DCR 
criterion by finding locally maximum values of the criterion. Although this approach 
does not guarantee a global maximum, it is both computationally inexpensive and 
results in a near optimal discretization scheme, as shown in Section 5. The algorithm 
is composed of two principle steps: 

1. Order the attribute to be discretized. 
2. Discretize and reduce the size of current training data for each attribute 
Pseudo code of the DCR algorithm is given in Fig. 2. 
 
 

 
 
 
 
 
 
 
 
 

 

Fig. 2. Pseudocode of the DCR Algorithm 

In steps 1-3 the algorithm orders attributes to be discretized based on the 
information gain value in descending order. Based on the information gain of 
attributes in section 2.2, the algorithm will discretize feature4, 3, and 1, resp., in step 
5.  

In the discretization process (steps 6-19), DCR starts with a single interval that 
covers all possible values of continuous attribute Fi and divides it interactively. In 
step 12, form a set of all distinct values of fi in ascending order, and initialize all 

 

Input: Training data set DB consisting of continuous attributes Fi, and class attribute C 
from a total of s classes 
 

1. for each Fi 
2. Ei = information_gain(Fi, C); 
3. arrange_order_desc(F, E); 
4. db = DB; 
5. for each fi  // feature Fi of current training data set db 
6. di0 = min(Fi); 
7. din = max(Fi); 
8. Di = {[di0, din]} 
9. if (db ≠ Ø) then 
10. k = 1; 
11. MaxDCR = 0; 
12. EB = essential_boundary_set(fi); 
13. Repeat 
14. DCR = compute_max_dcr_boundary(fi, Di, EB); 
15. If (DCR > MaxDCR) or (k < s) then 
16. Update Di with a boundary that has the highest DCR 
17. MaxDCR = DCR; 
18. k = k + 1; 
19. Until (DCR <= MaxDCR) and (k >= s) 
20. db = reducing_transaction(db, Di); 
21. D = D U {Di} 

 

Output: Set of all discretization scheme D 
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possible interval boundaries B with all the midpoints of all the adjacent pairs in the 
set, denoted by B = {a0, …, am}. If the instances that fall into the intervals (ai-1, ai] and 
(ai, ai+1] belong to the same class, remove ai from set B until there are instances that 
fall into two adjacent intervals but do not belong to the same class. This results in an 
essential boundary set EB = {b0, …, bn}, where n < m. For example, in Fig. 3 point 
9.5 is the midpoint between transactions 11 and 12 both belonging to class X, so the 
point 9.5 is not included in set EB. The value 27 is the midpoint between feature 
value 21 (transactions 2, 10, 15) and feature value 33 (transactions 1 and 9) belonging 
to different class labels, hence 27 is added to set EB. Finally, the EB set for feature4 
is {20, 27, 38, 65.5}.  

 

 
Fig. 3. Finding essential interval boundaries (EB) of feature4 in Table 1 

From all possible division points that are tried (with replacement) in step 14, the 
algorithm chooses the division boundary that gives the highest value of the DCR 
criterion. For example, in finding the division points of feature4 the initial 
discretization scheme D4 is {[9, 95]} and the set of essential interval boundaries EB is 
{20, 27, 38, 65.5}; as shown in Fig. 3, the algorithm adds an inner boundary value 
that is not already in D4, from EB, and calculates the corresponding DCR value. The 
algorithm accepts the boundary value with the highest value of DCR, e.g., for the first 
element of EB, point 20, the new discretization scheme D4 is {[9,20], (20,95]} and the 
data in the quanta-matrix are as in Fig. 4. Thus, the DCR value of this discretization 
scheme is 4.25. 

 

 

Fig. 4. The calculation of DCR value for feature4 in Table 1 where D4 is {[9,20], (20,95]} 

For boundary points 27, 38, and 65.5, the corresponding DCR values are 3.944, 
3.41, and 4.25 resp. After all tentative additions have been tried, the point with the 
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highest DCR value (20 in this example) is added to Di in step 16. The algorithm 
assumes that every discretized attribute needs a number of intervals at least equal to 
the number of classes or that the DCR value shows improvement at each iteration, 
assuring that the discretized attribute can improve subsequent classification. Thus, the 
discretization scheme of feature4 is {[9,20], (20,27], (27,38], (38,65.5], (65.5,95]} as 
in Fig. 1(a). Step 20 creates a new training data set db by remove classifiable intervals 
as in Fig. 1(c). 

5   Experimental Results 

5.1   Experimental Set-up 

The DCR algorithm is compared with five state of the art discretization algorithms 
including two unsupervised algorithms and three supervised algorithms. The 
unsupervised algorithms are equal width (EW) [1] and equal frequency (EF) [17]; 
supervised algorithms are the CAIM [13] splitting-based discretization, ChiMerge 
[11] merging-based discretization, and a discretization algorithm in the WEKA open-
source data mining library. 

Data for the experiments consist of six well-known continuous and mixed-mode 
data sets from the UCI repository of Machine Leaning Database [3]: Iris dataset (iris), 
Ionosphere dataset (ion), New-Thyroid dataset (thy), SatImage dataset (sat), 
Waveform dataset (wav), and Heart Disease dataset (hea). Properties of the data sets 
are listed in Table 5.  

The unsupervised algorithms require the user to specify the number of discrete 
intervals. In the experiments, we set the number of intervals to be close to the number 
obtained with the DCR algorithm for purpose of comparison. 

Table 5. Properties of data sets used in experiments. 

5.2   Analysis of Results 

In the experiments, we evaluated the results in terms of number of intervals, 
execution time, and accuracy of rules generated by the C5.0 algorithm. 

Datasets Properties 
iris ion thy sat wav hea 

Number of classes 3 2 3 6 3 2 
Number of examples 150 351 215 6435 3600 270 
Number of attributes 4 34 5 36 21 13 
Number of continuous attributes 4 32 5 36 21 6 
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5.2.1   Number of intervals 

Table 6. Number of intervals for each discretization method. 

Datasets Discretization 
Method iris ion thy sat wav hea 

Rank 
mean 

EW 12 64 15 180 63 12 2.0 
EF 12 64 15 180 63 12 2.0 
CAIM 12 64 15 216 63 12 2.3 
ChiMerge 15 398 28 752 801 33 6.0 
WEKA 10 117 14 475 81 13 3.8 
DCR 9 64 14 154 62 12 1.0 

 
Table 6 shows that the DCR algorithm generated discretization scheme with the 
smallest number of intervals for all data sets. A smaller number of discrete intervals 
reduces the size of the data and helps to better understand the meaning of discretized 
attributes. This is a major advantage of the DCR algorithm. 

5.2.2   Discretization execution time 

A comparison of the discretization times is given in Table 7. We implemented all 
discretization algorithms in the same programming language, except the WEKA 
algorithm and Built-in C5.0. Thus, they were not included in the comparison. 

Table 7. Discretization execution time. 

Datasets Discretization 
Method iris ion thy sat wav hea 

Rank 
mean 

EW 0.110 3.786 0.231 1233.254 381.999 0.300 1.8 
EF 0.090 3.806 0.220 1198.744 337.575 0.320 1.5 
CAIM 2.004 77.862 4.740 2140.000 1260.000 13.489 4.3 
ChiMerge 8.362 2399.089 45.375 913.433 517.164 39.817 4.0 
DCR 0.631 14.962 1.752 1477.004 864.213 3.305 3.3 

 
The comparison of execution times shows that the unsupervised discretization 

algorithms exhibit the shortest execution times; this is to be expected since they do 
not process any class-related information. Among the supervised algorithms, DCR 
exhibited the smallest execution time for four out of six data sets, but the second 
highest execution time (after ChiMerge) for sat and wav. Still, based on average rank, 
DCR ranked fastest among the supervised algorithms. 
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5.2.3   Accuracy comparison 

The discretized data sets generated in Section 5.2.1, were used as input to C5.0 
algorithms to generate classification rules. The accuracy of the resulting classification 
rules were compared. Since C5.0 can generate data models from continuous 
attributes, we compared its performance using generated rules from raw data against 
the results achieved using discretized data produced by the six algorithms. A 10-fold 
cross-validation test was performed using all data sets: each data set was divided into 
10 parts of which nine parts were used as training data and the remaining one part as 
test data. The experiments were performed for all 10 choices of the test data. The final 
predictive accuracy was taken as the average of the 10 predictive accuracy values. 

Table 8. Comparison of the accuracies achieved by the C5.0 algorithm for six data sets using 
the seven discretization schemes. 

Datasets Discretization 
Method iris ion thy sat wav hea 

Rank mean 

EW 97.3330 90.0285 86.0465 85.9518 74.6667 75.5556 5.0 
EF 94.6667 81.7664 89.7674 85.2681 76.5000 80.0000 4.8 
CAIM 94.0000 91.4530 94.8837 85.8430 77.0000 77.4070 4.2 
ChiMerge 97.3333 92.0228 93.0233 83.3877 71.6111 76.2963 4.7 
Built-in C5.0 95.3020 90.8571 91.5888 85.9341 75.8544 78.8104 4.2 
WEKA 93.2886 94.0000 94.3925 87.5971 77.6605 81.4126 2.7 
DCR 94.6667 94.3020 96.2791 85.9518 78.7778 78.5185 2.2 
 
The DCR algorithm exhibited the highest accuracy for three of the six data sets; 

WEKA was most accurate for two datasets and nearly as accurate as DCR for three 
other data sets. 

6   Conclusions and Future work 

Experimental results comparing several discretization algorithms using standard data 
sets indicate that the DCR algorithm performs discretization with fewer intervals and 
overall lower run time while still providing classifiers with high predictive accuracy. 
On average it had the fastest run-time of all supervised algorithms. The resulting 
discretized data and classifiers were not only more compact, but resulted in high 
predictive accuracy for all six experimental data sets.  The WEKA algorithm also 
showed high predictive accuracy, but required more discretization intervals. 

In the future work, we will focus on increasing the efficiency of discretization in 
the context of mixed-mode data. Another interesting research direction is to 
investigate other measures of interestingness [14, 19] as a way of optimizing the 
attribute discretization order. 
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A framework for monitoring classifiers
performance: when and why failure occurs

Nitesh V. Chawla

University of Notre Dame, USA

Abstract. Classifier error is the product of model bias and data vari-
ance. While understanding the bias involved when selecting a given learn-
ing algorithm, it is similarly important to understand the variability in
data over time, since even the One True Model might perform poorly
when training and evaluation samples diverge. Thus, the ability to iden-
tify distributional divergence is critical towards pinpointing when frac-
ture points in classifier performance will occur. Contemporary evaluation
methods do not take the impact of distribution shifts on the quality of
classifiers predictions. In this talk, I present a comprehensive framework
to proactively detect breakpoints in classifiers predictions and shifts in
data distributions through a series of statistical tests. I outline and utilize
three scenarios under which data changes: sample selection bias, covari-
ate shift, and shifting class priors.
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Abstract. What regard should a learning algorithm hold for the dif-
ferent information traces found in a sample? Answering this question
objectively is not easy. Moreover, given that a full range of traits can
be found in a human learning analogy, from the most daring or ingen-
uous, to the most conservative or incredulous. But in AI domains it is
a must to clearly state the right will for believing what is seen when
mining data bases. A key concept in this matter is assertiveness. The
aim of this work is to ponder an approach to assertive KDDB, based
on a feature cardinality driven distance measure to uninformative distri-
butions. From this perspective, we present an alternative option to the
support-confidence framework. The biases of this measure have not yet
been thoroughly studied but the measure itself has proved to be quite
effective as a heuristic when searching to optimize a sample in a simulta-
neous multi-interval discretization of continuous features. The empirical
results show that the most relevant association or classification rules
are revealed. Also, optimal cardinalities and optimal subsets of parents
are found for any feature, according to a natural bias toward the MDL
principle. As a conclusion, it appears the measure assertively captures
knowledge. This may be useful for other data mining issues.

1 Introduction

It is nothing new to point out that some kind of a disappointing shadow of
confusion hovers over the data mining scene. The flurry of different measures as
well as the comprehensive literature on selecting the right ones for each task at
hand ([4],[6]) is no more than a symptom.

In my opinion, three basic objections are the culprit: (i) the stochastic essence
of any sample is somewhat misunderstood, (ii) some subtleties about what
knowledge is or, more precisely, what better knowledge is, are somewhat set
aside, and (iii) the will for believing what is seen is not clearly stated.

These objections are further exposed in the next section as well as through-
out this paper. They form the basis for introducing an alternative approach to
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knowledge discovery wherein a new measure is suggested. The aim is to present
this approach as an open door to further research while the expression given for
the measure is yet to be considered an open question.

A thorough analysis on the properties [2] and biases [3] of this measure , as
well as some examples should be presented, but unfortunately, space is limited.

In order to state a general framework addressing association and classification
rules, as well as feature subset selection, clustering and graphical modelling issues
we will use the following general terminology. Let’s consider a domain or concept
characterized by a set of m multinomial features X =

{
X1, X2,. . ., Xm

}
and a

set {D} of N examples over these features. Let’s consider two any features of this
domain and denote Xp = {xp

1, x
p
2, . . . , xp

r} and Xq = {xq
1, x

q
2, . . . , xq

s} as the set
of possible outcomes of features Xp and Xq with cardinalities crd (Xp) = r and
crd (Xq) = s, respectively. Also, for any pair

(
xp

i , x
q
j

)
we denote np

i , n
q
j and npq

ij

as the marginal and joint frequencies given in {D} .
Additionally and for the purpose of clarity, we state three levels of relation-

ship: (i) we refer to a rule whenever we are considering a relation like xp
i → xq

j ,
(ii) we refer to a subpattern whenever we are considering the set of rules in-
cluded in the relation xp

i → Xq, and (iii) we refer to a pattern whenever we are
considering the whole set of rules included in the relation Xp → Xq. These des-
ignations will hold, unless explicitly noted, independently of our intention when
considering the relationships (association, classification or whatever).

2 Some Objections to Objective Measures

The most important group of objective measures is based on probability. Given a
rule xp

i → xq
j , coverage is given as the marginal probabilities of antecedent P (xp

i )
and consequent P

(
xq

j

)
of the rule, support is given by the joint probability

P
(
xp

i , x
q
j

)
, and confidence is given by the conditional probability P (xp

i

∣∣xq
j

)
.

Down from here, all objective measures of interestingness combine in different
ways these or directly related factors, taken from raw data.

Let’s consider the simple example of a transaction data set given in Tab.1. 1

Milk Bread Eggs
1 0 1
1 1 0
1 1 1
1 1 1
0 0 1

Table 1. Transaction Dataset

1 This example is extracted from [2].
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Coverage for Milk is 4/5 and hence coverage for NoMilk is only 1/5. Does it
make any sense to consider a rule like Milk → Bread when there is no comparable
evidence in the dataset for the rule NoMilk → Bread?

Some of the defined measures try to take this fact into account, introducing
factors with the probabilities for counter facts in some way. But that is not the
question. The real question is whether there is some evidence missing in the
dataset in order to adeptly measure the significance of that possible rule. This
topic is not new, and has two loose ends:

1. Due to its stochastic nature, any sample should be considered as being less
than 100% reliable. Therefore, whenever we consider evidential support from
raw data, the estimates we make are afected by the subjective consideration
of the sample as being 100% reliable, even though they are estimates. In
other words, would it be fair to always estimate a 0/100% of probability for
a rule with a 0/100% of support?

2. On the other hand, a rule should always be considered, at least, within the
framework of its subpattern [5]. If a dependence relationship between two
features do exist, this dependence should be patent for the whole pattern.
From this point of view, it is important to distinguish between structural
evidence and parametrical evidence. The former relates to the pattern or
subpattern levels and expresses whether a remarkable relationship may exist.
The latter refers to each one of the rules in the pattern and expresses how
this relationship acts whenever it exists.

Let’s think again about the transaction example of bread, milk and eggs. For
an association rule like Milk → Bread, we have a support of 3/5 and a confidence
of 3/4 and for an association rule like (Milk, Bread) → Eggs we have a support
of 2/5 and a confidence of 2/3. While the combination (Milk, Bread) has a total
of four possible outcomes, the combination (Milk, Bread, Eggs) offers as much as
eight possible outcomes, therefore with a much lower prior probability. Should
we really believe that the former is better supported than the latter? Should we
consider these levels of confidence from an absolute perspective? In other words,
is the same kind, quantity/quality, of knowledge given by these two rules?

In this case, the argument is quite subtle and it has to do with the level of
certainty/uncertainty associated with a feature as a function of its cardinality
or what is also referred to as the quantity/quality of knowledge given by that
feature. The larger the cardinality of the features involved in a rule, the more
accurate and valuable is the information, but the lesser the prior probability of
finding that rule in the dataset.

These topics have been somewhat overlooked, and this new approach tries to
offer a way to address this omission.

3 Assertiveness by means of Objectivity

One really assertive measure should be defined by assuring an impartial compar-
ison within any rule’s evidence detected in the sample. Recalling the objections
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raised above, three conditions should be met for this assumption to be true: (i)
the sample should be 100% reliable and equilibrated or otherwise this should be
taken into account in some way, (ii) the quantity/quality of knowledge expressed
by the rule should be taken into account in some way, and (iii) the fairest balance
between seeing and believing should be guaranteed.

In order to define such and impartial measure we state the following three
concepts:

Definition 1. A feature Xp ∈ X, with crd (Xp) = r, is in perfect marginal
distribution (pmd) whenever all its possible outcomes are equally covered, that
is, ∀xp

i ∈ Xp all marginal frequencies are np
i = N/r

Ideally, if all features in a sample were in pmd, all rule’s prior probability
would be maximally equilibrated.

Definition 2. Two features (Xp, Xq) ∈ X, with crd (Xq) = s, are in absolutely
incoherent conditional distribution (aicd) whenever ∀

(
xp

i , x
q
j

)
∈ (Xp, Xq) all

joint frequencies are npq
ij = np

i /s

Again, this is an ideal situation, possible only between features with equal
cardinality, but clearly conveys a state of minimum information.

Definition 3. The knowledge factor Q, which is only briefly introduced here, is
defined as the degree of accuracy associated to a feature Xq as a function of its
cardinality, crd (Xq) = s, given by,

Q = (s− 1) /s (1)

On one hand, independently from any sample or domain, pmd and aicd state
two clearly defined uninformative distributions to take distances from:

1. for feature Xq, an expression of its marginal distribution distance to the pmd
is given by,

∆ (Xq) =
∑

j

(
nq

j − N
s

N
s

)2

=
∑

j

(
s

nq
j

N
− 1

)2

. (2)

2. respect to feature Xp, an expression of Xq’s conditional distribution distance
to the aicd is given by,

∆ (Xq |Xp) =
∑

i,j


npq

ij −
np

i

s

np
i

s




2

=
∑

i,j

(
s

npq
ij

np
i

− 1

)2

. (3)

What should be kept in mind, is that expressions (2) and (3) are measuring
exactly the same concept.2

2 Strictly speaking, this expressions don’t hold the formal properties of a metric dis-
tance functional (particularly, the triangular inequality does not make sense). They
should rather be regarded as deviations.I hope this is not going to be misleading.
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On the other hand, raw distances given in (2) and (3) are clearly affected by
a strong bias due to the cardinality of the features.

The philosophy behind this approach is that, taking the knowledge factor
as a base expressing the quantity/quality of knowledge, a transformation can
be applied in order to address this bias. The main contribution of this work
is to present a general expression for this transformation, wherein alternative
and significantly different measures to coverage, support and confidence, can be
derived. These new measures intend to be as objective as possible and intend to
state the most assertive will to believe what is seen. The final purpose is to allow
an objective comparison between any trace of rule/pattern found, regardless of
the actual reliability of the sample and regardless of the cardinality of the features
involved, addressing the objections formerly exposed.

4 Defining the Measure

A useful transformation of such distances is given by the general function,

Z (x) = exp

(
α

ln (Q)
Q2

(s x− 1)2
)

, (4)

where x can either refer to the marginal or conditional distribution, nq
j/N or

npq
ij /np

i , whatever be the case.3

Aiming at simplicity, this expression can be rewritten as,

Z (x) = bxp

(
1

Q2
(s x− 1)2

)
, (5)

where bxp (knowledge factor exponential base) is a self allowed notation, derived
from exp (natural exponential base) with analogous meaning, that is, bxp (K) ≡
QK .

The proximity of this function to a normal distribution, N
(

1
s , Q

s

√
−1

2 ln(Q)

)

is clear, with two obvious differences which are: (i) it is not a probability distri-
bution, but a distance distribution, so not normalized as a mass function, and
(ii) it makes sense only in the range 0 ≤ x ≤ 1.

Therefore I call this function the QNormal distance distribution, QN
(

1
s , Q

s

)
,

which is depicted in Fig.1 for different values of s.
At the mean, given by 1/s, its value is 1, and at the boundaries the values

are given by,

Zz ≡ Z (0) = bxp

(
1

Q2

)
; Zn ≡ Z (1) = bxp

(
s2
)

. (6)

3 The factor α has to do with the prior credibility we can give to the sample. Its
thorough treatment lies beyond the scope of this work, so let’s consider α = 1.
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4.1 Presence

Applying the general expression given in (5) to the marginal distribution of
feature Xq, we have,

∀xq
j ∈ Xq , zq

j ≡ Z

(
nq

j

N

)
= bxp


 1

Q2

(
s

nq
j

N
− 1

)2

 , (7)

Combining (7) with (6) in order to fit values into (0, 1), we can derive an
alternative and significantly different measure of coverage, which I call presence,
given by,

bq
j =

1
s

(
zq

j − Zz

1− Zz

)
; 0 ≤

nq
j

N
≤ 1

s
, (8)

bq
j =

1
s

(
zq

j − Zn

1− Zn

)
;

1
s
≤

nq
j

N
≤ 1 , (9)

This function is depicted in Fig.2. The total presence of a feature is then
given by Bq =

∑
j

(
bq
j

)
, with a maximum value of 1, given when all possible

outcomes for the feature are equally covered. As long as coverage of that feature
moves away from the pmd in any direction, the value of presence decreases,
vanishing at the boundaries.
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Fig. 2. Presence function for 2 ≤ s ≤ 15.

4.2 Coherence

Applying the general expression given in (5) to the conditional distribution
(Xq | Xp), we have,

∀
(
xp

i , x
q
j

)
∈ (Xp, Xq) , zpq

ij ≡ Z

(
npq

ij

np
i

)
= bxp


 1

Q2

(
s

npq
ij

np
i

− 1

)2

 , (10)

Combining (10) with (6) in order to fit values into (0, 1) , we can derive an al-
ternative and significantly different measure of confidence, which I call coherence
given by,

cpq
ij =

1
r s

(
1 −

zpq
ij − Zz

1− Zz

)
; 0 ≤

npq
ij

np
i

≤ 1
s

, (11)

cpq
ij =

1
r s

(
1 −

zpq
ij − Zn

1− Zn

)
;

1
s
≤

npq
ij

np
i

≤ 1 , (12)

This function is depicted in Fig.3. The total coherence of pattern Xp → Xq

is then given by Cpq =
∑

i,j

(
cpq
ij

)
, with a maximum value of 1, given when each

subpattern is maximally coherent, as it is stated in the following definition.

Definition 4. The conditional distribution (Xq | Xp) is maximally coherent
when ∀xp

i ∈ Xp , ∃xq
m ∈ Xq , such that, npq

im = np
i and ∀xq

j 6=m ∈ Xq , npq
ij = 0 .

And being both conditions necessary for the maximum coherence, they are
both assigned the same value of coherence 1/ (r s) .

Obviously, it is an asymmetric measure, so that most of the time it will be
cpq
ij 6= cqp

ji .
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Fig. 3. Coherence function with r = 2 and for 2 ≤ s ≤ 15.

4.3 Utility

Finally, combining the two former measures, we obtain the utility measure for
the rule xp

i → xq
j , which is given by,

upq
ij = cpq

ij (bp
i r)

(
bq
j s
)

, (13)

The total utility of pattern Xp → Xq is then given by Upq =
∑

i,j upq
ij , with

a maximum value of 1, given when coherence is maximal and presence for both
features is perfectly equilibrated.

A depiction example of the utility function for xp
i → xq

j with (r = 2, s = 3)
and being Xp in pmd is given in Fig.4.
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By definition, utility is inversely related to the total amount of uncertainty of
the consequent given that the antecedent is known, (see [1] for a related discus-
sion). Even in the case of independence, Up⊥q ≥ 0, being zero only when Xq is
in pmd. This expresses the idea that even being independent it is still possible to
get some certainty about the consequent, though coming from its own marginal
distribution. In such a case, there exists a subspace in the set of all possible joint
distributions, in the neighbourhood of independence, in which Upq ≤ Up⊥q. This
suggests the daring idea of expanding the concept of independence: it is not the
single point where P (Xp, Xq) = P (Xp) P (Xq) but the whole subset of joint
distributions for which Upq ≤ Up⊥q, that is, where the total uncertainty is even
greater than that given in independence.

4.4 Parametrical Perspective

Finally, the QNormal distance distribution holds yet another possible derivation
from the parametrical point of view, which clearly explains what it is conceptu-
ally being done.

From the inversion of the second half of the curve, we can derive the following
expression,

Θ (x) =
Z (x)

2
, 0 ≤ x ≤ 1

s
(14)

Θ (x) =
(

1− Z (x)
2

)
,

1
s
≤ x ≤ 1 . (15)

The depiction of this function is given in Fig.5.
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Fig. 5. Theta function for 2 ≤ s ≤ 15.

In contrast to the raw interpretation resulting from measures like coverage,
support and confidence, this function translates the parameters to a common
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space where all of them can be seen relatively to the quantity/quality of knowl-
edge they express.

There’s a saddle point at the frequency given by 1/s, which represents the
equilibrium corresponding to the state of minimum information (pmd or aicd),
and moving away from that point this equilibrium is consequently and gradually
broken in one or other direction.

The breaking gradient is determined by the σ parameter (depicted in Fig.6),
given as,

σ =
Q

s
=

(s− 1)
s

1
s

. (16)
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Fig. 6. Sigma function for 2 ≤ s ≤ 15.

It combines two factors of s expressing two clashing facts: (i) the Q factor
expresses the idea that the more the cardinality, the more accurate the informa-
tion given by the feature, therefore σ increases and the gradient decreases, so
that more evidence must be seen in order to break the equilibrium, (ii) whereas
the 1/s factor expresses the idea that the more the cardinality, the less the prior
probability for the state of both minimum and maximum information (bigger
entropy), therefore σ decreases and the gradient increases, making it easier to
reach it.

Still another notable difference is that this expression (as depicted in Fig.7)
gives non-zero values at the zero frequency and non-one values at the frequency
one, therefore providing a straight path to a full family of parameters, that is,

Θ (0) =
1
2

bxp

(
1

Q2

)
; Θ (1) =

(
1− 1

2
bxp

(
s2
))

. (17)
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Fig. 7. Theta(0) and Theta(1) functions for 2 ≤ s ≤ 15.

The non-zero values express the uncertainty associated to the fact of having
no evidence of something. The more the cardinality, the more the prior proba-
bility of such a case, so the uncertainty increases. The non-one values express
the uncertainty that should be regarded, in spite of having full evidence of some-
thing, given the stochastic nature of a sample. The more the cardinality, the less
the prior probability of such a case, so the uncertainty decreases and the value
tends to one.

Obviously, this expression is not normalized; it is not a mass function. It does
not directly translate evidence into probabilities; rather, it translates traces of
evidence into biases over the equilibrium. Anyway, normalization allows deriving
a complete family of parameters from this expression. In classification issues, this
conservative understanding of evidence usually turns to be enough and in most
of the cases even better than a raw interpretation.

It’s hardly worth mentioning, that an interesting option arises from the pos-
sibility of applying this parametrical model to any of the measures already exis-
tent.

5 Conclusions

This expression intends to give an equable, impartial and equilibrated measure
of dependence relationship, taking into account its relative degree of support and
its associated quantity/quality of knowledge.

Coherence is measured as a trace of dependence. It’s to be assumed that
whenever two features are dependent, this dependency should be patent for the
whole pattern, moving away their conditional distribution from the aicd. On the
other hand, high rates of coherence would be easily achieved with respect to a
feature with a great bias in its marginal distribution toward or against one of its
possible outcomes. That’s the correction introduced into the expression of utility
by the measure of presence. Good coherence but poorly or excessively supported
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by the sample would be punished by the presence factor, giving poor rates of
utility.

Equanimity is given by the fact that presence and coherence are measured
exactly as the same concept, a distance to their respective uninformative distri-
butions, guarantying this way the most possible assertive balance between seeing
(presence, coherence) and believing (utility).

From a summarization point of view, being the measure defined at the least
significant level, it can be summed up to whatever may be of interest, providing
ranked classifications not only at pattern, subpattern or rule levels, but even at
feature and sample levels. Therefore, relevance at each level can be objectively
analyzed.

At pattern level, the utility measure relates to marginal dependence. How-
ever, this measure is directly extensive to relationships like (Xp, Xq) → Xc. In
this case, what is measured turns out to be the relation of conditional depen-
dence (Xp⊥Xq |Xc). Therefore, this extended measure of utility can be applied
to any subset of parents of a feature, providing an ordered list of classification
rules. Both matters have significant implications regarding to clustering and/or
graphical modelling. At feature level, conclusions can be derived related to feature
subset selection issues.

A striking practical application is to implement this measure as a heuristic
in a search in order to optimize a simultaneous multi-interval discretization of
a sample with some/all continuous features. This application has been tested
both in real domain and synthetic data bases, and has shown that the measure
leads to optimal cardinalities and optimal subsets of parents for each feature,
according to a natural bias to the MDL principle.
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Abstract. A rule importance measure is used to evaluate how impor-
tant are the rules which characterize a data set. This measure was de-
signed based on association rules and it has been proven to be effective to
enumerate the most important rules of all rules generated. However, since
rule importance is an objective measure, its usage as a rule interesting-
ness measure relies on the interpretation of domain experts. We propose
to enhance the rule importance measure previously used by incorporat-
ing a weight biased attribute concept hierarchy. The new measure better
reflects the importance of a rule by integrating with the domain knowl-
edge. A geriatric care data set is used as our experimental data set. We
show that this enhanced rule importance measure provides a knowledge
oriented distinction of rules classified as important.

Key words: Association Rules, Rule Interestingness, Rule Importance Mea-
sure, Concept Hierarchy, Rough Sets

1 Introduction

Association rule algorithms are well known for discovering item-item associa-
tions among the transaction data set, and have been widely used in fields such
as business data analysis, transaction management, and medical research. One
of the challenging problems for association rule algorithms is that, given the
characteristics of the application data set, there are usually enormous number
of rules generated by the algorithms. How can one interpret and identify inter-
esting rules among all those generated? One solution to this problem includes
using interestingness measures [12] to evaluate and rank the generated rules. For
example, given a grocery transaction data set, rules such as “80% of male cus-
tomers who bought beer also bought diaper” may have a higher interestingness
measure than “80% customers bought bread and milk together”.

To evaluate the interestingness of the association rules, both subjective mea-
sures and objective measures are commonly used [4]. Subjective measures rely
on the human (usually the domain experts) effort to evaluate rules manually.
This approach is more accurate, though it is also more expensive and time-
consuming to involve the domain experts for evaluation. The objective measures
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include measures from statistics, machine learning and information theory fields,
and can automate the evaluation process without the involvement of domain ex-
perts. Objective measures alone are not sufficient to provide solid evaluations
because the data domain knowledge is not taken into consideration for rule eval-
uation. Therefore the optimal solution would be to integrate both the subjective
and the objective measures together into the rule evaluations. A Rule Impor-
tance Measure (RIM) [7] was designed as an objective rule measure similar to the
interestingness measures to evaluate how important the rules are. This measure
is designed based on rough sets theory and association rules, and is illustrated
as follows. ROSETTA [9] rough sets software was first used to generate multiple
reducts. Apriori [1] association rule algorithm was then applied to generate rule
sets for each data set based on each reduct. Some rules were generated more
frequently than the others among the total rule sets. Such rules were consid-
ered as more important. The rule importance was defined as the occurrence of
an association rule across all the rule sets. Experimental results show the RIM
reduces the number of rules generated and at the same time provides a diverse
measure of how important a rule is.

In this paper, we propose an enhanced measure for the rule importance mea-
sure using concept hierarchy. The motivation of this research is to design a rule
measure that integrates the domain experts’ opinions into the objective evalua-
tions. Given a data set, we first develop a concept hierarchy based on its domain,
and then weights are assigned to the attributes according to their corresponding
hierarchy. The Rule Importance Measure generates rules measures with its im-
portance. Then from the RIM rules, rules with higher weighted attributes and
higher occurrence are considered as more important. We name this enhanced rule
evaluation approach ERIM (Enhanced Rule Importance Measure). This weight
biased rule measure integrates the domain knowledge together into the rule eval-
uation, therefore a knowledge oriented distinction of rules are suggested. Note
that the rules evaluated by ERIM are to be used for classification or predic-
tion purpose. The rules we are interested to evaluate all contain the decision
attributes on the right hand sides of the rules, and the condition attributes on
the left hand sides of the rules.

The contributions of our work are summarized as follows. We propose a novel
rule evaluation approach based on concept hierarchy which integrates both the
subjective measures and the objective measures; the proposed ERIM provides a
knowledge oriented distinction of rules demonstrated by our case study.

The rest of the paper is organized as follows. We review the related work in
Section 2. The proposed new measure with the usage of concept hierarchy to
combine domain knowledge into the rule evaluations is discussed in Section 3.
The data set and the case studies are discussed in Section 4 and 5. Section 6
provides the conclusions and future work.
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2 Related Work

2.1 Association Rules

The association rule algorithm was first introduced in [1], and is commonly
referred to as the apriori association rule algorithm. This algorithm is used to
discover rules from transaction datasets. The algorithm first generates frequent
itemsets, which are sets of items that have transaction support greater than
the minimum support; then based on these itemsets, the association rules are
generated which satisfy the minimum confidence. Association rule algorithms
can be used to find associations among items from transactions. For example,
in market basket analysis, by analyzing transaction records from the market, we
could use association rule algorithms to discover different shopping behaviours
such as, when customers buy bread, they will probably buy milk. This type of
behaviour can be used in the market analysis to increase the amount of milk
sold in the market. The association rule α → β holds in the transaction set D
with confidence c if c% of transactions in D that contain α also contain β. The
rule α → β has support s in the transaction set D if s% of transactions in D
contain α ∪ β.

2.2 Rule Importance Measure

The Rule Importance Measure applies rough sets theory to association rules
generation in order to evaluate association rules and thus improve their utili-
ties. Rough sets theory [10] was proposed to classify imprecise and incomplete
information. Reduct and core are the two important concepts in rough sets
theory. A reduct is a subset of attributes that are sufficient to describe the deci-
sion attributes. Core represents the most important information of the original
data set. The intersection of all the possible reducts is called the core. The
rule importance measure (RIM) is defined as the percentage of the number of
times a rule is generated among all the rule sets (represented as RuleSets)
over the number of available rule sets. The rule importance measure is obtained
by RIMi = |{rulesetj∈RuleSets|rulei∈rulesetj}|

n . The Rule Importance Measure is
simple, quick, easy to compute; it provides a direct and objective view of how
important a rule is.

2.3 Concept Hierarchy

Much research effort has been found on using concept hierarchy towards databases
management, text categorizations, natural language processing and so on. Al-
gorithms on discover associations between different items from levels of taxon-
omy (which is represented in hierarchies) was introduced in 1995 as the mining
approach for generalized association rules [11]. As an example of recent appli-
cations, a keyword suggestion approach based on concept hierarchy has been
proposed [3] to facilitate user’s web search. A data mining system has been
proposed to induce the classification rules using concept hierarchy [2]. Concept
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Hierarchy can reflect the concepts and relationships of a given knowledge do-
main. Such hierarchies are useful towards generalization and specialization.

3 Enhanced RIM using Concept Hierarchy

Our motivation is to enhance the RIM by integrating the subjective measure into
the rule evaluation. We use a concept hierarchy to embed a semantic relationship
from the data domain into the knowledge evaluation. In this section, we discuss
given a problem domain, how to build a concept hierarchy and combine such
hierarchy to enhance the rule measure.

Let T be a data set. T = (U, C, D), where U is the set of data records in the
table, and U 6= φ, C is the set of the condition attributes and D is the set of the
decision attributes.

Let s be the total number of concepts for a given data set. c(k) (1 ≤ k ≤ s) is
the kth concept categorized from the concepts. Attrc(k) denotes all the attributes
that belong to the concept c(k). The weight of the concept wc(k) denotes the
importance of the concept c(k) from the domain expert’s opinion. For a set of
rules, the new measure ERIMi for rulei can be obtained by Eq 1.

ERIMi =
li∑

p=1

wc(k),p (1)

, where li is the number of attributes contained by rulei and wc(k),p is the weight
of the pth attribute in this rule.

Since the weights wc(k),p are assigned by the domain experts, the greater the
value of ERIMi, the more interesting a rule becomes from the domain expert’s
opinion. Therefore, the ERIMi measure integrates subjective measures based
on concept hierarchy into the rule evaluations.

The concept hierarchy and the weight of the concepts are pre-determined
by the domain expert. Concept hierarchies for a given data domain may con-
tain more than multiple levels of hierarchies. For example, given a grocery data
domain, concept hierarchies may contain “meat”, “seafood”, “vegetables”, and
“soft drinks” as the second level concepts; under each category, there exists more
hierarchies. “Meat” may contain “pork”, “beef”, “lamb” and so on as the sub-
hierarchies. In this paper we illustrate the utilities of ERIM by both a six-level
and a eight-level hierarchy from a given domain. Domains with more or less
hierarchies may use ERIM approach similarly.

The enhanced RIM approach thus consists of two steps. The first step is to
obtain the RIM for the given data set; and the second step is for each of the rules
from RIM set, derive the ERIM using the Equation 1. Therefore, for each rule
generated from a given data set, we have an objective measure to evaluate how
important the rule is, and at the same time, we obtain the subjective measure
to evaluate which rule is indeed important from the domain expert’s opinion.
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The procedure of the ERIM measurement is shown as follows:

1. Derive concept hierarchies for the given data domain;

2. Assign attributes to concept categories;

3. Assign weights to attributes that belong to each concept category;

4. Calculate the RIM to obtain rule sets ranked by the importance measure;

5. Calculate ERIM for each rule;

6. Combining both RIM and ERIM into rule evaluation.

4 Data Set

The geriatric care medical dataset used is from Canadian Study of Health And
Aging (CSHA). It has 8547 instances of a population of 65 years old and up, of
whom 1865 died during the 72 months of follow-up. 3458 of them are male, and
5089 of them are female. 44 self-report attributes were used. The 44 attributes
include factors such as disabilities, sicknesses and stress situations. Disabilities
refer to attributes such as whether patients could prepare their own meal, or
use the telephone, or take medication, or go grocery shopping. Sicknesses refer
to attributes such as whether they have a chest problem, or a heart problem,
or a kidney problem. Stress situations refer to attributes such as whether they
have trouble in life. The class attribute is a binary value indicating whether an
individual has died during the 72 months of follow-up. Detailed description of
the 44 attributes are available [6].

The sample reduct set of this data is {edulevel, eyesight, hearing, shopping,
housewk, health, trouble, livealone, cough, sneeze, hbp, heart, arthriti, eyetroub,
eartroub, dental, chest, kidney, diabetes, feet, nerves, skin, studyage, sex}. The
reducts are used for the calculation of RIM. There are 14 core attributes gener-
ated for this data set. They are eartroub, livealone, heart, hbp, eyetroub, hear-
ing, sex, health, edulevel, chest, housewk, diabetes, dental, studyage. All of these
reducts contain the core attributes. After removing 12 inconsistent data entries
in the medical data set, we obtain the data containing 8, 535 records1.

5 Case Study

We illustrate in more detail how to use the ERIM measure in this section. The
geriatric care data is used as our experimental data set.

5.1 ERIM - 6 levels

We derive the concept hierarchy by classifying the 44 attributes into 6 categories:
sickness, minor sickness, disability, attitude, symptom and others. Sickness refers
to significant sickness such as heart problem or chest problem. Minor sickness
refers to problems which are common among a lot of older adults but are not
1 Notice from our previous experiments that the core generation algorithm cannot

return correct core attributes when the data set contains inconsistent data entries.
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significant such as ear trouble. Disability refers to how well they satisfy their
daily activities such as walking, cooking and dressing. Attitude refers to how
happy they are and how they feel about themselves. Symptom refers to having
some signs medically, but not a sickness yet. Others include attributes that are
not strongly related to the sickness, i.e., education level, gender, study age, and
age group. For a detailed description on how the attributes are categorized into 6
categories, refer to Table 1. The six level concept hierarchy is shown in Figure 1.�����������������	�
��� ������� ������� �������� �������������������

Fig. 1. 6-Level Concept Hierarchy

Table 1. Concept Hierarchy for the Geriatric Care Data

Disability Attitude Symptom Sickness Minor Sickness Others

dress, takecare eyesight eat hbp eyetroub sex
walk, getbed hearing cough heart eartroub studyage
shower, bathroom health tired stroke dental age6
phoneuse, walkout trouble sneeze arthriti stomach edulevel
shopping, meal livealon parkinson bladder
housewk, takemed chest bowels
money kidney feet

diabetes skin
nerves fracture

Table 2. Weights for Concept Hierarchy of Table 1

c(i) Disability Attitude Symptom Sickness Minor Sickness Others

wc(i) 6 2 1 30 1 1

We then assign weights for attributes of each concept category. Different
weights are applied to different categories of attributes. The differences between
weights are indications of different importance between attributes in terms of
predicting the survival probability of an individual. For example, sickness is 30
times as important as symptoms, therefore the weight of sickness is assigned
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as 30 and the weight of symptoms is assigned as 1. Thus, different weights are
applied to the sickness, minor sickness, disability, attitude, and symptom. The
weights are assigned as follows: the sickness category has a weight of 30, the
minor sickness category has a weight of 1, the disability category has a weight
of 6, the attitude category has a weight of 2, and the symptom category and
other attributes category also have a weight of 1 [13]. These weights are set after
consultation with the domain expert, and is shown on Table 2.

Calculating RIM and ERIM The Rule Importance is calculated on this
data set. For each reduct set, association rules are generated with support =
30%, confidence = 80% 2. We are interested in rules with survival status on
the consequent part of the rules. Rule templates [5] are defined to ensure the
desired form of rules are generated [7]. ERIM is also calculated for each of the
rules generated by the concept hierarchy from Table 1 and Table 2 using Eq. 1.

As an example of calculating ERIM, suppose we have a rule as follows: If a
person lives alone, has diabetes and nerve problems, then this person has a higher
chance of not surviving at the end of the observation period. This rule contains
three attributes, “livealone”, “diabetes” and “nerves”. The ERIM is calculated
as

ERIMi =
3∑

p=1

wc(k),p = wc(livealone) +wc(diabetes) +wc(nerves) = 2+30+30 = 62

We list all the rules generated ranked by their RIM and ERIM in Table 3. In
this table, the first column indicates the original rule number ranked by the RIM
approach [7]. The lower the rule number, the more important this rule is. We
keep this original number for comparison purpose. The second column contains
the generated rules; the third column indicates the ERIM measure of this rule
and the fourth column indicates the RIM measure of the same rule in this row.
(Note that for comparison purpose, we use the percentage of ERIM divided by
the largest ERIM value from all the generated rules. The percentage value of
ERIM is also applied on Table 6.)

Observations and Discussions The rule importance is an indication of how
significant a rule is in term of its classification ability for the decision attribute.
The ERIM indicated in the third column is listed to specify the interestingness
considered by the domain experts. We compare the two measures and show the
differences between the ERIM and RIM. We have the following observations
from the experimental results.

– Same important rules are not always considered as interesting by the do-
main expert. As noted, rule No.3 has the same ranking of the RIM as rule

2 Note that the values of support and confidence can be adjusted to generate as many
or as few rules as required.
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Table 3. Sample Rules Generated from the Geriatric Care Data Set - 6-Level Hierarchy

No. Selected Rules ERIM-6level RIM

159 hbp, stroke, kidney, nerve problem → negative survival 100% 32.56%
109 hbp, dental problem, kidney problem, nerve problem, fractures → negative survival 76.67% 43.02%
22 oftensneeze, hbp, diabetes, nerve problem → negative survival 75.83% 81.40%
44 oftencough, hbp, kidney, nerve problem → negative survival 75.83% 66.28%
53 oftensneeze, hbp, kidney, nerve problem → negative survival 75.83% 61.63%
66 hbp, diabetes, nerve problem, anyfractures → negative survival 75.83% 58.14%
158 stroke, dental, kidney, nerve problem → negative survival 75.83% 32.56%
89 hbp, stroke, diabetes → negative survival 75.00% 48.84%
93 stroke, arthritis, diabetes → negative survival 75.00% 46.51%
100 stroke, diabetes, nerve problem → negative survival 75.00% 45.35%
150 stroke, arthritis, kidney problem → negative survival 75.00% 33.72%
7 livealone, diabetes, hbp → negative survival 51.67% 100%
11 livealone, diabetes, nerve problem → negative survival 51.67% 95.35%
127 hearing problem, phoneuse, nerve problem → negative survival 31.67% 39.53%
216 oftensneeze, dental, kidney, skin→ negative survival 27.50% 1.16%
3 hearing, diabetes → negative survival 25.67% 100%
6 heart → negative survival 25% 100%
2 chest → negative survival 25% 100%

128 hearing problem, phoneuse, dental problem → negative survival 7.50% 39.53%
8 housework problem → negative survival 5.00% 100%
24 troublewithlife → negative survival 1.67% 81.40%
4 ear trouble → negative survival 0.83% 100%
5 eye trouble → negative survival 0.83% 100%
9 feet → negative survival 0.83% 96.51%

...

No.4, but the ERIM of rule No.3 is much higher than that of rule No.4. The
attributes “hearing”, “diabetes” and “ear” are all core attributes, therefore
these two rules both have the RIM as 100%. However, from Table 2, wdiabetes

belongs to the sickness concept, and whearing falls into the attitude concept.
The sum of these two weights is greater than weartrouble, which is considered
as minor sickness. The same observation goes to rule No.127 and No. 128.
Rule No.127 and No.128 have the same RIM, but rule No.127 contains at-
tributes with larger weights than those of rule No.128. Therefore rule No.127
is considered as more interesting by domain expert. This demonstrates the
domain knowledge is necessary to distinguish rules with the same classifica-
tion ability.

– Rules that are considered as interesting by the domain expert do not neces-
sarily have the same RIM. Rule No.22 and rule No.44 have the same ERIM,
which indicate they have the interestingness degree by the domain expert.
However, the RIM for rule No.22 is greater than that of rule No. 44. Note that
the only difference of these two rules is No.22 contain attribute “diabetes”,
and No.44 contains attribute “kidney”. “Diabetes” is a core attribute, but
not the “kidney”. This demonstrates that, what is considered less interesting
by objective measures may be more interesting by the domain experts.

– Rules having low RIM can be considered surprisingly interesting by the
domain expert. Note that rule No. 159 has a low importance of 32.56%,
however, it is the most interesting rule ranked by the ERIM measure from

Jiye Li et al.

– 50 –



Table 3. This is because attributes “hbp”, “stroke”, “kidney” and “nerve”
all fall into the sickness concept with weight 30 and the ERIM is very high;
however, among these attributes, only “hbp” is a core attribute from the RIM
measure. Same observation applies to rule No. 216. This rule is considered
less important because there are less core attribute contained in the rule, and
it is generated less frequently across multiple reducts. However, the ERIM of
this rule is 27.50%. This demonstrate that the objective measures alone may
ignore very interesting rules considered by the domain knowledge.

– ERIM measure can be used together with the RIM for distinction of more
knowledge oriented rules.

Although the Rule Importance is different from other objective measures and
it provides a diverse ranking of how important the rules are [7], this measure
can certainly be enhanced with ERIM for a more complete view of rules using
the concept hierarchy. Concept Hierarchy is derived by the domain experts.
According to the different purposes of the knowledge evaluation, there may exist
more than one concept hierarchy for a data domain. For example, in our case
study, a frailty index [8] may be considered for assigning the weighted concept
categories for the geriatric care data, if the purpose of the study is to consider
the proportion of the deficits instead of the nature of the deficits. Neither the
objective measure (i.e., RIM) nor the subjective measure (i.e., ERIM) alone is
sufficient for a thorough knowledge evaluation. Through the experiments, we
observed an integration of both the objective and the subject measures is an
optimal approach for knowledge evaluation.

5.2 ERIM - 8 levels

In this section, we study how the number of concept hierarchies affects the rule
evaluations. We derive the concept hierarchy by classifying the 44 attributes
from the geriatric care data into 8 categories: severe sickness, sickness, moderate
sickness, minor sickness, disability, attitude, symptom and others. Severe sickness
refers to severe sickness such as stroke and diabetes. Sickness refers to significant
sickness such as heart problem or chest problem. Moderate sickness refers to
moderate problems such as bladder or facture. Minor sickness refers to problems
which are common among a lot of older adults but are not significant such as
ear trouble. Disability refers to how well they satisfy their daily activities such
as walking, cooking and dressing. Attitude refers to how happy they are and
how they feel about themselves. Symptom refers to having some signs medically,
but not a sickness yet. Other category includes age, gender and so on. For a
detailed description on how the attributes are categorized into 8 categories, refer
to Table 4. The concept hierarchy is shown in Figure 2.

We then assign weights for attributes of each concept category. Different
weights are applied to different categories of attributes. The weights are as fol-
lows: the severe sickness category has a weight of 30, sickness category has a
weight of 20, moderate sickness has a weight of 2, the minor sickness category
has a weight of 1, the disability category has a weight of 6, the attitude category
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Fig. 2. 8-Level Concept Hierarchy

Table 4. Concept Hierarchy for the Geriatric Care Data

Disability Attitude Symptom Minor Moderate Sickness Severe Others
Sickness Sickness Sickness

dress, takecare eyesight eat eyetroub bladder hbp stroke Sex
walk, getbed hearing cough eartroub bowels heart parkinson studyage
shower, bathroom health tired dental fracture arthriti diabetes age6
phoneuse, walkout trouble sneeze stomach chest edulevel
shopping, meal livealon feet kidney
housewk, takemed skin nerves
money

Table 5. Weights for Concept Hierarchy of Table 4

c(i) Disability Attitude Symptom Minor Moderate Sickness Severe Others
Sickness Sickness Sickness

wc(i) 6 2 1 1 2 20 30 1

has a weight of 2, and the symptom category and others each has a weight of
1 [13]. These weights are set after consultation with the domain expert, and is
shown on Table 5.

We list all the rules generated ranked by their ERIM and RIM in Table 6
according to the same approach as shown in Section 5.2.

From Table 6 we observe that rules are ranked by ERIM in the similar order
as in Table 3. For example, rule No.159 are ranked as the highest ERIM in both
approaches. By using more detailed concept hierarchy, rules may be differenti-
ated in a deeper level. For example, rule No.22 and No.66 have the same ERIM
by using 6-level hierarchy. However, with 8-level hierarchy, the “Sickness” and
“Minor Sickness” in Table 1 are further differentiated by more hierarchies with
more weights in Table 4. The two different attributes comparing No.22 with
No.66 are “oftensneeze” and “anyfractures”. In the 8-level hierarchy, “anyfrac-
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Table 6. Sample Rules Generated from the Geriatric Care Data Set Ranked by 8-level
Hierarchy

No. Selected Rules ERIM-8 RIM

159 hbp, stroke, kidney, nerve problem → negative survival 100% 32.56%
89 hbp, stroke, diabetes → negative survival 88.89% 48.84%
93 stroke, athritis, diabetes → negative survival 88.89% 46.51%
100 stroke, diabetes, nerve problem → negative survival 88.89% 45.35%
66 hbp, diabetes, nerve problem, fractures → negative survival 80.00% 58.14%
22 often sneeze, hbp, diabetes, nerve problem → negative survival 78.89% 81.40%
7 live alone, hbp, diabetes → negative survival 57.78% 100.00%
11 live alone, diabetes, nerve problem → negative survival 57.78% 95.35%

...
3 hearing, diabetes → negative survival 35.56% 100.00%
4 ear trouble → negative survival 1.11% 100.00%
5 eye trouble → negative survival 1.11% 100.00%
9 feet problem → negative survival 1.11% 96.51%

...

tures” is assigned with a higher weight. Therefore, rule No.66 is ranked higher
than No.22 using the 8-level hierarchy in Table 6. This results indicate that more
concept hierarchies represent finer-grained domain knowledge, therefore the in-
terestingness of the rules are differentiated in a greater detail comparing to using
less hierarchies.

6 Conclusion

In this paper we have proposed a novel approach for rule evaluation based on
concept hierarchy. An enhanced Rule importance measure ERIM is shown to be
effective on evaluating interesting rules from the domain expert’s opinion. We
demonstrate through a real world data set that the integration of both the ob-
jective and the subjective measures can provide a knowledge oriented distinction
of rules. The advantages of ERIM are as follows: it combines both the subjective
and the objective measures for rule evaluation; in the situation where the two
rules have the same RIM, ERIM can be used to provide a knowledge oriented dis-
tinction. The concept hierarchy based weights are indications of interestingness
reflecting domain knowledge.

In the future we plan to continue developing rule evaluation measures that
combine both the objective measures and the subjective measures. As discussed
in Section 3, concept hierarchy is limited by the purpose of knowledge evaluation
and it is not automatable at this stage. The constructing of concept hierarchy
as well as the assigning of attribute weights depend on the particular problem
domain. These two components of our approach are time consuming and some-
times difficult to obtain from the problem domain expert. Domain experts and
statistics information should play an important role. We are also interested in
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researching an automatic mechanism on developing the concept hierarchies to
facilitate more efficient and more precise knowledge evaluations.
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False neighbourhoods and tears are the main mapping 
defaults. How to avoid it? How to exhibit remaining 

ones? 
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Abstract. Tears and false neighborhoods are the defaults that may occur when a 
mapping is set up. Three recent articles discuss about these risks and proposed 
various means to detect and avoid such penalizing situations. In the present 
paper we link these methods and suggest a new strategy to visualize tears and 
false neighborhoods on a mapping by adapting well-tried tools.  

Keywords: Exploratory data analysis; MultiDimensional Scaling; High-
dimensional data; Error visualization; False neighborhoods and tears. 

1 Introduction 

Since W.S. Torgerson and his famous "embedding theorem" [34] the distance 
preservation is the objective of most of mapping methods (indeed, Torgerson 
demonstrates that Principal Component Analysis (PCA) [30, 15] objective is 
equivalent to look for the data projection that preserves distances "as much as 
possible"). In that framework, many following methods proposed to especially 
account for small distances, which lead to non-linear mappings. There is a very high 
number of methods belonging to this category (known as Non-Linear 
MultiDimensional Scaling or NL-MDS) and we will only cite here the most known 
among them. For example, Sammon's mapping [26] and Curvilinear Component 
Analysis (CCA) [8] interactively minimize the weighted difference between distances 
in the input and output space. ISOMAP [33] computes the geodesic distance [10, 32] 
(which can be seen as a "non-linear distance" that follows the data manifold) before 
linearly embedding data according to the Torgerson's method [34]. Locally Linear 
Embedding (LLE), [31] and related methods [3, 12] account for nearest neighbour 
distances in a sparse matrix and find data position in the output space according to a 
spectral method. Generative Topographic Mapping (GTM) [4] approaches a lower 
dimensional manifold to data. Gaussian Process Latent Variable Model (GP-LVM) 
[20] results from a probabilistic interpretation of PCA. Many others methods start 
from various other paradigms such as Self-Organizing Map (SOM) [16, 17] that 
visualizes data on a discrete grid, Non-Metric MultiDimensional Scaling (NM-MDS) 
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[18, 19] and RankVisu [22] that preserve the ranking of distances, Kernel Principal 
Component Analysis (KPCA) [27] that searches for non-linear relationships between 
variables according to the "kernel trick" [28, 29]. 

Several recent papers [36, 2, 21], highlight two risks while a mapping is generated 
from distances. These risks are named here "false neighbourhood" and "tear" 
according to the terminology in [21] (that corresponds to "gluing" area and "tearing" 
area respectively for [2] and area with low "trustworthiness" and low "continuity" for 
[36]). A "false neighbourhood" occurs when a large distance in the original space is 
associated with a small distance in the output space (the corresponding data points 
seems neighbours whereas they are not). Respectively, a "tear" occurs when a small 
distance in the original space is associated with a large distance in the output space 
(true neighbours are mapped apart). Please report to section 6 for some intuitive 
examples of "false neighbourhoods" and "tears". Obviously, "false neighbourhoods" 
and "tears" are expected to be avoided in mapping framework. Subsequently, [36] and 
[21] proposed two mapping methods designed to avoid "as much as possible" false 
neighbourhoods and tears. 

Moreover, when such penalizing situations occur anyway, exhibiting impacted 
areas should be a main concern as claimed in [2]. This article proposes then a sharp 
mean to visualize on the mapping the true neighbourhood of a given data point. 
However, a local index showing the risk level for each data point would be a critical 
improvement.  

The present article connects dimensionality reductions methods that optimize item 
positions by minimizing a criterion based on distances preservation. Such approach 
highlights pros and cons of each method and leads to considerations on detection of 
mappings defaults. In particular, we set up here a couple of criteria that allow 
visualizing and characterizing local mapping defaults. Indeed, there are actually few 
tools available in order to locally analyze a mapping quality. 

The present paper is organized as follows. Section 2 is dedicated to Sammon's 
mapping and Curvilinear Component Analysis, and how either false neighbourhoods 
or tears are penalized in such methods. Section 3 presents and compares two recent 
mapping methods accounting for both defaults: Data-Driven High Dimensional 
Scaling and Local MultiDimensional Scaling. Section 4 refers to several usual 
techniques to find out remaining defaults. Section 5 describes a method allowing 
characterising defaults as false neighbourhood or tear. An example on an intuitive 
dataset is subsequently presented in section 6.  

2 Mapping within avoiding false neighbourhoods or tears 

Two mapping methods are particularly interesting while considering mapping from 
the risk of false neighbourhood and tear point of view: the Sammon's mapping [26] 
and the Curvilinear Component Analysis (CCA) [8].  
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2.1 Sammon's mapping 

Historically, Sammon's mapping [26] is one of the first Non-Linear MultiDimensional 
Scaling methods. Its purpose is to minimize the following function: 

( )∑ 




 ×−×=

ji
ij

k

ijijSammon dFddCE
,

*    (1) 

where ijd  and *
ijd  represent the distances between data points i and j in the input 

space and output space, respectively; F is the so called weighting function. F is 
designed to emphasize small distances. As a consequence, function F: ++ ℜ→ℜ  has 

to decrease. In case of Sammon's mapping, the traditional choice is ( ) xxF 1= , 

2=k  and ∑=
ji

ijdC
,

 (please note that C is a constant and has no impact on the 

resulting mapping). 
In case where data points lie on a low-dimensional non-linear manifold, 

emphasizing small distance is expected to allow "unrolling" the dataset. 
Although this idea is obviously powerful (after 40 years, the Sammon's mapping is 

still used and inspired many subsequent methods), it shows a major drawback while 
considering the risk of false neighbourhood and tears:  

Sammon's mapping fairly penalizes tears, but it lightly penalizes false 
neighbourhoods. Indeed, let us suppose that there is a large distance between data 
points i and j in original space ( ijd ), but, by misfortune, the corresponding distance in 

output space ( *
ijd ) is small. ( )ijdF  is low and the difference between ijd  and *

ijd  

does not much weight on SammonE . Such situation ( ijd  high and *
ijd  low) corresponds 

to a false neighbourhood and could easily occur with Sammon's mapping.  

2.2 Curvilinear Component Analysis (CCA) 

In such framework, CCA [8] offers interesting behaviour. Indeed CCA is close to 
Sammon's mapping, but its weighting function relies on distance in the output space 
rather than in original space: 

( )∑ 




 ×−×=

ji
ij

k

ijijCCA dFddCE
,

**     (2) 

where 2=k , 21=C  and various functions have been proposed for F. 

The drawback highlighted in case of Sammon's mapping is fixed. However, even if 
false neighbourhoods are now fairly penalized, tears can easily occur: If ijd  is low 

and *
ijd  is high, ( )*

ijdF  is low. This case (which corresponds to a tear) is then lightly 

penalized. 
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3 Accounting for both false neighbourhoods and tears 

Confronting to some datasets, false neighbourhood and tears cannot be avoided. For 
example, everyone knows that a perfect planisphere is unreachable: there is no mean 
to spread out a sphere onto a plan without tearing. However, lightly penalising one of 
false neighbourhood or tear can cause unnecessary defaults. Penalizing the both risks 
is then critical.  

3.1 Data-Driven High dimensional Scaling (DD-HDS) 

Related to both Sammon's mapping and CCA, DD-HDS [21] is designed to cumulate 
advantage of these methods while avoiding the previously presented drawbacks.  

The minimized function is  

( )( )∑ 




 ×−×=−

ji
ijij

k

ijijHDSDD ddFddCE
,

** ,min   (3) 

where 1=C  and 1=k  (note the choice of k differ for DD-HDS, mostly to be 
consistent with the used optimization process).  

Thus, if a distance (in the original or in the output space) is low, the weighting 
function is high in order to account for a possible penalizing situation.  

Moreover, DD-HDS is yet the only one mapping method that takes account for the 
"concentration of measure phenomenon" (one of the most important phenomena 
belonging to the famous "curse of dimensionality") [11, 1] through the weighting 
function: F is proposed to be a sigmoid function adjusted on the original distance 
distribution. DD-HDS is then an efficient method for mapping (especially in case of 
high dimensional data). The main drawback is (so far) the relatively high 
computational time. 

3.2 Local MultiDimensional Scaling (Local MDS) 

The Local MDS [36], is also closely related to Sammon's mapping and CCA. It offers 
to the user a trade-off tuning between penalization of false neighbourhoods and tears 
through a parameter (noted λ  in the following). 

( )( ( ) ( )))*

,

* 1 ij
ji

ij

k

ijijLMDS dFdFddCE ×−+

 ××−×= ∑ λλ   (4) 

where 2=k , 21=C  and ( ) 1=xF  if x is lower than a chosen σ  and ( ) 0=xF  

else. For 0=λ  the Local MDS corresponds to CCA and for 1=λ  the Local MDS 
corresponds to Sammon's mapping (except regarding the function F). 
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3.3 DD-HDS versus Local MDS 

As shown above, solutions proposed by Local MDS and DD-HDS derived from a 
similar analysis. Although, they are somewhat close, advantage and drawback of each 
one should be highlighted.  

Local MDS proposes a trade-off between risks of false neighbourhood and tear. A 
user control (λ ) allows balancing these risks. Moreover, placing mappings on a plot 
that quantify mapping defaults in terms of "trustworthiness" and "continuity" with 
varying the λ  value displays a curve which can be related to a ROC curve (Receiver 
Operating Characteristic). ROC curves are known to be very practical in order to 
select an optimal decision. To the opposite, DD-HDS does not allow such control.  

Because DD-HDS equally penalizes false neighbourhoods and tears, it should be 
compared to Local MDS with 5.0=λ .  
Note that, because F is a decreasing function,  

 ( )( ) ( ) ( )( )** ,max,min ijijijij dFdFddF =    (5) 

Comparison between techniques accounting for false neighbourhoods and tears relies 

to comparison of weights: ( ) ( )( )*,max ijij dFdF  in case of DD-HDS and 

( ) ( )( ) 2*
ijij dFdF +  in case of Local MDS. For sake of simplicity, function F is 

chosen as ( ) 1=xF  if σ<x  and ( ) 0=xF  else (as proposed in Local MDS). 

σ0

1

dij

d*ij

0.5

(a)

F

σ0

1

dij

d*ij (b)

F

 
(a) Local MDS    (b) DD-HDS 

Fig. 1. Weighting functions F (vertical axis), according to distance in original space 
(x-axis) and distance in output space (y-axis). 

Let us consider these functions according to distances (Fig. 1). 
We can observe that when one distance is small and the corresponding one is large 

(this corresponds to a false neighbourhood or a tear), the Local MDS weighting 
function is lower than when both distances are small together. To the opposite, the 
DD-HDS weighting function is maximal on the whole area where a distance is small. 
In other words, the use of maximum corresponds to the "OR" logical operation: the 
weighting function is at its maximum if a false neighbourhood OR a tear is found. As 
a consequence, a maximum effort is given in order to avoid simultaneously both false 
neighbourhoods AND tears.  
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4 Visualizing defaults in mappings. 

Even if many solutions to visualize defaults in SOM have been developed, less 
solution exists in case of distances preserving methods. 

Of course, each proposed stress corresponds to an index that quantifies the global 
mapping quality. The parting in two index called "trustworthiness" and "continuity" 
proposed in [35] and [36] allows for placing mappings on a plot according to its 
ability to avoid false neighbourhoods and tears.  

The Shepard Diagram [18, 19, 7, 8] plots distances in original space versus 
distances in output space. It allows a totally model-free observation of the distance 
preservation according to distances. However, it is also a global analysis: the location 
of errors cannot be deduced from such diagram.  

Few methods have been proposed in order to locally observing mapping defaults. 
In this framework, [6] proposes to analyse the stability of areas on mappings 
initialised randomly; and [37] compares surfaces of triangles resulting from a 
Delaunay triangulation in the output space to surfaces of corresponding triangles in 
original space. 

For a consistent review, please report to [2]. 

4.1 Distortion visualization on Voronoï cells 

A local comparison of a given data point neighbourhoods is made possible by [2]. In 
this method, the Delaunay triangulation is computed in the output space. Each 
Voronoï cell is then coloured according to the proximity of the related data point in 
the output space (light colours for cells related to close data points). If the chosen data 
point is fairly mapped, every light cell will lie together, apart from dark cells. Else, if 
some dark cells are embedded close to the chosen data point, it corresponds to a false 
neighbourhood; if some light cells are apart, it corresponds to a tear. 

This method has the great advantage that the true neighbourhood of a given data 
point is immediately assessable in the mapping through an intuitive picture. However, 
the necessity of choosing a point of view makes it use somewhat irksome when we do 
not know a priori where to looking for a default. 

4.2 Pressure defined in DD-HDS algorithm 

The DD-HDS mapping is achieved by optimizing a stress (eq. 3) thanks to a Force 
Directed Placement (FDP) [13, 14, 9] algorithm. The FDP algorithm simulates a 
spring system: each data point corresponds to a mass and springs rely each couple of 
masses. Spring lengths at rest equal expected distances (i.e. original distances), in 
order to make original distances resemble to output ones after relaxation of the 
system. The spring stiffness allows for accounting for the weighting function F. The 
relaxation of the system is supposed to minimise the stress. Such algorithm is known 
to be robust to local minima and is somewhat few time consuming [24, 25]. The 
popularity of such algorithm increases in mapping community [5, 24, 23, 25, 21, 22]. 
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An other advantage is that FDP allow defining the "pressure" that locally quantifies 
the stress level: the pressure on a data point is the sum of strength of forces applied on 
the corresponding mass [21]. Truly, this does not strictly correspond to the academic 
definition of a pressure, but this term allows an intuitive understanding of this index: 
the "pressure" is the quantity of forces applied on a data point. 

Nevertheless, the pressure concept does not need an FDP optimisation, and could 
be defined from any mapping. Given a data point i, the pressure would be: 

( ) ( )∑ 




 ×−×=−

j

k

ijijHDSDD FddCiP .*    (6) 

Moreover, because the weighting function F can easily be customized, Sammon's 
mapping, CCA, Local MDS or DD-HDS model (and so on) could be considered as 
well according to the pressure concept. The combination of the mapping and the 
pressure of data points through a greyscale allows for locally observing the stress 
level. 

5 How to exhibit and characterize defaults? 

Plotting DD-HDS pressure allows displaying area where the mapping shows defaults, 
but it is not informative about the nature of the default. 

Furthermore, even if Sammon's and CCA weighting function have shown there 
limitation in order to drive the mapping [36, 21], they can be useful together to 
evaluate a mapping. Indeed, pressures related to Sammon's mapping and CCA can 
easily be defined: 

( ) ( )∑ 




 ×−×=

j
ij

k

ijijSammon dFddCiP *    (7) 

( ) ( )∑ 




 ×−×=

j
ij

k

ijijCCA dFddCiP **    (8) 

 
Due to the high similitude between formulas (7) and (8), values for SammonP  and CCAP  

can be compared if the choice of C, k and F are shared by two pressures. 
 For reason discussed in section 2.1 and 2.2, CCAP  is an efficient mean to detect 

false neighbourhoods and SammonP  catches tears.  

Note: DD-HDS pressure equals to 

( ) ( )( )∑ 




 ×−×=−

j
ijij

k

ijijHDSDD ddFddCiP ** ,min   (9) 

which corresponds to  
( ) ( ) ( )( )iPiPiP CCASammonHDSDD ,max=−     (10) 
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6 Example 

A classical test for mapping methods is the openbox dataset. Data points lie on sides 
of a 3-dimensional cube without upper side (Fig. 2, right insert with grey background) 
and are embedded in 2-dimensional spaces. These mappings are presented in Fig. 2 
according to SammonE  and CCAE  stresses (curves and points) and SammonP  and CCAP  

pressures (small inserts). 
For a fair comparison, every methods used the same values for C and k 

( 1=C , 2=k ) and function F is chosen to be a rectangular function as proposed in 
Local MDS. 

Situating mapping in a plot according to SammonE  and CCAE  is in the spirit of 

Venna and Kaski "trustworthiness" and "continuity" visualisation [35, 36]. Note that, 
as expected, Sammon's mapping avoids tears to the cost of possible false 
neighbourhoods and CCA avoids false neighbourhoods to the cost of possible tears 
(see section 2). DD-HDS and Local MDS account for both defaults (section 3.1 and 
3.2). 

 

Local MDS, λ=0
(i.e. CCA)

Local MDS,
λ= 0.5

Local MDS, λ=1 
(i.e. Sammon’s mapping)

DD-HDS

ISOMAP

Psammon Pcca

Psammon Pcca

Psammon Pcca

Psammon Pcca

Psammon Pcca

Ecca

Esammon

Open side

Original 3D data

 
 

Fig. 2. 2D Mapping of a 3D open box (right insert with grey background) resulting 
from various methods as a function of Sammon's mapping and Curvilinear 

Sylvain Lespinats, Michaël Aupetit

– 62 –



Components Analysis stresses. ISOMAP and DD-HDS rely to empty circles, Local 
MDS for a λ varying from 0 to 1 (with 0.05 as step) rely to full circles linked by 
lines. CCA corresponds to Local MDS with 0=λ  and Sammon's mapping 
corresponds to Local MDS with 1=λ . The most on the left the mapping, the most 
false neighbourhoods are avoided; the lowest the mapping, the most tears are avoided.  

Mapping reached by five methods (ISOMAP, DD-HDS, CCA, Samon's mapping and 
Local MDS with 5.0=λ ), are provided in five couples of inserts. Positions of items 
are similar for each couple, but colours are different: in left inserts, darker the data 
points, higher the pressure related to Sammon's stress (eq. 7); in right inserts, data 
darker the data points, higher the pressure related to CCA stress (eq. 8). Colorscales 
are similar for every mapping. 

For five mappings (Sammon's mapping, CCA, Local MDS with 5.0=λ , DD-
HDS and ISOMAP), pressures related to Sammon's and CCA stresses are presented in 
small inserts. It allows visualizing tears (left inserts, which corresponds to SammonP ) 

and false neighbourhoods (right inserts, which corresponds to CCAP ) in the mappings 

(dark areas correspond to defaults). In case of CCA, two tears can easily be observed 
and correspond to black areas in left insert; no false neighbourhood appears (right 
insert). Sammon's mapping has smashed sides on the bottom face. It results many 
false neighbourhoods (highlighted by dark data points in left inserts) but few tears: 

SammonP , is low everywhere in the mapping (right insert). Two sides have been 

projected on the bottom by ISOMAP, creating false neighbourhoods. DD-HDS and 
Local MDS with 5.0=λ  reach close mappings. Light stretch can be observed at the 
top of the box (darker areas in left inserts) and some compressions in the bottom side 
(especially on the corners, right inserts). 

7 Conclusion 

The objective of the present paper is not to grade mapping methods. Indeed, it is 
obvious that: 1) the presented methods are closely related and will often reach close 
results (just as Local MDS and DD-HDS with the openbox dataset); 2) there 
respective originalities provide to each method its own advantage that should be 
exploited according to the situation. 

On the one hand, a good point for DD-HDS on Local MDS when there is no reason 
for a priori favour false neighbourhood or tear is its capacity to accounting for both 
false neighbourhoods and tears within one single parameter. This advantage should 
not be neglected; indeed it permits to spare the balancing parameter. On the other 
hand, the Venna and Kaski's parameter give to Local MDS a unique chance to 
visually appreciate the trade-off between false neighbourhood and tears. In that 
framework, because the choice of λ  from resulting mapping falls under the data 
expert responsibility, tools presented here could be a useful supplementation.  

The pressures proposed in section 5 are contenting themselves to finding out and 
characterizing mapping defaults. Such procedure should be combined with 
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visualization of neighbourhoods technique proposed in [2]. Indeed, SammonP  and CCAP  

can guide the user to the items for which such analysis is the most relevant. 
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