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Abstract. We prove that Vertex Reinforced Random Walk on Z with weight
of order kα, with α ∈ [0, 1/2), is either almost surely recurrent or almost surely
transient. This improves a previous result of Volkov who showed that the set
of sites which are visited infinitely often was a.s. either empty or infinite.

1. Introduction

Linearly vertex reinforced random walks (VRRW for short), introduced by Pe-
mantle in [P], were first studied on Z by Pemantle and Volkov [PV], who showed
that with positive probability these processes spend all large times on just five sites.
Some times later, Tarrès [T1] managed to prove that this striking phenomenon,
called localization, occurs in fact almost surely (and he recently gave a simplified
proof in [T2]). Roughly in the mean-time Volkov [V1] proved that (linearly) VRRW
localize as well on a large class of graphs with positive probability and almost surely
on trees. Benäım and Tarrès [BT] have recently generalized his result to a larger
class of walks, with a completely different proof.

In the recent works [ETW1, ETW2], new models of self-interacting random walks
are introduced, where the interaction is not restricted to nearest neighbors. Then
the authors prove that localization can occur on sets of arbitrary size, depending
on the parameters of the model.

What emerges from these remarkable results is the fact that, when studying self-
interacting (or non Markovian) random walks on graphs, the first thing one should
do is to determine the set of vertices which are visited infinitely often and see if
this is empty, the whole graph or some nontrivial subgraph. According to Volkov’s
notation [V2] we shall denote this set by R′ here. If it is the whole graph, we say
that the walk is recurrent and if it is empty we say that the walk is transient. But
as we just saw, it might be equal to something else and even have arbitrary size.

In 2006 Volkov started the study of VRRW on Z with some weight (wk, k ≥ 0).
Such process, say (Xn, n ≥ 0), is defined as follows. First X0 = 0. Then for all
n ≥ 0, on the event {Xn = x},

P(Xn+1 = Xn ± 1 | Fn) =
wZn(x±1)

wZn(x−1) + wZn(x+1)
,(1)

where (Fn, n ≥ 0) is the natural filtration of X and for all y ∈ Z,

Zn(y) = #{m ≤ n : Xm = y},

is the local time in y at time n. Linearly VRRW correspond to the case when
wk = k + 1 for all k ≥ 0. Volkov [V2] showed that when

∑

k 1/wk is finite, then X
almost surely localizes on two sites, i.e. that R′ has a.s. cardinality 2, and when
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wk ≍ (k + 1)α,1 for some α ∈ [0, 1), then a.s. R′ cannot be nonempty and finite
(actually he proved this result under slightly more general hypotheses, see [V2] for
details). He conjectured also that R′ should be in fact empty (Problem 3 in [V2]).
It is even natural to believe that this should hold as soon as wk = O(kα), for some
α < 1, and not only when wk is exactly of order kα, for some fixed α. However, to
our knowledge, no progress on this conjecture has been made since then, even in
the case α = 0. Here we obtain the following result:

Theorem 1.1. Assume that there exists some α ∈ [0, 1/2), such that wk ≍ (k+1)α.
Then the VRRW on Z with weight (wk, k ≥ 0) is either a.s. recurrent or a.s.

transient.

This result says that R′ is either a.s. empty or a.s. equal to Z. This first step
toward Volkov’s conjecture, called Problem 1 in [V2], gives strong evidence that
the conjecture should be true, at least when α < 1/2. Indeed since the process is
”reinforced” it should be ”more” recurrent than simple random walk and since it
does not localize it should be recurrent. However, giving a rigorous proof to this
kind of monotonicity argument (even formulating a correct statement) is still a real
challenge.

For other results on VRRW, particularly on finite graphs, we refer the reader to
[B, BT, LV, P]. We shall also mention that analogous results have been obtained
in a continuous setting, for self-interacting diffusions, see [CLJ, HR, R].

Our proof is very different from Volkov’s proof, which was based on urns argu-
ments and on Rubin’s construction. We use instead a kind of domino principle,
which works roughly as follows. Assume that some site x ≤ 0 is visited infinitely
often, but not x− 1, and let us fix some small constant ǫ > 0. Then at k-th visit to
x, with k large, the local time in x+1 has to be at least of order k1/α−ǫ. Otherwise,
X would have jumped roughly kαǫ times on x−1, which is not allowed if k is large.
Then we repeat this argument and show that before the k1/α−ǫ-th visit to x+1, the
local time in x+2 has to be at least of order kγ , with γ = 1/α+ (1/α− 1)2 − ǫ/α.
Otherwise, during the k1/α−ǫ visits to x + 1, X would have jumped more than k
times to x. By repeating this argument infinitely often, we get that the local time
in x+ i has to be of order kγi , with γi of order (1/α− 1)i, for all i ≥ 1. This is of
course not possible before the time of k-th visit to x, and we get a contradiction.
However this argument only works when γi → ∞, when i → ∞, which explains
why we need the hypothesis α < 1/2. Then we deduce that a.s. R′ is either empty
or equal to Z, see Sections 3 and 4 for more details. To really obtain a dichotomy,
i.e. to prove that P[R′ = Z] ∈ {0, 1}, we use in addition two general results, Lemma
2.1 and 2.2 below, which hold for any weight w. These lemmas assert that on one
hand, if 0 is visited a.s. infinitely often, then X is a.s. recurrent. On the other
hand, if there is positive probability that 0 is visited only finitely many times, then
there is also positive probability that 0 is visited only once. By combining them
with Borel-Cantelli like arguments, we can conclude.

2. Two general results

Let us introduce some new notation. For any w = (wk(x))x∈Z,k≥0, denote by Pw

the law of the VRRW in the ”environement” w. This process is defined as in (1)
except that in the right hand side we replace wZn(x±1) by wZn(x±1)(x± 1).

1we say that fk ≍ gk when fk/gk is bounded from above and below by positive constants
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Lemma 2.1. If 0 has positive probability under P to be visited only finitely many

times, then for all w ∈ (0,∞)Z×N, such that wk(x) = wk for all x ≥ 0 and k ≥ 0,
the probability under Pw that 0 is visited only at time 0 is also positive. In particular

P(Xn > 0 ∀n > 0) > 0.

Proof. By using sub-additivity and a symmetry argument we know that there exists
some M > 0 such that P(Xn > 0 for all n ≥ M) > 0. By conditioning now
with respect to the first M steps, we see that there must exist some sequence
(x0, . . . , xM ), with xM > 0, such that conditionally on E = {(X0, . . . , XM ) =
(x0, . . . , xM )}, the probability that Xn > 0 for all n > M is positive. But for
any such sequence and any w as in the lemma, we have Pw(E) > 0, and since
wk(x) = wk when x ≥ 0, we have

Pw(Xn > 0 for all n > M | E) = P(Xn > 0 for all n > M | E) > 0.

Note that if X follows the path (x0, . . . , xM ) during the first M steps and after
stays on the right of 0, then certainly it always stays on the right of −M . Thus we
also have

Pw(Xn > −M for all n ≥ 0) > 0.(2)

Now if w′ = (w′
k(x))k≥0,x∈Z is such that for all k ≥ 0, w′

k(x) = wk+1 if x < 0, and
w′

k(x) = wk if x ≥ 0, then by using the Markov property we get

Pw(Xn > 0 ∀n > 0) ≥ Pw(X1 = 1, . . . , XM = M)Pw′(Xn > −M ∀n ≥ 0).

The first probability on the right hand side is positive (since w0 > 0 by hypothesis),
and it follows from (2), with w′ in place of w, that the second one is also positive.
This finishes the proof of the lemma. �

Lemma 2.2. For any sequence (wk)k≥0 of positive reals, if a.s. 0 is visited infinitely

often, then X is a.s. recurrent, i.e. all sites are a.s. visited infinitely often.

Proof. If the result was not true, then for symmetry reasons, there would exist some
x0 ≤ 0 such that x0 is a.s. visited infinitely often and x0−1 has positive probability
to be visited only finitely many times. But then we claim that this would also be
true under probability Pw, for any w as in Lemma 2.1. So fix such w. We consider
two cases.

Case x0 = 0. First by using Lemma 2.1 we know that 0 is also Pw-a.s. visited
infinitely often. So we only need to prove that under Pw, there is also positive
probability for −1 to be visited only finitely many times. But if x0 = 0, then as
in the proof of Lemma 2.1 there exists M > 0 and a sequence (x0, . . . , xM ), with
xM > 0, such that if E = {(X0, . . . , XM ) = (x0, . . . , xM )}, then

P(Xn ≥ 0 for all n > M | E) > 0.

Now let z be the local time in −1 at time M on the event E, i.e. z = #{i ≤ M :
xi = −1}. For k ≥ 1, denote by Z(k) the random variable equal to the local time
in 1 at k-th visit to 0 after time M . Then we have

P

(

Xn ≥ 0 for all n ≥ M | E, {Z(k)}k≥1

)

=

∞
∏

k=1

(

1−
wz

wz + wZ(k)

)

,
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which is nonzero if, and only if,
∑

k 1/wZ(k) is finite. So we must have

P(Xn ≥ 0 for all n ≥ M and
∑

k≥1

1/wZ(k) < ∞ | E) > 0.

We deduce that there exists some T > 0 and K ≥ 1, such that

p := P



Xn ≥ 0 for all n ≥ M and
T

2
≤

K
∑

k=1

1

wZ(k)
≤

∑

k≥1

1

wZ(k)
≤ T

∣

∣

∣ E



 > 0.

Now for k ≥ 1, let Tk be the time of k-th visit to 0 after time M . We can write

Pw(Xn ≥ 0 ∀M ≤ n ≤ Tk | E) =
∑

x

Pw((XM , . . . , XTk
) = x | E),(3)

where the sum is over all trajectories x starting from xM , visiting 0 at least k times,
staying on the right of 0 up to k-th visit in 0 and stopped after this k-th visit in 0.
But since the jump probabilities above 1 are the same under P and Pw, for all such
trajectory, we have

Pw((XM , . . . , XTk
) = x | E) = P((XM , . . . , XTk

) = x | E)

∏k−1
i=1

(

1− wz(−1)
wz(−1)+wz(i)

)

∏k−1
i=1

(

1− wz

wz+wz(i)

) ,

where for all i ≥ 1, z(i) is the local time in 1 at time Ti, when X follows the
trajectory x. Recall next that for u small enough, e−u ≤ (1− u) ≤ e−u/2. So there
exists a constant c > 0 (depending only on T ), such that for any k ≥ 2 and any

sequence (z(i), i ≥ 1), satisfying T/2 ≤
∑k−1

i=1 1/wz(i) ≤ T , we have

∏k−1
i=1

(

1− wz(−1)
wz(−1)+wz(i)

)

∏k−1
i=1

(

1− wz

wz+wz(i)

) ≥ c.

So in (3) if we restrict the sum on the right hand side to trajectories x such that

T/2 ≤
∑k−1

i=1 1/wz(i) ≤ T , we get

Pw(Xn ≥ 0 ∀M ≤ n ≤ Tk and T/2 ≤
k−1
∑

i=1

1/wZ(i) ≤ T | E)

≥ c× P(Xn ≥ 0 ∀M ≤ n ≤ Tk and T/2 ≤
k−1
∑

i=1

1/wZ(i) ≤ T | E)

≥ c× p > 0,

for all k ≥ K + 1. By letting now k go to infinity we get

Pw(Xn ≥ 0 ∀n ≥ M) > 0,

which was the desired result.

Case x0 < 0. First observe that −1 has to be visited infinitely often under prob-
ability Pw as well. Indeed if this was not the case, then we could apply the above
argument (from case x0 = 0) to see that −1 would also have positive probability to
be visited only finitely many times under P, which contradicts x0 < 0. But actually
this argument shows as well by induction that under Pw, x0 is a.s. visited infinitely
often and x0 − 1 has positive probability to be visited finitely many times.
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Let us conclude now the proof of the lemma. We just have proved that for all w as
in the statement of Lemma 2.1,

Pw(Xn ≥ x0 for all n ≥ 0) > 0.

But under P, X has positive probability to jump to the right the first |x0|+1 steps.
So by applying the Markov property and the above inequality with w equal to w′

as defined in the proof of Lemma 2.1, we see that

P(Xn ≥ 1 for all n ≥ |x0|+ 1) > 0,

which contradicts the fact that 0 is a.s. visited infinitely often. This finishes the
proof of the lemma. �

3. An induction argument and a new proof of Volkov’s result

We first present a kind of domino principle. In plain words it works as follows.
Assume that there exists some x ∈ Z, such that inf R′ = x. It means that x is
visited infinitely often, but not x − 1. To simplify assume even that x − 1 has
never been visited. Fix some large integer k and let n be the time of k-th visit
to x. Then at each of the k first visits to x, the process has probability at least
of order 1/Zn(x + 1)α to jump to x − 1. Since it did not, this implies with high
probability that Zn(x+ 1) is at least of order k1/α. The idea is then to repeat the
argument. More precisely the next lemma implies by induction that the local time

in x + i at time n is of order at least kγi , with γi =
∑i

j=0(1/α − 1)j , up to some
error term and with probability going to 1 exponentially fast when k → ∞. In
particular when α < 1/2 the error term is negligible and we get a contradiction,
since the process X cannot visit an infinite number of sites before time n. See the
next subsection for details. When α is larger than or equal to 1/2, the error term
becomes predominant when i → ∞, and the argument blows up. However, it still
implies that R′ cannot be finite, which gives an alternative proof to Volkov’s result,
see Corollary 3.1 below.

Now for x ∈ Z and k ≥ 1, set

Tx(k) = inf{n ≥ 0 : Zn(x) ≥ k}.

Denote also by Tx := Tx(1) the hitting time of x. In the following each time
we consider an event of the type {T < T ′}, for two random times T and T ′, we
implicitely assume that it is contained in the set {T < ∞}.

Lemma 3.1. Assume that there exits some α ∈ [0, 1), such that wk ≍ (k + 1)α.
Then there exist constants c > 0 and C > 0, such that for all x ∈ Z, all γ > 1, all
ǫ ∈ (0, α) and all k ≥ eC/ǫ,

P

[

Tx+1(k
γ) < Tx(k) ∧ Tx+2(k

γ−1
α

+1−ǫ)
]

≤ exp

(

−c
k1−α

| ln ǫ|1/(1−α)

)

.

Proof. Let ǫ ∈ (0, α) and γ > 1 be given. Consider the event

A0 :=
{

Tx+1(k
γ) < Tx(k) ∧ Tx+2(k

γ′

)
}

,

where γ′ := (γ − 1)/α+ 1− ǫ. Set K = [3 ln ǫ/ lnα]. For i = 1, . . . ,K, set

ti := Tx+1

(

kγ

(K − i+ 1)2

)

,



A 0 − 1 LAW FOR VRRW WITH WEIGHT OF ORDER kα. 6

and for i ≥ 2,

Ni =
kγ

(K − i+ 1)2
−

kγ

(K − i+ 2)2
.

Set also N1 = kγ/K2. Note that by hypothesis

Ni ≥ kγ/(K − i+ 2)3 ≥ 1,(4)

for all i ≤ K, and thus ti < ti+1. Moreover, since wk ≍ kα, there exists some
constant c0 ∈ (0, 1), such that for all i0 < j0, all i ≥ i0 and all j ≤ j0, wi/(wi+wj) ≥
c0i

α
0 /j

α
0 . In particular on the event A0, before time t1, at each visit to x + 1, the

probability to jump to x is larger than p1 := c0/k
αγ′

. Thus before time 1 + t1,
the number of jumps from x + 1 to x stochastically dominates the sum of N1

independent Bernoulli random variables with parameter p1. Therefore,

P [A0, Z1+t1(x) ≤ N1p1/2] ≤ exp(−c1N1p1),

for some constant c1 > 0. Define next inductively p2, . . . , pK , and A1, . . . , AK+1,
by

pi = c0(Ni−1pi−1/2)
αk−αγ′

,

for i ∈ {2, . . . ,K}, and

Ai := A0 ∩ {Z1+ti(x) ≥ Nipi/2} ,

for i ∈ {1, . . . ,K +1}. Now by using the same argument as above, we immediately
get by induction that

P [Ai−1, Z1+ti(x) ≤ Nipi/2] ≤ exp (−c1Nipi) ,(5)

for all i ∈ {2, . . . ,K + 1}. It is also straightforward to prove by induction, and by
using (4), that

Nipi ≥
2(c0/2)

1+α+···+αi

(

∏i
j=1(K − j + 2)αi−j

)3 k
1−αi+αǫ,(6)

for all i ≤ K. On the other hand it is immediate that

sup
K

K
∏

j=1

(K − j + 2)α
K−j

< ∞.

Thus there exists a constant c′ > 0 such that

NKpK ≥ c′k1−αK+αǫ.

By taking now ǫ ≥ C/ lnk, with C large enough, we deduce that NKpK/2 > k+1.
Since on A0, tK = Tx+1(k

γ) ≤ Tx(k), we get that AK+1 is empty. Finally note
that for all i ≤ K,

i
∏

j=1

(K − j + 2)α
i−j

≤ (K + 1)1/(1−α),
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so we also deduce from (5) and (6) that

P[A0] ≤
K+1
∑

j=1

P [Ai−1, Z1+ti(x) ≤ Nipi/2]

≤ (K + 1) exp(−c2k
1−α/| ln ǫ|1/(1−α))

≤ exp(−ck1−α/| ln ǫ|1/(1−α)),

for some positive constants c2 and c. This finishes the proof of the lemma. �

We can now give an alternative proof to Volkov’s result, in the case when wk is of
order kα.

Corollary 3.1. Assume that there exists α ∈ [0, 1), such that wk ≍ (k+1)α. Then

a.s. R′ is infinite.

Proof. Fix some x ∈ Z and some integers N ≥ 1 and z0 > 0. We want to prove that
the event {Z∞(x) = ∞} ∩ {Z∞(x − 1) < z0} ∩ {Z∞(x + N) ≤ 1} has probability
zero, with the convention Z∞(y) := limn→∞ Zn(y), for all y ∈ Z.

For this first observe that for any ǫ < 1/α, and any m ≥ 1,

P

[

Tx(m) < Tx+1(m
1/α−ǫ) ∧ Tx−1(z0)

]

≤ P





m
∑

j=1

ξj ≤ z0



 ≤ e−c(z0) mǫα

,

where c(z0) is some constant and the ξj ’s are i.i.d. Bernoulli random variables with
parameter c′m−1+ǫα, for some other constant c′ > 0.

Now define γ1, . . . , γN , by γ1 = 1, γ2 = 1/α− ǫ, and for i ≥ 1,

γi+2 = γi(1− ǫ) +
1

α
(γi+1 − γi).

Note already, that if ǫ is small enough, then γi+1 > γi, for all i ≤ N − 1. Thus, as
soon as m is large enough, we can apply Lemma 3.1 with k = mγi and γ = γi+1/γi,
for any i ∈ {1, . . . , N − 1}, and we get

P [Tx+i(m
γi+1) < Tx+i−1(m

γi) ∧ Tx+i+1(m
γi+2)] ≤ exp

(

−c
mγi(1−α)

| ln ǫ|1/(1−α)

)

,

where c is the constant appearing in Lemma 3.1. Then,

P [{Z∞(x) = ∞} ∩ {Z∞(x− 1) < z0} ∩ {Z∞(x +N) ≤ 1}]

= P [∩m→∞ {Tx(m) < Tx−1(z0)} ∩ {Z∞(x+N) ≤ 1}]

= lim
m→∞

P [{Tx(m) < Tx−1(z0)} ∩ {Z∞(x+N) ≤ 1}]

≤ lim
m→∞

{

P

[

Tx(m) < Tx+1(m
1/α−ǫ) ∧ Tx−1(z0)

]

+
N−1
∑

i=1

P [Tx+i(m
γi+1) < Tx+i−1(m

γi) ∧ Tx+i+1(m
γi+2)]

}

= 0,

as wanted. Since this is true for any x, N ≥ 1 and z0, this proves the corollary. �
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4. Proof of Theorem 1.1

We assume now that α < 1/2. First, according to Lemma 2.1 and 2.2, if P[Xn >
0 ∀n > 0] = 0, then X is a.s. recurrent and there is nothing more to prove. So we
assume that P[Xn > 0 ∀n > 0] = P[Xn < 0 ∀n > 0] > 0, and we want to prove that
X is a.s. transient.

For x ≤ 0 and m ≥ 1, consider the event

Ex(m) := {Tx(m) < Tx−1} .

Then for i ≥ 1, set ǫi = r/i2, with r > 0 some positive constant which will be fixed
later. Consider the sequence (γi, i ≥ 1) defined inductively by γ1 = 1, γ2 = (1/α)−r
and for i ≥ 1,

γi+2 = γi(1− ǫi) +
1

α
(γi+1 − γi).

Set

Fx(m) := {Tx+i(m
γi+1) < Tx+i−1(m

γi) for all i ≥ 1} .

Let us show that if r is small enough, then

sup
x≤0

P [Fx(m)c ∩ Ex(m)] = O
(

e−κmrα
)

,(7)

as m → ∞, for some constant κ > 0. For this note that for all i ≥ 1,

γi+2 − γi+1 = (
1

α
− 1)(γi+1 − γi)− ǫiγi,

so by induction we get

γi+2 − γi+1 = (γ2 − γ1)(
1

α
− 1)i −

i
∑

j=1

ǫjγj(
1

α
− 1)i−j .(8)

In particular γi+2 − γi+1 ≤ (1/α− 1)i+1, for all i ≥ 1, which implies γi ≤ C0(1/α−
1)i, for some constant C0 > 0. Since

∑

1/i2 < ∞, we see from (8) that if r > 0 is
small enough, then there exists a constant c0 > 0, such that

γi+2 − γi+1 ≥ c0(
1

α
− 1)i.

Thus γi+2 ≥ c0(1/α− 1)i, for all i ≥ 1, and since α < 1/2, γi grows exponentially
fast with i. Therefore, as soon as m is large enough, we can apply Lemma 3.1 with
k = mγi , γ = γi+1/γi and ǫ = ǫi, for all i ≥ 1. Then we get

P[Fx(m)c ∩ Ex(m)] ≤ P [Tx(m) < Tx+1(m
γ2) ∧ Tx−1(z0)]

+
∑

i≥1

P [Tx+i(m
γi+1) < Tx+i−1(m

γi) ∧ Tx+i+1(m
γi+2)]

≤ e−κmrα

+
∑

i≥1

exp

(

−c
mγi(1−α)

| ln ǫi|1/(1−α)

)

,

where c is the constant appearing in Lemma 3.1, and κ some other constant, see
the proof of Corollary 3.1. Since γi grows exponentially fast with i, (7) follows. But
for any x ≤ 0 and any m ≥ 1, the event Fx(m) ∩ Ex(m) is empty since X cannot
visit infinitely many sites in finite time. This proves that

sup
x≤0

P[Ex(m)] = O
(

e−κmrα
)

,(9)
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as well, when m → ∞. Similarly, if E′
x := {Tx(m) < Tx+1}, for x ≥ 0, then

sup
x≥0

P[E′
x(m)] = O

(

e−κmrα
)

,(10)

as m → ∞.

Now (9) and (10) show that
∑

x≥0

P[{Tx(x) < Tx+1} ∪ {T−x(x) < T−x−1}] < +∞.

Thus according to Borel–Cantelli’s lemma, a.s. for x large enough, either Tx+1 <
Tx(x) or T−x−1 < T−x(x). For n ≥ 1, denote by xn the n-th site visited by X , such
that Txn

< Txn−1(xn − 1) and xn > 0, or Txn
< Txn+1(|xn + 1|) and xn < 0. Note

now that for all n, if for instance xn > 0, then X has probability of order at least
n−α to jump to xn + 1 at time Txn

, and similarly if xn < 0. Hence,
∑

n≥1

P
[

Txn+1 = Txn
+ 1 or Txn−1 = Txn

+ 1 | FTxn

]

= ∞.

It then follows from Levy’s conditional Borel–Cantelli’s lemma (see for instance
Lemma 5.1 in [T2]), that a.s. for infinitely many n ≥ 1, either Txn+1 = Txn

+ 1 (if
xn > 0) or Txn−1 = Txn

+ 1 (if xn < 0). But each time this happens, Lemma 2.1
shows that, independently of FTxn

, X has some positive probability p > 0 to never
come back to xn after time Txn

. It follows that a.s. this happens infinitely often,
which proves well that X is a.s. transient, as wanted. �
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