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CLASSIFICATION OF SIMPLE LIE ALGEBRAS ON A LATTICE

By Kenji Iohara and Olivier Mathieu *

Introduction:

(0.1) Statement of the Theorem proved in the paper:

Let Λ be a lattice of rank n, i.e. Λ ≃ Zn. A Lie algebra on the lattice
Λ is a Λ-graded Lie algebra L = ⊕λ∈Λ Lλ such that dim Lλ = 1 for all λ.

I.M. Gelfand (in his Seminar) and A.A. Kirillov [Ki] raised the question
of the classification of all Lie algebras on a lattice. Of course, L should
satisfy additional properties in order to expect an answer. The present
paper investigates the case of simple graded Lie algebras on a lattice. Recall
that the Lie algebra L is called simple graded if L has no non-trivial proper
graded ideal (here it is assumed that n > 0, otherwise one has to assume
that dimL > 1).

To our best of our knowledge, the first instance of this question is
the V.G. Kac paper [Ka2], where he gave an explicit conjecture for the
classification of all simple Z-graded Lie algebras L = ⊕n∈Z Ln for which
dimLn = 1 for all n. He conjectured that such a Lie algebra is isomorphic
to the loop algebras A1

1, A
2
2 or to the Witt algebra W , see Section (0.2) for

the definition of these algebras. His conjecture is now proved [M1].

However, for lattices of rank > 1, there was no explicit conjecture
(however see Yu’s Theorem [Y] cited below) .

The main result of the paper is the classification of all simple graded
Lie algebras on a lattice. To clarify the statement, the notion of primitivity
is defined. Let L be a simple Λ-graded Lie algebra, and let m > 0. The
Lie algebra L(m) = L ⊗ C[z±1

1 , . . . , z±m
1 ] is a simple Λ × Zm-graded Lie

* Reasearch supported by UMR 5028 du CNRS.
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algebra, and it is called an imprimitive form of L. A simple Λ-graded Lie
algebra L is called primitive if it is not an imprimitive form. It is clear that
any simple Zn-graded Lie algebra is isomorphic to L(m) for some primitive
Zn−m-graded Lie algebra L.

In this paper, a family of Lie algebras Wπ is introduced. This family is
parametrized by an injective additive map π : Λ → C2, and it contains all
generalized Witt algebras. The result proved in this paper is the following
one:

Main Theorem: Let L be a primitive Lie algebra on Λ. Then L is
isomorphic to A1

1, A
2
2 or to some Wπ, where π : Λ → C2 is an injective and

additive map satisfying condition C.

The next section of the introduction will be devoted to the precise
definitions of the Lie algebras A1

1, A
2
2 and Wπ involved in the theorem (as

well as the condition C).
Since the proof of the theorem is quite long, the paper is divided into

three chapters (see Section 0.4). Each chapter is briefly described in Sections
0.5-0.7. References for the definitions of the Lie algebras are given in Section
0.3, and for the tools used in the proof in Section 0.8.

(0.2) Definition of the the Lie algebras involved in the classification:
In what follows, the following convention will be used. The identity

degx = λ tacitly means that x is a homogenous element, and its degree is
λ.

The Lie algebra A
(1)
1 : By definition, it is the Lie algebra sl(2) ⊗

C[T, T−1], where the Z-gradation is defined by the following requirements:
deg e⊗ Tn = 3n+ 1, degh⊗ Tn = 3n and deg f ⊗ Tn = 3n− 1.

Here {e, f, h} is the standard basis of sl(2).

The Lie algebra A
(2)
2 : For x ∈ sl(3), set η(x) = −xt, where t denotes

the transposition. Define an involution θ of sl(3)⊗C[T, T−1] by
θ(x⊗ Tn) = (−1)n η(x)⊗ Tn,

for any x ∈ sl(3) and n ∈ Z. By definition, A
(2)
2 is the Lie algebra of fixed

points of the involution θ.

The Z-gradation of A
(2)
2 is more delicate to define. Let (ei, fi hi)i=1, 2

be Chevalley’s generators of sl(3). Relative to these generators, we have
η(x1) = x2 and η(x2) = x1, where the letter x stands for e, f or h.
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Then the gradation is defined by the following requirements:

deg (f1 + f2)⊗ T 2n = 8n− 1 deg (h1 + h2)⊗ T 2n = 8n,

deg (e1 + e2)⊗ T 2n = 8n+ 1 deg [f1, f2]⊗ T 2n+1 = 8n+ 2,

deg (f1 − f2)⊗ T 2n+1 = 8n+ 3 deg (h1 − h2)⊗ T 2n+1 = 8n+ 4,

deg (e1 − e2)⊗ T 2n+1 = 8n+ 5 deg [e1, e2]⊗ T 2n+1 = 8n+ 6.

The generalized Witt algebras Wl: Let A = C[z, z−1] be the Laurent
polynomial ring. In what follows, its spectrum SpecA = C∗ is called the
circle. The Witt algebra is the Lie algebra W = DerA of vector fields on

the circle. It has basis (Ln)n∈Z, where Ln = zn+1 d
dz

, and the Lie bracket
is given by:

[Ln, Lm] = (m− n)Ln+m.

Let A be the twisted Laurent polynomial ring. By definition A has

basis (zs)s∈C and the product is given by zs.zt = zs+t. The operator d
dz

extends to a derivation of ∂ : A → A defined by ∂zs = szs−1, for all s ∈ C.
The Lie algebra W = A.∂ will be called the twisted Witt algebra. It has

basis (Ls)s∈C, Ls = zs+1 d
dz

and the Lie bracket is given by:

[Ls, Lt] = (t− s)Ls+t.

For any injective additive map l : Λ → C, denote byWl the subalgebra
of W with basis (Ls), where s runs over the subgroup l(Λ). Using the
notation Lλ for Ll(λ), the algebra Wl has basis (Lλ)λ∈Λ and the bracket is
given by:

[Lλ, Lµ] = l(µ− λ)Lλ+µ.

For the natural gradation of Wl, relative to which each Lλ is homoge-
nous of degree λ, Wl is Lie algebra on the lattice Λ. Moreover Wl is simple
([Y], Theorem 3.7).

The algebra Wπ:

Recall that the ordinary pseudo-differential operators on the circle are
formal series

∑
n∈Z

an∂
n, where an ∈ C[z, z−1] and an = 0 for n >> 0,

and where ∂ = d
dz

. The definition of twisted pseudo-differential operators

is similar, except that complex powers of z and of ∂ are allowed (for a
rigourous definition, see Section 12). For λ = (u, v) ∈ C2, let Eλ be the
symbol of zu+1∂v+1.

Thus the algebra P of symbols of twisted pseudo-differential operators
has basis Eλ, where λ runs over C2, and the Poisson bracket of symbols is
given by the following formula:
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{Eλ, Eµ} =< λ+ ρ|µ+ ρ > Eλ+µ,
where < | > denotes the usual symplectic form on C2, and where ρ = (1, 1).

Set Λ = Zn and let π : Λ → C2 be any injective additive map. By
definition, Wπ is the Lie subalgebra with basis (Eλ)λ∈π(Λ). The Lie algebra
Wπ is obviouly Λ-graded, for the requirement that each Eπ(λ) is homogenous
of degree λ.

Now consider the following condition:
(C) π(Λ) 6⊂ Cρ and 2ρ /∈ π(Λ).

Under Condition (C), the Lie algebraWπ is simple, see Lemma 49. Moreover
the generalized Witt algebras constitute a sub-family of the family (Wπ):
they correspond to the case where π(Λ) lies inside a complex line of C2.

(0.3) Some references for the Lie algebras: In the context of the clas-
sification of infinite dimensional Lie algebras, the algebras A1

1, A
2
2 (and all

affine Lie algebras) first appeared in the work of V.G. Kac [Ka1]. At the
same time, they were also introduced by R. Moody in other context [Mo].

In the context of the classification of infinite dimensional Lie algebras,
the generalized Witt algebras appeared in the work of R. Yu [Y]. He con-
sidered simple graded Lie algebras L = ⊕λ Lλ, where each homogenous
component Lλ has dimension one with basis Lλ.

In our terminology, the Yu Theorem can be restated as follows:

Theorem: (R.Yu) Assume that the Lie bracket is given by:
[Lλ, Lµ] = (f(µ)− f(λ))Lλ+µ,

for some function f : Λ → C. Then L is an imprimitive form of A1
1 or an

imprimitive form of a generalized Witt algebra.

(0.4) General structure of the paper:
The paper is divided into three chapters. For i = 1 to 3, Chapter i is

devoted to the proof of Theorem i. The Main Theorem is an immediate
consequence of Theorems 1-3, which are stated below.

(0.5) About Theorem 1:
Let G be the class of all simple graded Lie algebras L = ⊕λ Lλ where

each homogenous component Lλ has dimension one. For L ∈ G, let Lλ be
a basis of Lλ, for each λ ∈ Λ.

We have [L0, Lλ] = l(λ)Lλ for some function l : Λ → C. The first step
of the proof is the following alternative:
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Theorem 1:
(i) The function l : Λ → C is additive, or
(ii) there exists a ∈ C such that l(Λ) = [−N,N ].a, for some positive

integer N .

Here [−N,N ] denotes the set of integers between −N and N . In the
first case, L is called non-integrable and in the second case L is called
integrable of type N . Moreover the only possible value for the type is 1 or
2.

Thus Theorem 1 separates the proof into two cases, and for the in-
tegrable case there are some specificities to type 1 and to type 2. Some
statements, like the crucial Main Lemma, are common for all the cases, but
they do not admit a unified proof.

In order to state this lemma, denote by Σ the set of all λ ∈ Λ such that
the Lie subalgebra CLλ ⊕CL0 ⊕CL−λ is isomorphic to sl(2). Obviously,
λ belongs to Σ iff

l(λ) 6= 0 and [Lλ, L−λ] 6= 0.
The Main Lemma is the following statement:

Main Lemma: An element λ ∈ Λ belongs to Σ whenever l(λ) 6= 0.

For the proof of the Main Lemma, see Lemma 25 for the case of in-
tegrable Lie algebras of type 2, Lemma 33 for the case of integrable Lie
algebras of type 1 and Lemma 62 for the non-integrable case.

(0.6) Statement of Theorem 2:

Theorem 2: Any primitive integrable Lie algebra in the class G is
isomorphic to A1

1 or A2
2.

The Main Lemma, provides a lot of subalgebras isomorphic to sl(2).
Therefore the proof of Theorem 2 is based on basic notions, among them
sl(2)-theory, Jordan algebra, Weyl group, centroid.

(0.7) About the proof of Theorem 3:
The main difficulty of the paper is the following statement:

Theorem 3: Any primitive non-integrable Lie algebra in class G is
isomorphic to Wπ for some injective additive map π : Λ → C2 satisfying
condition C.
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The first step is the proof that for any α ∈ Σ, the Lie algebra
L(α) = ⊕n∈Z L(nα)

is isomorphic to the Witt algebra W . Roughly speaking, it means that any
subalgebra L−α⊕L0⊕Lα isomorphic to sl(2) ”extends” to a Witt algebra,
see Lemma 46.

For any Zα-coset β, set M(β) = ⊕n∈Z L(β+nα). Thanks to the Kap-
lansky-Santharoubane Theorem [KS], the possibleW -module structures on
M(β) are explicitely classified.

Moreover the Lie bracket in L provides some W -equivariant bilinear
maps Bβ,γ : M(β)×M(γ) → M(β+γ). It turns out that allW -equivariant
bilinear maps b : L ×M → N , where L, M and N are in the Kaplansky
Santharoubane list, have been recently classified in [IM]. The whole list of
[IM] is intricate, because it contains many special cases. However it allows
a detailed analysis of the Lie bracket of L.

The Main Lemma also holds in this setting, but its proof has little in
common with the previous two cases.

(0.8) Some references for the tools used in the proof:
There are two types of tools used in the proof, “local analysis” and

“global analysis”.
A Λ-graded Lie algebras L contains a lot of Z-graded subalgebras L =

⊕n∈Z Ln. Thus it contains some local Lie algebras L1 ⊕ L0 ⊕ L−1, which
determines some sections of L. The notion of a local Lie algebra is due to
V.G. Kac [Ka1]. Here, the novelty is the use of infinite dimensional local
Lie algebras.

Global analysis means to investigate the decomposition of L under a
Lie subalgebra s and to analyse the Lie bracket as an s-equivariant bilinear
map L× L → L. The prototype of global methods is Koecher-Kantor-Tits
construction, which occurs when a subalgebra sl(2) acts over a Lie algebra L
in a such way that the non-zero isotypical components are trivial or adjoint:
the Lie bracket of L is encoded by a Jordan algebra (up to some technical
conditions). Indeed this tool, introduced by Tits [T] (see also [Kan] [Ko]),
is used in chapter II, as the main ingredient to study type 1 integrable Lie
algebras.

The global analysis in the non-integrable case (Section 17, 18 and 19)
is quite similar, except that the subalgebra is the Witt algebra W . In this
case, it is proved in Section 18 that the Lie bracket is encoded by a certain
map c : Λ × Λ → C∗. Indeed c satisfies a two-cocyle idendity, except
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that it is valid only on a subset of Λ3. Therefore, c is informaly called a
“quasi-two-cocycle”.

(0.9) Ground field: For simplicity, it has been fixed that the ground
field is C. However, the final result is valid on any field K of characteristic
zero, but the proof requires the following modifications.

In Section 3, any norm of the Q-vector space K should be used instead
of the complex absolute value. The proof of Lemma 80 uses that C is
uncountable, but it can be improved to include the case of a countable
field. Also, the fact that C is algebraically closed is not essential, because
L0 has dimension 1 and it can be check that every structure used in the
proof is split.

Summary:
Introduction

ch. I: The alternative integrable/non-integrable.
1. Generalities, notations, conventions.
2. Generalities on centroids of graded algebras.
3. The alternative for the class G.

ch. II: Classification of integrable Lie algebras of the class G.
4. Notations and conventions for chapter II.
5. The Lie subalgebra K.
6. Types of integrable Lie algebras in the class G′.
7. Jordan algebras of the class J .
8. Kantor-Koecher-Tits construction.
9. Connection between the Centroid and the Weyl group
10. Classification of integrable Lie algebras of the class G.

ch. III: Classification of non-integrable Lie algebras of the class
G.

11. Rank 1 subalgebras.
12. Symbols of twisted pseudo-differential operators on the circle.
13. Tensor products of generalized tensor densities modules.
14. The Main Lemma (non-integrable case).
15. Local Lie algebras of rank 2.
16. The degree function δ.
17. The degree function δ is affine.
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18. The quasi-two-cocycle c.
19. Proof of Theorem 3.

ch. I: The alternative integrable/non-integrable.

1. Generalities, notations, conventions

This section contains the main definitions used throughout the paper.
It also contains a few lemmas which are repeatedly used.

(1.1) Given an integers a, set Z≥a = {n ∈ Z|n ≥ a}. Similarly define
Z>a, Z≤a, and Z<a. Given two integers a, b with a ≤ b, it is convenient to
set [a, b] = Z≥a ∩ Z≤b.

(1.2) Let M be an abelian group. A weakly M -graded vector space
is a vector space E endowed with a decomposition E = ⊕m∈M Em. The
subspaces Em are called the homogenous components of E. Given two
weakly M -graded vector space, a map ψ : E → F is called homogenous of
degree l if ψ(Em) ⊂ Fm+l for all m ∈M .

When all homogenous components are finite dimensional, E is called a
M -graded vector space. When the grading group M is tacitely determined,
E will be called a graded vector space. A subspace F ⊂ E is graded if
F = ⊕m∈MFm, where Fm = F ∩Em. The set SuppE := {m ∈M |Em 6= 0}
is called the support of M .

Set E′ = ⊕m∈M (Em)∗. The space E′, which is a subspace of the
ordinary dual E∗ of E, is called the graded dual of E. The graded dual
E′ admits a M -gradation defined by E′

m = (E−m)∗. As it is defined, the
duality pairing is homogenous of degree zero.

(1.3) Let M be an abelian group. A M -graded algebra is M -graded
vector space A = ⊕m∈M Am with an algebra structure such that Al.Am ⊂
Al+m for all l, m ∈ M , where . denotes the algebra product. When the
notion of A-module is defined, a graded module is a A-module E = ⊕Em

such that Al.Em ⊂ Em+l. The notion of weakly graded algebras and weakly
graded modules are similarly defined.

8



(1.4) An algebra A is called simple if A.A 6= 0 and A contains no
non-trivial proper two-sided ideal. A M -graded algebra A is called simple
graded if A.A 6= 0 and A contains no graded non-trivial proper two-sided
ideals. Moreover the graded algebra A is called graded simple if A is simple
(as a non-graded algebra).

(1.5) Let M be an abelian group. Its group algebra is the algebra
C[M ] with basis (eλ)λ∈M and the product is defined by eλ eµ = eλ+µ. This
algebra has a natural M gradation, for which eλ is homogenous of degree
λ. It is clear that C[M ] is a simple graded algebra, although this algebra
is not simple.

(1.6) Let Q and M be abelian groups, let π : Q → M be an additive
map, and let A be aM -graded algebra. By definition π∗A is the subalgebra
of A⊗C[Q] defined by:

π∗A := ⊕λ∈QAπ(λ) ⊗ eλ.
The algebra π∗A is Q-graded and there is a natural algebra morphism
ψ : π∗A→ A, a⊗eλ 7→ a. Indeed for each λ ∈ Q, ψ induces an isomorphism
(π∗A)λ ≃ Aπ(λ). The following obvious lemma characterizes π∗A.

Lemma 1: Let B be a Q-graded algebra and let φ : B → A be an
algebra morphism. Assume that φ(Bλ) ⊂ Aπ(λ) and that the induced map
Bλ → Aπ(λ) is an isomorphism for each λ ∈ Q. Then the Q-graded algebra
B is isomorphic to π∗A.

(1.7) From now on, Λ denotes a lattice, i.e. a free abelian group of
finite rank

(1.8) Let M be an abelian group. Denote by G(M) the class of all
simple M -graded Lie algebras L = ⊕λ∈MLλ such that dimLλ = 1 for all
λ ∈M .

Denote by G′(M) the class of all simple M -graded Lie algebras L =
⊕λ∈MLλ such that

(i) dimLλ ≤ 1 for all λ ∈ M ,
(ii) dimL0 = 1, and
(iii) SuppL generates M .
When it is tacitely assumed that M = Λ, these classes will be denoted

by G and G′.
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(1.9) Let L ∈ G′. For any λ ∈ SuppL, denotes by Lλ any non-zero
vector of Lλ. Also denote by L∗

λ the element of L′ defined by
< L∗

λ|Lµ >= δλ,µ,
where δλ,µ is Kronecker’s symbol. Note that L∗

λ is a homogenous element
of L′ of degree −λ.

For λ 6= 0, the exact normalization of Lλ does not matter. However,
we will fix once for all the vector L0. This allows to define the function
l : SuppL → C by the requirement

[L0, Lλ] = l(λ)Lλ.
The following Lemma is obvious.

Lemma 2: Let λ, µ ∈ SuppL. If [Lλ, Lµ] 6= 0, then
l(λ+ µ) = l(λ) + l(µ).

(1.10) Let Π be the set of all α ∈ Λ such that ±α ∈ SuppL and
[Lα, L−α] 6= 0. Let Σ be the set of all α ∈ Π such that l(−α) 6= 0.

For α ∈ Π, set s(α) = CL−α ⊕ CL0 ⊕ CLα. It is clear that s(α) is
a Lie subalgebra. Since l(−α) = −l(α), the Lie algebra s(α) is isomorphic
with sl(2) if α ∈ Σ and it is the Heisenberg algebra of dimension three
otherwise.

(1.11) The following lemma will be used repeatedly.

Lemma 3: Let L be a Lie algebra and let A, B be two subspaces such
that L = A+B and [A,B] ⊂ B. Then B + [B,B] is an ideal of L.

The proof is easy, see [M1], Lemma 6.

(1.12) Let X,Y be subsets of Λ. Say that X is dominated by Y , and
denote it by X ≤ Y , iff there exists a finite subset F of Λ with X ⊂ F +Y .
Say that X is equivalent to Y , and denote it by X ≡ Y , iff X ≤ Y and
Y ≤ X.

In what follows, a simple graded module means a module without non-
trivial graded submodule. The following abstract lemma will be useful:

Lemma 4: Let L be a Λ-graded Lie algebra, and let M be a simple
Λ-graded module. Then for any non-zero homogenous elements m1,m2 of
M , we have
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SuppL.m1 ≡ SuppL.m2.

Proof: For any homogenous element m ∈ M , set Ω(m) = SuppL.m.
More generally any m ∈ M can be decomposed as m =

∑
mλ where

mλ ∈Mλ. In general set Ω(m) = ∪Ω(mλ).
Let m ∈ M , x ∈ L be homogenous elements. We have L.x.m ⊂

L.m+x.L.m, and therefore Ω(x.m) ⊂ Ω(m)∪degx+Ω(m). It follows that
Ω(x.m) ≤ Ω(m) for any (not necessarily homogenous) elements m ∈M and
x ∈ L. So the subspace X of all m such that Ω(m) ≤ Ω(m1) is a graded
submodule. Since M is simple as a graded L-module, we have X =M and
therefore Ω(m2) ≤ Ω(m1). Similarly we have Ω(m1) ≤ Ω(m2). Thus we
get

SuppL.m1 ≡ SuppL.m2.
Q.E.D.

2. Generalities on centroids of graded algebras.

Let A be an algebra of any type (Jordan, Lie, associative...). Its cen-
troid, denoted by C(A), is the algebra of all maps ψ : A→ A which commute
with left and right multiplications, namely

ψ(ab) = ψ(a)b and ψ(ab) = aψ(b),
for any a, b ∈ A.

Lemma 5: Assume that A = A.A. Then the algebra C(A) is commu-
tative.

Proof: Let φ, ψ ∈ C(A) and a, b ∈ A. It follows from the definition
that:

φ ◦ ψ(ab) = φ(a)ψ(b) and φ ◦ ψ(ab) = ψ(a)φ(b).
Hence [φ, ψ] vanishes on A.A and therefore C(A) is commutative whenever
A = A.A. Q.E.D.

From now on, let Q be an abelian group.

Lemma 6: Let A be a simple Q-graded algebra. Then:
(i) Any non-zero homogenous element ψ ∈ C(A) is invertible.
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(ii) The algebra C(A) is a Q-graded algebra.

(iii) M := SuppC(A) is a subgroup of Q.

(iv) The algebra C(A) is isomorphic with the group algebra C[M ].

Proof: Point (i): Let ψ ∈ C(A) be a non-zero and homogenous. Its
image and its kernel are graded two-sided ideals. Therefore ψ is bijective.
It is clear that its inverse lies in C(A).

Point (ii): Let ψ ∈ C(A). Then ψ can be decomposed as ψ =∑
µ∈Q ψµ, where:

(i) the linear map ψµ : A→ A is homogenous of degree µ,

(ii) For any x ∈ A, ψµ(x) = 0 for almost all µ.

It is clear that each homogenous component ψµ is in C(A). Since
each non-zero component ψµ is injective, it follows that almost all of them
are zero. Therefore each ψ ∈ C(A) is a finite sum of its homogenous
components, and thus C(A) admits a decomposition C(A) = ⊕µ C(A)µ.

It is obvious that C(A) is a weakly graded algebra, i.e. C(A)λ.C(A)µ ⊂
C(A)λ+µ for all λ, µ ∈ Q. So it remains to prove that each homogenous
component C(A)µ is finite dimensional. Choose any homogenous element
a ∈ A \ {0} of degree ν. Since any non-zero homogenous element of C(A)
is one-to-one, the natural map C(A) → A,ψ 7→ ψ(a) is injective. Therefore
dim C(A)µ ≤ dimAµ+ν <∞. Thus C(A) is a Q-graded algebra.

Point (iii): Since any non-zero homogenous element in C(A) is invert-
ible, M is a subgroup of Q.

Point (iv): By Lemma 5, C(A) is commutative. Since C(A) has
countable dimension, any maximal ideal of C(A) determines a morphism
χ : C(A) → C. Since each non-zero homogenous element is invertible, the
restriction of χ to each homogenous component C(A)µ is injective. There-
fore C(A)µ is one dimensional and there is a unique element Eµ ∈ C(A)µ
with χ(Eµ) = 1. It follows that (Eµ)µ∈M is a basis of C(A) and that
Eµ1

Eµ2
= Eµ1+µ2

. Hence C(A) is isomorphic with the group algebra C[M ].
Q.E.D.

Let U = ⊕λ∈Q Uλ be an associative weakly graded algebra. Set A = U0.

Lemma 7: Let E be a simple graded U-module.

(i) The A-module Eλ is simple for any λ ∈ SuppE.
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(ii) If the A-module Eλ and Eµ are isomorphic for some λ, µ ∈ SuppE,
then there is an isomorphism of U-modules ψ : E → E which is homogenous
of degree λ− µ.

Proof: Point (i) Let x be any non-zero element in Eλ. Since U .x is a
graded submodule of E, we have U .x = E, i.e. Eµ = Uµ−λ.x for any µ ∈ Q.
So we get A.x = Eλ, for any x ∈ Eλ \ 0, which proves that the U -module
Eλ is simple.

Intermediate step: Let µ ∈ Q. Let Irr(A) be the category of simple
A-modules and let Irrµ(U) be the category of simple weakly graded U -
modules Y whose support contains µ. We claim that the categories Irr(A)
and Irrµ(U) are equivalent.

By the first point, the map E 7→ Eµ provides a functor
Fµ : Irrµ(U) → Irr(A).

Conversely, let X ∈ Irr(A). Set Iµ(X) = U ⊗A X, and for any λ ∈ Q,
set Iµλ (X) = Uλ−µ ⊗A X. Relative to the decomposition

Iµ(X) = ⊕λ∈Q Iµλ (M),
Iµ(X) is a weakly graded U -module. Let K(X) be the biggest U -submodule
lying in ⊕λ 6=µ I

µ
λ (M) and set Sµ(X) = Iµ(X)/K(X). Since K(X) is a

graded subspace, Sµ(X) is a weakly graded U -module, and it is clear that
Sµ(X) is simple as weakly graded module. Moreover its homogenous com-
ponent of degre µ is X. Therefore the map X 7→ Sµ(X) provides a functor

Sµ : Irr(A) → Irrµ(U).
The functor Fµ and Sµ are inverse to each other, which proves that the
category Irr(A) and Irrµ(U) are equivalent.

Point (ii): Let λ, µ ∈ SuppE. Assume that the U -modules Eλ and Eµ

are isomorphic to the same A-module X. As U -modules, Sµ(X) and Sλ(X)
are isomorphic, up to a shift by λ − µ of their gradation. Since we have
E ≃ Sµ(X) and E ≃ Sλ(X), there is isomorphism of U -modules ψ : A→ A
which is homogenous of degree λ− µ. Q.E.D.

Let A be a graded algebra. Let U ⊂ End(A) be the associative sub-
algebra generated by left and right multiplications. Let A ⊂ U be the
subalgebra of all u ∈ U such that u(Aµ) ⊂ Aµ for all µ ∈ Q.

Lemma 8: Let A be a simple Q-graded algebra. Set M = SuppC(A).
(i) For any µ ∈ SuppA, the A-module Aµ is simple.
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(ii) For any λ, µ ∈ SuppA, the A-modules Aµ and Aλ are isomorphic
iff λ− µ ∈M .

Proof: For each µ ∈ Q, set Uµ = {u ∈ U|u(Aν) ⊂ Aµ+ν , ∀ν}. Relative
to the decomposition U = ⊕µ∈Q Uµ, the algebra U is a weakly graded, and
A is a simple graded U -module.

The simplicity of each A-module Aµ follows from Lemma 7 (i).
Assume that λ − µ ∈ M . Choose any non-zero ψ ∈ C(A) which is

homogenous of degree λ − µ. Then ψ provides a morphism of A-modules
Aµ → Aλ. By Lemma 6(i), it is an isomorphism, so Aλ and Aµ are isomor-
phic.

Conversely, assume that the A-modules Aλ and Aµ are isomorphic. By
Lemma 7 (ii), there is a isomorphism of U -modules ψ : E → E which is
homogenous of degree λ−µ. Since ψ belongs to C(A), it follows that λ−µ
belongs to M .

Lemma 9: Let A be a simple Q-graded algebra, let M be the support
of C(A). Set Q = Q/M and let π : Q→ Q be the natural projection.

Then there exists a Q-graded algebra A such that:
(i) A = π∗A ,
(ii) the algebra A is simple (as a non-graded algebra).

Proof: Let m be any maximal ideal of C(A). Set A = A/m.A ≃ C and
let ψ : A→ A be the natural projection.

For λ ∈ Q, set M(λ) = ⊕µ∈M Aλ+µ. It follows from Lemma 6 that
M(λ) = C(A) ⊗ Aλ, and so we have M(λ)/m.M(λ) ≃ Aλ. Thus A is a
Q-graded algebra. Moreover for each λ ∈ Q, the morphism ψ induces an
isomorphism Aλ → Aπ(λ). It follows from Lemma 1 that A ≃ π∗A.

Since ψ is onto, it is clear that A is simple graded. By Lemma 8,
the family (Aλ)λ∈SuppA consists of simple, pairwise non-isomorphic A-

modules. Thus any two-sided ideal in A is graded, which proves that the
algebra A is simple (as a non-graded algebra).

3. The alternative for the class G.
Let Λ be a lattice. This section contains the first key result for the

classification, namely the alternative for the class G.
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However in chapter II, the class G′ will be used as a tool, and some
results are more natural in this larger class. Except stated otherwise, L will
be a Lie algebra in the class G′.

Lemma 10: Let α ∈ Π and λ ∈ SuppL. Assume l(λ) 6= 0, and set
x = |2l(λ)/l(α)| if l(α) 6= 0 or x = +∞ otherwise. Then at least one of the
following two assertions holds:

(i) adn(Lα)(Lλ) 6= 0 for all n ≤ x, or
(ii) adn(L−α)(Lλ) 6= 0 for all n ≤ x.

Proof: Set s(α) := CLα ⊕ CL0 ⊕ CL−α. Recall that s(α) is a Lie
subalgebra. Moreover s(α) is isomorphic to sl(2) if α ∈ Σ or to the 3-
dimensional Heisenberg algebra H if α ∈ Π \Σ. So the lemma follows from
standard representation theory of sl(2) and H.

Here is a short proof. One can assume that adn(L±α)(Lλ) = 0 for n
big enough, otherwise the assertion is obvious. Set

N± = Sup {n|adn(L±α)(Lλ) 6= 0}.
Let M be the s(α)-module generated by Lλ. Then the family

(Lλ+nα)n∈[−N−,N+] is a basis for M , and therefore M is finite dimensional.
Since L0 is a scalar mutiple of [Lα, L−α], we have trL0|M = 0. Since
[L0, Lλ+nα] = (l(λ) + nl(α))Lλ+nα for all n ∈ [−N−, N+], we get

0 =
∑

−N−≤n≤N+ (l(λ) + nl(α))

= (N+ +N− + 1)[(N+ −N−)l(α)/2 + l(λ)].
Therefore we have |N+−N−| = 2|l(λ)/l(α)| = x, which proves that N+ or
N− is ≥ x. Q.E.D.

Lemma 11: Let α1, α2, ..., αn ∈ Π.
There exists a positive real number a = a(α1, . . . , αn) such that for

every λ ∈ SuppL, and every n-uple (m1,m2, ...,mn) of integers with 0 ≤
mi ≤ a|l(λ)| for all i, there exists (ǫ1, . . . , ǫn) ∈ {±1}n such that:

admn(Lǫnαn
) . . . adm1(Lǫ1α1

)(Lλ) 6= 0.

Proof: First define the real number a. If l(αi) = 0 for all i, choose any
a > 0. Otherwise, set s = Max |l(αi)| and set a = 1/ns. Let λ ∈ Λ. Then
the following assertion:

(Hk): for every k-uple (m1,m2, ...,mk) of integers with 0 ≤ mi ≤
a|l(λ)| for all i, there exists (ǫ1, . . . , ǫk) ∈ {±1}k such that
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admk(Lǫkαk
) . . . adm1(Lǫ1α1

)(Lλ) 6= 0.
will be proved by induction on k, for 0 ≤ k ≤ n. Clearly, one can assume
that l(λ) 6= 0.

Assume that Hk holds for some k < n. Let (m1,m2, ...,mk+1) be a (k+
1)-uple of integers with 0 ≤ mi ≤ a|l(λ)| for all i. By hypothesis, there exists
(ǫ1, . . . , ǫk) ∈ {±1}k such that X := admk(Lǫkαk

) . . . adm1(Lǫ1α1
)(Lλ) is

not zero. Set µ = λ +
∑

i≤k ǫimiαi. Since degX = µ, we have l(µ) =
l(λ) +

∑
i≤k ǫimil(αi). It follows that

|l(µ)| ≥ |l(λ)| −
∑

i≤k mi|l(αi)|
≥ |l(λ)| −

∑
i≤k a|l(λ)|s

≥ |l(λ)| −
∑

i≤k |l(λ)|/n
≥ (n− k)|l(λ)|/n
≥ |l(λ)|/n,

and therefore we have:
|2l(µ)/l(αi+1)| ≥ |l(µ)/l(αi+1)| ≥ |l(λ)|/ns = a|l(λ)|.

By Lemma 10, there exists some ǫ ∈ {±1} such that adm(Lǫαk+1
)(X) 6= 0

for any m ≤ a|l(µ)|. Set ǫk+1 = ǫ. It follows that
admk+1(Lǫk+1αk+1

) . . . adm1(Lǫ1α1
)(Lλ) 6= 0

Therefore Assertion (Hk+1) is proved.
Since (H0) is trivial, the assertion (Hn) is proved and the lemma fol-

lows. Q.E.D.

Lemma 12: The set Π generates Λ, and Σ is not empty.

Proof: Let M be the sublattice generated by Π and let N be its com-
plement. Set A = ⊕λ∈MLλ, B = ⊕λ∈NLλ and I = B + [B,B]. Since
Λ = M ∪ N and M + N ⊂ N , we have L = A + B and [A,B] ⊂ B.
Therefore, it follows from Lemma 3 that I is an ideal.

By hypothesis, N does not contains 0 nor any element in Π and thus
I ∩ L0 = {0}. Since I 6= L, it follows that I = 0. Therefore the support of
L lies in M . Since SuppL generates Λ, it is proved that Π generates Λ.

The proof of the second assertion is similar. Set A = ⊕l(λ)=0 Lλ,
B = ⊕l(λ) 6=0 Lλ and I = B + [B,B]. We have L = A+ B and by Lemma 2
we have [A,B] ⊂ B. Therefore I is an ideal. Since L0 is not central, this
ideal is not trivial and so I = L. It follows easily that L0 belongs to [B,B],
thus there is α ∈ Λ such that l(α) 6= 0 and [Lα,L−α] 6= 0. By definition α
belongs to Σ, so Σ is not empty. Q.E.D.
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A subset B ∈ Λ is called a Q-basis if it is a basis of Q⊗Λ. Equivalently,
it means that B is a basis of a finite index sublattice in Λ. From the
previous lemma, Π contains some Q-basis B. Then define the additive map
LB : Λ → C by the requirement that LB(β) = l(β) for all β ∈ B.

Lemma 13: Assume that l is an unbounded function. Then we have
LB(α) = l(α), for any α ∈ Π.

Proof: For clarity, the proof is divided into four steps.
Step one: Additional notations are now introduced.
Let || || be a euclidean norm on Λ, i.e. the restriction of a usual norm

on R ⊗ Λ. For any positive real number r, the ball of radius r is the set
B(r) = {λ ∈ Λ| ||λ|| ≤ r}. There is a positive real numbers v such that
Card B(r) ≤ vrn for all r ≥ 1.

Fix α ∈ Π. Set B = {α1, . . . , αn}, where n is the rank of Λ and set
αn+1 = α. Let a = a(α1, . . . , αn+1) be the constant of Lemma 11 and set
b =

∑
1≤i≤n+1 ||αi||. Also for s ≥ 0, let A(s) be the set of all (n+ 1)-uples

m = (m1, . . . ,mn+1) of integers with 0 ≤ mi ≤ s for any i.
Step two: There exists r0 > 1/ab such that (ar)n+1 > v(abr)n for any

r > r0. Equivalently, we have:

CardA(ar) > CardB(abr)

for any r > r0.
Step three: Let λ ∈ SuppL. Define two maps: ǫλ : A(a|l(λ)|) →

{±1}n+1 and Θλ : A(a|l(λ)|) → B(ab|l(λ)|), by the following requirement.
By Lemma 11, for each (n + 1)-uple m = (m1, . . . ,mn+1) ∈ A(a|l(λ)|),
there exists (ǫ1, . . . , ǫn+1) ∈ {±1}n+1 such that

admn+1(Lǫn+1αn+1
) . . . adm1(Lǫ1α1

)(Lλ) 6= 0.
Thus set

ǫλ(m) = (ǫ1, , . . . , ǫn+1), and Θλ(m) =
∑

1≤i≤n+1 ǫimiαi.
From the definition of the maps ǫλ and Θλ, it follows that
(*) admn+1(Lǫn+1αn+1

) . . . adm1(Lǫ1α1
)(Lλ) = cLλ+Θλ(m),

where c is a non-zero scalar.
Moreover, we have

||Θλ(m)|| ≤
∑

1≤i≤n+1 mi||αi||
≤ a|l(λ)|

∑
1≤i≤n+1 ||αi||

≤ ab|l(λ)|,
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and therefore Θλ takes value in B(ab|l(λ)|).
Step four: Since the function l is unbounded, one can choose λ ∈

SuppL such that |l(λ)| > r0.
It follows from Step two that Θλ is not injective. Choose two distinct el-

ementsm, m′ ∈ A(a|l(λ)|) with θλ(m) = θλ(m
′). Setm = (m1, . . . ,mn+1),

m′ = (m′
1, . . . ,m

′
n+1), ǫλ(m) = (ǫ1, . . . , ǫn+1) and ǫλ(m

′) = (ǫ′1, . . . , ǫ
′
n+1).

Using Identity (*), we have:
l(λ+Θλ(m)) = l(λ) +

∑
1≤k≤n+1 ǫimil(αi)

= l(λ) + LB(µ) + ǫn+1mn+1l(αn+1),
where µ =

∑
1≤k≤n ǫimiαi. Similarly, we get

l(λ+Θλ(m
′)) = l(λ) + LB(µ

′) + ǫ′n+1m
′
n+1l(αn+1),

where µ′ =
∑

1≤k≤n ǫ
′
im

′
iαi. Therefore, we get:

(ǫn+1mn+1 − ǫ′n+1m
′
n+1)l(αn+1) + LB(µ− µ′) = 0.

(ǫn+1mn+1 − ǫ′n+1m
′
n+1)αn+1 + µ− µ′ = 0.

Since {α1, . . . , αn} is a Q-basis, we have ǫn+1mn+1 6= ǫ′n+1m
′
n+1. It follows

from the previous two identities that l(αn+1) = LB(αn+1), which proves
the lemma.

A function m : SuppL → C is called additive if there is an additive
function m̃ : Λ → C whose restriction to SuppL is m. Since SuppL
generates Λ, the function M is uniquely determined by m.

Lemma 14: Assume that l is an unbounted function. Then the func-
tion l is additive.

Proof: It follows from the previous lemma that there exists an additive
function L : Λ → C such that l(α) = L(α) for any α ∈ Π.

Set M = {λ ∈ SuppL| l(λ) = L(λ)} and let N be its complement. Set
A = ⊕λ∈M Lλ, B = ⊕λ∈N Lλ and I = B + [B,B]. We have L = A + B.
Since l(λ+µ) = l(λ)+ l(µ) whenever [Lλ, Lµ] 6= 0 (Lemma 2), we also have
[A,B] ⊂ B. Therefore, it follows from Lemma 3 that I is an ideal.

By assumption, N does not contains 0, nor any element in Π and thus
I ∩ L0 = {0}. Since I 6= L, it follows that I = 0. Therefore N = ∅, which
implies that l is additive.

An algebra L ∈ G′ is called integrable if the function l : SuppL → C
is bounded (it is similar to the definition of integrability in [M1][M2]).
Otherwise the Lie algebra L will be called non-integrable.
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Recall that Σ is the set of all α such that the Lie algebra s(α) =
L−α ⊕ L0 ⊕ Lα is isomorphic to sl(2).

Lemma 15: Assume that L ∈ G′ is integrable. For any β ∈ Σ, we
have:

l(Λ) ⊂ Z.l(β)/2.

Proof: Since β ∈ Σ, there is a sl(2)-triple (e, f, h) with e ∈ Lβ , f ∈
L−β and h = 2L0/l(β). Since L is integrable, it is a direct sum of s(β)-
modules of finite dimension and the eigenvalues of h are integers. Thus the
eigenvalues of L0 are integral multiple of l(β)/2. Q.E.D.

Lemma 16: Assume that L ∈ G′ is integrable. There exists α ∈ Σ,
and an integer N ∈ Z>0 such that:

l(Λ) = [−N,N ].l(α).

Proof: First we claim that Im l ⊂ Z.l(α) for some α ∈ Σ.

By Lemma 12, Σ 6= ∅. Choose any β ∈ Σ. If Im l ⊂ Z.l(β), the claim
is proved.

Otherwise, set A = {λ ∈ SuppL| l(λ) ∈ Z.l(α)} and let B be its
complement. Also set A = ⊕λ∈A Lλ and B = ⊕λ∈B Lλ. It is clear that
L = A ⊕ B and [A,B] ⊂ B. By Lemma 3, B + [B,B] is an ideal, therefore
there exists α ∈ B such that [Lα, L−α] is a non-zero multiple of L0. Since
l(α) /∈ Z.l(β), we have l(α) 6= 0, and so β lies in Σ.

By Lemma 15, there are integers m and n such that l(β) = ml(α)/2
and l(α) = nl(β)/2, which impliesmn = 4. Moreover, n/2 is not an integer.
Thus n = ±1 and l(α) = ±l(β)/2. By Lemma 15, Im l ⊂ Z.l(β)/2 = Z.l(α),
and therefore the claim is proved.

Since l is bounded, there a finite set X ⊂ Z such that Im l = X.l(α).
Since s(α) is isomorphic to sl(2), L is a direct sum of finite dimensional
simple s(α)-modules. Thus it follows that X is necessarily a symmetric
interval [−N,N ]. Q.E.D.

Let L ∈ G′ be integrable. The type of L is the integer N such that
l(Λ) = [−N,N ].l(α) for some α ∈ Σ.
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Theorem 1: (Alternative for the class G) Let L be a Lie algebra in
the class G. Then L satisfies one of the following two assertions:

(i) The function l : Λ → C is additive, or
(ii) there exists α ∈ Σ such that l(Λ) = [−N,N ].l(α), for some positive

integer N .

Proof: Theorem 1 follows from Lemmas 14 and 16.

ch. II: Classification of integrable Lie algebras of the class G.

4. Notations and conventions for chapter II.

Let Λ be a lattice. Let L be an integrable Lie algebra in the class G′ of
type N . By definition, the spectrum of ad(L0) is [−N,N ].x, for some scalar
x ∈ C∗. After a renormalization of L0, it can be assumed that x = 1.

Set Li = ⊕l(β)=i Lβ . There is a decomposition:
L = ⊕i∈[−N,+N ] L

i.
Relative to this decomposition, L is weakly Z-graded: in general, the ho-
mogenous components Li are infinite dimensional. For any integer i, set
Σi = {β ∈ Σ| l(β) = i}. Similarly, there is a decomposition

Σ = ∪i∈[−N,+N ] Σi.

5. The Lie subalgebra K.

Let e, f, h be the standard basis of sl(2). For a finite dimensional
sl(2)-module V , set V i = {v ∈ V |h.v = 2iv}. A simple finite dimensional
sl(2)-module is called spherical if V 0 6= 0, or, equivalently if the eigenvalues
of h are even integers, or, equivalently if dimV is odd. For a spherical
module V , the elements of V 0 are called the spherical vectors of V .

Let π : sl(2) → C defined by π(h) = 1, π(e) = π(f) = 0. Let
U, V be two spherical simple finite dimensional sl(2)-modules, and let b :
U ⊗ V → sl(2) be a non-zero sl(2)-morphism. Define B : U × V → C by
B(u, v) = π(b(u ⊗ v)). Denote respectively by K(U) ⊂ U and K(V ) ⊂ V
the left and the right kernel of the bilinear map B.
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Lemma 17: (with the previous notations). Assume that b 6= 0 and
dimV ≥ dimU . Then one of the following statements holds:

(i) We have dimU = dimV , K(U) = U0 and K(V ) = V 0, or
(ii) we have dimU = 2m−1, dimV = 2m+1, K(U) = 0 and K(V ) =

V m ⊕ V −m for some positive integer m.

Proof: It follows easily from the tensor product decomposition formula
for sl(2)-modules that U⊗V contains the adjoint module iff dimU = dimV
or if dimU = dimV − 2. These dimensions are odd because U and V are
spherical, so we have

case 1: dimU = dimV , or
case 2: dimU = 2m− 1, dimV = 2m+1, for some positive integer m.

Moreover, the adjoint module appears with multiplicity one, so b is uniquely
defined up to a scalar multiple.

In the first case, identify V with U∗ and sl(2) with its dual. Up to a
non-zero scalar multiple, b can be identified with the map U ⊗ V → sl(2)∗

defined as follows:
b(u⊗ v) is the linear map x ∈ sl(2) 7→< x.u|v >,

for any u ∈ U , v ∈ V , where < | > is the duality pairing between U and
V , and where x.u denotes the action of x on u. So, up to a non-zero scalar
multiple, we have B(u, v) =< h.u|v >. It follows easily that the left kernel
of B is the kernel of h|U , namely U0. By symmetry, the right kernel of B
is V 0.

In the second case, let E = CX ⊕CY be the two dimensional repre-
sentation of sl(2), where X and Y denotes two eigenvectors for h. Iden-
tify U with S2(m−1)E, V with S2mE and sl(2) with the dual of S2E,
where SlE denotes the space of degree l homogenous polynomials in X
and Y . Up to a non-zero scalar multiple, b can be identified with the map
S2(m−1)E ⊗ S2(m+1)E → (S2E)∗ defined as follows:

b(F ⊗G) is the linear map H ∈ S2E 7→< H.F |G >,
for any F ∈ S2(m−1)E, G ∈ S2(m+1)E, where < | > is the sl(2)-invariant
pairing on S2(m+1)E, and whereH.F denotes product of polynomialsH and
F . So, up to a non-zero scalar multiple, we have B(F,G) =< XY F |G >.
Since the multiplication by XY is injective, it follows that K(U) = 0. Since
B is h-invariant, it follows that the right kernel is generated by X2m and
Y 2m, i.e. K(V ) = V m ⊕ V −m. Q.E.D.

Set Λe = Λ× Z. Then L admits the natural Λe-gradation:
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L =
⊕

(β,i)∈Λe

Li
β ,

where Li
β = Lβ ∩ Li. Set Supp eL = {(β, i) ∈ Λe| L

i
β 6= 0}.

For α ∈ Σ1, define πα : Λe → Λ by πα(β, i) = β − iα. For γ ∈
Λ, set M(α, γ) = ⊕πα(β,i)=γ L

i
β . It is clear that [M(α, γ1),M(α, γ2)] ⊂

M(α, γ1 + γ2), for any γ1, γ2 ∈ Λ. Since Supp eL ⊂ Λ× [−N,N ], it follows
that dimM(α, γ) ≤ 2N + 1 for all γ.

Therefore, the decomposition

L =
⊕

γ∈Λ

M(α, γ)

provides a new Λ-gradation of L. It is clear that each M(α, γ) is a s(α)-
module.

Lemma 18: Let α ∈ Σ1.
(i) M(α, γ) is not zero iff γ belongs to SuppL0.
(ii) For any γ ∈ SuppL0, the s(α)-module M(α, γ) is simple and it is

generated by the spherical vector Lγ .
(iii) In particular, we have M(α, 0) = s(α).

Proof: Since α belongs to Σ1, any simple component of the s(α)-module
L is spherical. Assume that M(α, γ) is not zero. Then its spherical part is
Lγ , and so γ belongs to SuppL0. Moreover its spherical part has dimension
one, so M(α, γ) is simple. Thus Points (i) and (ii) are proved.

Since M(α, 0) contains s(α), it follows that M(α, 0) = s(α). Q.E.D.

Let B : L × L → C be the skew-symmetric bilinear form defined by
B(X,Y ) = L∗

0([X,Y ]), for any X,Y ∈ L. Its kernel, denoted K, is a Lie
subalgebra. Set Ki = K ∩ Li for any integer i.

Lemma 19: Let α ∈ Σ1 and γ ∈ Λ. Assume that:
[M(α, γ),M(α,−γ)] 6= 0.

Then one of the following two assertions holds:
(i) dimM(α, γ) = dimM(α,−γ), or
(ii) dimM(α, ǫγ) = 3 and dimM(α,−ǫγ) = 1, for some ǫ = ±1.
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Proof: Assume that neither Assertion (i) or (ii) holds. Moreover, it can
be assumed, without loss of generality, that dimM(α, γ) > dimM(α,−γ).

By Lemma 18, the modules M(α,±γ) are spherical and M(α,−γ) is
not the trivial representation. Thus the hypotheses imply that

dimM(α,−γ) ≥ 3 and dimM(α, γ) ≥ 5.
Set β = γ + α and δ = γ + 2α. Since Lγ is a spherical vector of M(α, γ),
it follows that γ, β and δ belongs to SuppM(α, γ). Similarly, −γ and −β
belong to SuppM(α,−γ).

It follows from Lemma 17 that L−β is not in the kernel of B. Thus β
belongs to Σ1. Since γ + δ = 2β and l(γ) + l(δ) = 2, the element [Lγ , Lδ]
is homogenous of degree (2β, 2) relative to the Λe-gradation. Thus [Lγ , Lδ]
belongs to M(β, 0). By Lemma 18, we have M(β, 0) = s(β), and therefore

[Lγ , Lδ] = 0.
Similarly, [L−γ , Lδ] is homogenous of degree (2α, 2) relative to the Λe-

gradation. Thus it belongs to M(α, 0). Since M(α, 0) = s(α), it follows
that

[L−γ , Lδ] = 0.
However, these two relations [L±γ , Lδ] = 0 are impossible. Indeed

it follows from Lemma 17 that L−γ is not in the kernel of B. Thus
[L−γ , Lγ ] = cL0 for some c 6= 0, and thus [[L−γ , Lγ ], Lδ] = 2cLδ 6= 0,
which is a contradiction. Q.E.D.

Lemma 20: Let α ∈ Σ1. Then we have:
(i) [L−α,K

i] ⊂ Ki−1 for any i > 1,
(ii) [Lα,K

i] ⊂ Ki+1 for any i ≥ 1

Proof: For any γ ∈ Λ and any i ∈ Z, set K(γ) = M(α, γ) ∩ K and
Ki(γ) = Ki∩K(γ). Since K is a graded subspace of L, we have K = ⊕γ K(γ).
Therefore, it is enough to prove for any γ ∈ Λ the following assertion:

(A) [L−α,K
i+1(γ)] ⊂ Ki(γ) and [Lα,K

i(γ)] ⊂ Ki+1(γ), for any i ≥ 1
Four cases are required to check the assertion.

First case: Assume [M(α, γ),M(α,−γ)] = 0.
In such a case, K(γ) = M(α, γ) is a s(α)-module, and Assertion (A) is
obvious.

From now on, it can be assumed that
[M(α, γ),M(α,−γ)] 6= 0

Second case: Assume dimM(α, γ) = dimM(α,−γ).
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In such a case, it follows from Lemma 17 that K(γ) = K0(γ), and Assertion
(A) is clear.

Third case: Assume dimM(α, γ) < dimM(α,−γ).
It follows from Lemma 17 that K(γ) = 0 and Assertion (A) is obvious.

Fourth case: Assume dimM(α, γ) > dimM(α,−γ).
It follows from Lemma 19 that dimM(α, γ) = 3 and that dimM(α,−γ) =
1. Thus K(γ) = K1(γ)⊕K−1(γ). Thus Assertion (A) follows from the fact
that 1 is the highest eigenvalue of L0 onM(α, γ) and therefore [Lα,K

1(γ)] =
0. Q.E.D.

Lemma 21: We have:
(i) [L−1,Ki] ⊂ Ki−1 for any i > 1,
(ii) [L1,Ki] ⊂ Ki+1 for any i ≥ 1

Proof: We have L−1 = K−1⊕ [⊕α∈Σ1
L−α] and L1 = K1⊕ [⊕α∈Σ1

Lα].
Therefore the lemma follows from the previous lemma and the fact that K
is a Lie subalgebra.

6. Types of integrable Lie algebras in the class G′.
In this section, it is proved that an integrable Lie algebra L ∈ G′ is of

type 1 or 2. In the terminology of root graded Lie algebras, it corresponds
with A1 and BC1 Lie algebras, see in particular [BZ].

Lemma 22: We have Σ1 6= ∅ and Σi = ∅ for any i > 2.

Proof: The fact that Σ1 6= ∅ follows from Lemma 16.
Let β ∈ Σi with i > 0. Fix α ∈ Σ1. By Lemma 15, we have 1 = l(α) ∈

Z.l(β)/2. It follows that i divides 2, and therefore i = 1 or 2. Q.E.D.

In what follows, it will be convenient to set L>0 = ⊕i>0 L
i. Similarly

define L≥0 and L<0.

Lemma 23: Let L ∈ G′ be integrable of type N .
(i) The Lie algebra L>0 (respectively L<0) is generated by L1 (respec-

tively by L−1).
(ii) The commutant of L1 is LN .
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(iii) The L0-module LN is simple Λ-graded.
(iv) Lk = [L−1,Lk+1], and Lk+1 = [L1,Lk], for any k ∈ [−N,N − 1].

Proof: First prove Assertion (i). Let α ∈ Σ1. Since L is a direct sum
of finite dimensional spherical s(α)-modules, we have Lk+1 = adk(Lα)(L

1)
for any k > 0. Since Lα ⊂ L1, the Lie algebra L>0 is generated by L1.
Similarly, the Lie algebra L<0 is generated by L−1. Assertion (i) is proved.

Now prove Assertion (ii). Let M = ⊕Mi be the commutant of L1,
where Mi = Li ∩M.

Let i < N be any integer, and set I = Ad(U(L))(Mi). By Point (i),
L≥0 is generated by L1 and L0, thus Mi is a L≥0-submodule. Hence by
PBW theorem we get I = Ad(U(L<0))(Mi). So any homogenous com-
ponent of I has degree ≤ i and I intersects trivially LN . Therefore I is
a proper ideal. Since I is clearly Λ-graded, it follows that I = 0 which
implies that Mi = 0. Therefore M is homogenous of degree N . Since LN

is obviously in the commutant of L1, Assertion (ii) is proved.
The proof of Assertion (iii) is similar. Choose any Λ-graded L0-submo-

dule N in LN and set I = Ad(U(L))(N ). By the same argument, it follows
that IN = N . Since the graded ideal I is not zero, it follows that N = LN ,
i.e. the L0-module LN is simple Λ-graded, which proves Assertion (iii)

It follows from the previous considerations that L = Ad(U(L<0))(LN ).
Since L<0 is generated by L−1, we have

L = ⊕k≥0 ad
k(L−1)(LN ).

Similarly, we have
L = ⊕k≥0 ad

k(L1)(L−N ).
Assertion (iv) follows from these two identities. Q.E.D.

Lemma 24: One of the following assertions holds:
(i) L is of type 1, or
(ii) L is of type 2, and Σ2 6= ∅.

Proof: Let N be the type of L. Also set M = 2 if Σ2 6= ∅ and set
M = 1 otherwise. Thus Lemma 24 is equivalent to N =M .

Assume otherwise, i.e. M < N . It follows from the hypothesis that:
LM+1 = KM+1 and LM 6= KM .

However by Lemma 23, we get LM = [L−1,LM+1], and so LM =
[L−1,KM+1]. From Lemma 21, we have [L−1,KM+1] ⊂ KM . So we obtain
LM ⊂ KM which contradicts LM 6= KM . Q.E.D.
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Lemma 25: (Main Lemma for type 2 integrable Lie algebras)

Let L ∈ G′ be integrable of type 2. Then any β ∈ SuppL with l(β) 6= 0
belongs to Σ.

Proof: First step: By Lemma 23, we get L0 = [L1,L−1]. Since L3 = 0,
we deduce that [L0,K2] = [L1, [L−1,K2]]. It follows from Lemma 21 that

[L1, [L−1,K2]] ⊂ [L1,K1] ⊂ K2

Hence K2 is an L0-submodule of L2. By the previous lemma, we have
Σ2 6= ∅, so K2 is a proper submodule of L2. It follows from Lemma 23 (iii)
that K2 = 0. Equivalently, any β ∈ SuppL with l(β) = 2 belongs to Σ.

Second step: By Lemma 21, we have ad(L1)(K1) ⊂ K2. Since K2 = 0,
it follows that K1 lies inside the commutant of L1. However by Lemma 23
(ii), this commutant is L2. Hence we have K1 = 0, or, equivalently, any
β ∈ SuppL with l(β) = 1 belongs to Σ.

Final step: Similarly, it is proved that any β ∈ SuppL with l(β) = −1
or l(β) = −2 belongs to Σ. Since l takes value in [−2, 2], the Lemma is
proved. Q.E.D.

The Main Lemma also holds for type 1 integrable Lie algebras. Un-
fortunately, the proof requires more computations. The simplest approach,
based on Jordan algebras, is developped in the next two sections. Another
approach (not described in the paper) is based on tensor products of Chari-
Presley loop modules [C], [CP] for A1

1.

7. Jordan algebras of the class J
Let J be a Jordan algebra. In what follows, it is assumed that any

Jordan algebra is unitary. For any X ∈ J , denote by MX ∈ End(J) the
multiplication by X and set [X,Y ] = [MX ,MY ]. It follows from the Jordan
identity that [X,Y ] is a derivation of J , see [J]. Any linear combinations
of such expressions is called an inner derivation, and the space of inner
derivations of J is denoted by Inn J .

Lemma 26: Let X,Y ∈ J .

(i) [X2, Y ] = 2[X,XY ],

(ii) X2Y 2 + 2(XY )(XY ) = Y (X2Y ) + 2X(Y (Y X)).

26



Proof: To obtain both identities [J], apply d
dt

|t=0 to the Jordan iden-

ties:
[(X + tY )2, X + tY ] = 0,

(X + tY )2(Y (X + tY )) = ((X + tY )2Y )(X + tY ) .

Let Q be a finitely generated abelian group, let J = ⊕λ Jλ be a Q-
graded Jordan algebra, and set D = Inn J . There is a decomposition D =
⊕λ Dλ, where Dλ is the space of linear combinations [X,Y ], where X ∈ Jµ,
Y ∈ Jν for some µ, ν ∈ Q with µ+ ν = λ. Relative to this decomposition,
Dλ is a weakly Q-graded Lie algebra.

The Jordan algebra J is called of class J (Q) if the following require-
ments hold:

(i) J is a simple Q-graded Jordan algebra,
(ii) dim Jλ + dimDλ ≤ 1 for anyλ ∈ Q, and
(iii) Supp J generates Q.

If π : Q → Q is a surjective morphism of abelian groups and if J is a Q-
graded Jordan algebra, then J is in the class J (Q) if and only if π∗J is in
J (Q). This follows from the functoriality of inner derivations. For now on,
fix an abelian group Q and set J = J (Q).

An element X of a Jordan algebra J is called strongly invertible if
XY = 1 and [X,Y ] = 0, for some Y ∈ J . Obviously, a strongly invertible
element is invertible in the sense of [J], Definition 5.

An element Z ∈ J is called central iff [Z,X] = 0 for any X ∈ J . The
subalgebra of central elements is called the center of J . Since J is unitary,
the map ψ 7→ ψ(1) identifies the centroid of J with its center. Therefore
both algebras will be denoted by C(J).

In a Jordan algebra of the class J , we have ab = 0 or [a, b] = 0 for any
two homogenous elements a, b. For exemple, if we have XY = 1 for two
homogenous elements X and Y , then X is strongly invertible.

Lemma 27: Let J ∈ J be a Jordan algebra, and let X ∈ J be a
homogenous and strongly invertible element. Then X2 is central.

Proof: In order to show that [X2, Z] = 0 for all Z, it can be assumed
that Z is a non-zero homogenous element.

First assume that XZ = 0. In such a case, we have
[X2, Z] = 2[X,XZ] = 0,
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by Point (i) of the previous lemma.
Assume otherwise. By hypothesis, there exists a homogenous element

Y ∈ J such that XY = 1. Then we get:
Y (XZ) = [Y,X].Z +X(Y Z) = [Y,X].Z + [X,Z].Y + Z(XY ).

We have [X,Y ] = 0 and since XZ 6= 0, we also have [X,Z] = 0. There-
fore Y (XZ) = Z(XY ) = Z. Since MX and MY commutes, we have
Y (Y (X(XZ))) = Y (X(Y (XZ))) = Y (XZ) = Z and thereforeX(XZ) 6= 0.
Since [X2, Z] and X(XZ) are homogenous of the same degree, we have
[X2, Z] = 0 by Condition (ii) of the definition of the class J . Q.E.D.

Lemma 28: Let J be a Jordan algebra in the class J . Then
D.J ∩ J0 = {0}.

Proof: Assume otherwise. Then there are three homogenous elements
X, Y, Z ∈ J such that [X,Y ].Z = 1.

It can be assumed that J is generated by X, Y and Z. Indeed let J ′ be
the Jordan algebra generated byX, Y and Z. Since J ′ is unitary, it contains
a unique maximal graded ideal M . Then the same relation [X,Y ].Z = 1
holds in J/M and J/M is again in the class J .

Also, it can be assumed that C(J) = C. Indeed, by Lemma 9, there
exists an abelian group Q, a surjective morphism π : Q→ Q and a Q graded
simple Jordan algebra J such that J = π∗ J . It has been noted that J is in
J (Q) and by simplicity its centroid C(J) is reduced to C. Since the same
relation [X,Y ].Z = 1 holds in J , it can be assumed that C(J) = C.

Let α, β, γ be the degree of X, Y and Z. Note that α+ β + γ = 0.
We have X(Y Z) − Y (XZ) = 1. By symmetry, one can assume that

X(Y Z) 6= 0.
We have X(Y Z) = [X,Z].Y + Z(XY ). Since [X,Y ] is not zero, we

have XY = 0 and 0 6= X(Y Z) = [X,Z].Y . Thus we have [X,Z] 6= 0 and
XZ = 0.

Thus X(Y Z) = 1. It follows from Lemma 27 and the hypothesis
C(J) = C that X2 is a non-zero scalar c, and therefore 2α = 0 and Y Z =
X/c.

By Lemma 26 (ii), there is the identity
Y 2Z2 + 2(Y Z)2 = Z(Y 2Z) + 2Y (Z(ZY )).

We have
degY 2Z = 2β + γ = β − α = β + α = deg [X,Y ], and
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degZ(ZY ) = β + 2γ = γ − α = γ + α = deg [X,Z].
By hypothesis we have [X,Y ] 6= 0 and it has been proved that [X,Z] 6=

0. Therefore Y 2Z = 0 and Z(ZY ) = 0 and the right side of the identity is
zero. Thus we get Y 2Z2 + 2(Y Z)2 = 0. Since Y Z = X/c, it follows that
Y 2Z2 = −2/c. Hence Y 2 is strongly invertible. By Lemma 27, Y 4 is a
non-zero scalar, and therefore 4β = 0.

Thus the subgroup generated by α and β has order ≤ 8, and it contains
γ = −(α+ β). Therefore Supp J is finite, i.e. dim J <∞.

It follows from Jordan identity that M[X,Y ].Z = [[MX ,MY ],MZ ], see
[J], Formula (54). Set P = [MX ,MY ] and Q = MZ . Thus P and Q
belongs to the associative algebra End(J), and they satisfy [P,Q] = 1,
where [, ] denotes the ordinary Lie bracket. Since J is finite dimensional,
this identity is impossible. Q.E.D.

Lemma 29: Let J be a simple graded Jordan algebra of the class J .
Then any non-zero homogenous element is strongly invertible.

Proof: Let λ : J → C be defined by λ(1) = 1 and λ(X) = 0 if X is
homogenous of degree 6= 0.

It follows from the previous lemma that λ([X,Y ].Z) = 0, or, equiva-
lently λ((XY )Z) = λ(X(Y Z)) for all X, Y, Z ∈ J . Thus the kernel of the
bilinear map B : J × J → C, (X,Y ) 7→ λ(XY ) is a graded ideal. Hence B
is non-degenerated, which implies that any non-zero homogenous element
is strongly invertible. Q.E.D.

Recall that the underlying grading group is denoted by Q.

Lemma 30: Let J be a Jordan algebra of the class J . Then
Supp C(J) ⊃ 2Q.

Proof: Let α ∈ Supp J , and let X ∈ Jα \ {0}. By Lemma 29, X is
strongly invertible and by Lemma 27, X2 is central. Therefore 2α belongs
to Supp C(J). Since Supp J generates Q and Supp C(J) is a subgroup, it
follows that Supp C(J) contains 2Q.

8. Kantor-Koecher-Tits construction
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Recall Kantor-Koecher-Tits construction, which first appeared in [T],
and then in [Kan], [Ko]. It contains two parts.

To any Jordan algebra J is associated a Lie algebra, denoted by sl(2, J),
whose definition follows. As a vector space, sl(2, J) = sl(2) ⊗ J ⊕ Inn J ,
and the bracket is defined by the following requirements:

(i) its restriction to Inn J is the Lie algebra structure of Inn J ,
(ii) we have: [δ, x⊗ a] = x⊗ δ.a,
(iii) we have: [x⊗ a, y ⊗ b] = [x, y]⊗ ab+ k(x, y)[a, b],

for any δ ∈ Inn J , x, y ∈ sl(2), a, b ∈ J , where k(x, y) = 1/2 tr (xy) and
where [a, b] denotes the inner derivation [Ma,Mb].

Conversely, to certain Lie algebras are associated with Jordan algebras.
Indeed assume that the Lie algebra L contains a subalgebra sl(2) with its
standard basis e, f, h and moreover that

L = L−1 ⊕ L0 ⊕ L1,
where Li = {x ∈ L| [h, x] = 2ix}. Define an algebra J by the following
requirements:

(i) as a vector space, J = L1,
(ii) the product of two elements x, y is given by the formula xy =

1/2[[f, x], y].

Lemma 31: (Tits [T]) With the previous hypothesis:
(i) J is a Jordan algebra.
(ii) If moreover L0 = [L1,L−1] and if the center of L is trivial, then

we have L = sl(2, J).

An admissible datum is a triple (J,Λ′, α) with the following conditions:
(i) Λ′ is a subgroup of Λ, α is an element of Λ, and the group Λ is

generated by Λ′ and α,
(ii) J is a Jordan algebra in the class J (Λ′),
(iii) the four subsets Supp J , ±α+Supp J and Supp Inn J are disjoint.

Then a Λ-gradation of the Lie algebra sl(2, J) is defined as follows:
(i) On Inn J , the gradation is the natural Λ′ gradation
(ii) For any homogenous element x ∈ J , set

degh⊗ x = degx, deg e⊗ x = α+ degx and deg f ⊗ x = −α+ degx.

The condition (iii) of an admissible triple ensures that the associated
Λ-gradation of sl(2, J) is mutiplicity free. Since the Λ-graded Lie algebra
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sl(2, J) is clearly simple graded, it is a type 1 integrable Lie algebra of the
class G′.

Conversely, let Λ be a finitely generated abelian group, and let L ∈
G′(Λ) be a type 1 integrable Lie algebra. Let Λ′ be the subgroup generated
by β − γ, where β and γ run over SuppL1.

By Lemma 22, the set Σ1 is not empty. Choose α ∈ Σ1. Let J(α) be
the Jordan algebra defined by the following requirements:

(i) As a vector space, J(α) = L1,
(ii) the gradation of J(α) is given by

J(α)µ = L1
µ+α,

(iii) the product xy of two elements x, y ∈ J(α) is defined by
xy = [[L−α, x], y].

Lemma 32: Let L ∈ G′ be a type 1 integrable Lie algebra, and let
α ∈ Σ1.

(i) The triple (J(α),Λ′, α) is an admissible datum, and
(ii) as a Λ-graded Lie algebra, L is isomorphic to sl(2, J(α)).

Proof: First check that L satisfies the hypothesis of the previous lemma.
By simplicity of L, its center is trivial. Moreover the identity L0 = [L1,L−1]
holds by Lemma 23 (iv).

By the previous lemma, the Lie algebra L is isomorphic to sl(2, J(α)).
It follows from the definition that Supp J generates Λ′ and that Λ = Λ′+Zα.
It is clear that J is a simple graded Jordan algebra. Since the gradation of
sl(2, J(α)) is multiplicity free, the four subsets Supp J(α), ±α+Supp J(α)
and Supp Inn J(α) are disjoint. In particular J(α) is of the class J (Λ′) and
(J(α),Λ′, α) is an admissible datum.

Lemma 33: (Main Lemma for type 1 integrable Lie algebras)
Let L ∈ G′ be integrable of type 1. Then any β ∈ SuppL with l(β) 6= 0

belongs to Σ.

Proof: Fix α ∈ Σ1. By the previous lemma, L is isomorphic to
sl(2, J(α)).

Since l(β) 6= 0, we have l(β) = ±1. Without loss of generality, it can
be assumed that l(β) = 1. Under the previous isomorphism, Lβ is identified
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with e⊗X, where X is a homogenous element of J(α). By Lemma 29, X
is strongly invertible. Let Y be its inverse. Up to a scalar multiple, L−β is
identified with f⊗Y . Since [e⊗X, f⊗Y ] = h, it follows that [Lβ , L−β ] 6= 0,
and so β belongs to Σ.

9. Connection between the Centroid and the Weyl group:
Recall the hypothesis of chapter II. Here L ∈ G′(Λ) is an integrable

simple graded Lie algebra of type N , where N = 1 or N = 2. The Main
Lemma is now established integrable Lie algebras of both types 1 and 2.

In this section it is proved that C(L) is very large, namely L is finitely
generated as a C(L)-module.

Recall the decomposition L = ⊕i∈Z Li, where adL0 = i on Li.

Lemma 34: There is a natural algebra isomorphism
C(L) ≃ EndL0(LN ).

Proof: Any ψ ∈ C(L) commutes with L0, and therefore ψ stabilizes
LN . This induces a natural algebra morphism θ : C(L) → EndL0(LN ). By
Lemma 23 (iv), LN generates the adjoint module, so θ is injective.

Set V = Ind L
L≥0 L

N , where L≥0 = ⊕i≥0 L
i. Since LN generates the

adjoint module, the natural L-equivariant map η : V → L is onto.
The L-module V is a weakly Λ × Z-graded L-module. In particular,

there is a decomposition V = ⊕i≤NV
i, where V i = {v ∈ V |L0v = iv}. Let

K be the biggest L-module lying in V <N , where V <N = ⊕i<N V i. It is
clear that K is graded relative to the Λ × Z gradation. Since V N ≃ LN

and L is simple graded, it is clear that K is precisely the kernel of η.
Since EndL0(LN ) = EndL≥0(LN ), it follows that any ψ ∈ EndL0(LN )

extends to a L-endomorphism ψ̂ of V . Moreover ψ̂ stabilizes each Vi, there-
fore it stablizes K. Hence ψ̂ determines an L-endomorphism ψ of L. Since
ψ ∈ EndL(L) = C(L) extends ψ ∈ EndL0(LN ), the natural algebra mor-
phism θ : C(L) → EndL0(LN ) is onto.

Therefore θ is an isomorphism, which proves the lemma. Q.E.D.

From now on, denote by Λ′ the subgroup of Λ generated by α−β when
α, β run over Σ1.
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Lemma 35: Let α ∈ Σ1. We have SuppLi ⊂ iα+ Λ′ for all i.

Proof: By the Main Lemmas 25 and 33, we have SuppL1 = Σ1, thus
we have SuppL1 ⊂ α + Λ′. Similarly, we have SuppL−1 ⊂ −α + Λ′. By
Assertion (iv) of Lemma 23, we have L0 = [L−1,L1], L2 = [L1,L1] and
L−2 = [L−1,L−1]. Thus the inclusion SuppLi ⊂ iα + Λ′ easily follows.
Q.E.D.

Let β ∈ Σ1. Since [Lβ , L−β ] 6= 0, it can be assumed that [Lβ , L−β ] =
2L0. Let sβ be the automorphism of the Lie algebra L defined by

sβ = exp−ad(Lβ) ◦ exp ad(L−β) ◦ exp−ad(Lβ).

Lemma 36: Let β ∈ Σ1 and let λ ∈ SuppL.
(i) We have sβ Lλ ⊂ Lλ−2l(λ)β.
(ii) If l(λ) = 0, then sβ(Lλ) = ±Lλ.

Proof: Set γ = λ− l(λ)β. The action of s(β) := CL−β⊕CL0⊕CLβ ≃
sl(2) on the spherical module M(β, γ) integrates to an action of the group
PSL(2,C), and sβ is the action of the group element ±(0−1

1 0), from which
both assertions follow. Q.E.D.

For α, β ∈ Σ1, set tα,β = sα ◦ sβ ◦ sα ◦ sβ .

Lemma 37: We have
(i) tα,β Lλ ⊂ Lλ+4l(λ)(α−β), for any λ ∈ SuppL.
(ii) tα,β(x) = x for any x ∈ L0.

Proof: The first point follows from the previous lemma . Let λ ∈
SuppL0. By the previous lemma, there are ǫα, ǫβ ∈ {±1} such that
sα (Lλ) = ǫα Lλ and sβ (Lλ) = ǫβ Lλ. Therefore tα,β (Lλ) = ǫ2α ǫ

2
β Lλ = Lλ.

Thus tα,β acts trivially on L0.

Lemma 38: Set M = SuppC(L). Then we have 8Λ′ ⊂M ⊂ Λ′.

Proof: By Lemma 35, the support of each Li is contained in one Λ′-
coset. It follows easily that M ⊂ Λ′.

Let α, β ∈ Σ1, and let t be the restriction of tα,β to LN . It follows from
the previous lemma that t is an L0-morphism of LN of degree 4N(α − β).
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By Lemma 34, there exists a morphism ψ ∈ C(L) whose restriction to LN

is t. Thus 4N(α − β) belongs to M . Since N = 1 or 2, it is always true
that 8(α− β) belongs to M . Thus we get 8Λ′ ⊂M . Q.E.D.

Remark: If L is of type 1, there is a simpler way to derive Lemma 38.
Indeed, Lemma 30 easily implies that M contains 2Λ′.

10. Classification of integrable Lie algebras of the class G.
Recall that Λ is a lattice. First state a classification result for the

non-integrable Lie algebras of the class G′.

Theorem 2’: Let L be an integrable Lie algebra in the class G′(Λ) and
let M be the support of C(L). There exists a Lie algebra g ∈ G′(Λ/M) such
that:

(i) g is a simple finite dimensional Lie algebra,
(ii) L ≃ π∗g as a Λ-graded Lie algebra,

where π is the natural map Λ → Λ/M .

Proof: By Lemma 9, there exists a simple Lie algebra g, and a Λ/M
gradation g = ⊕µ gµ of g such that L ≃ π∗g as a Λ-graded algebra. Since
L ∈ G′(Λ), it is clear that g belongs to G′(Λ/M).

It remains to prove that g is finite dimensional. By Lemma 35, SuppL
lies in a most five Λ′-cosets. Therefore, Suppg lies in at most five Λ′/M -
cosets. By Lemma 38, Λ′/M is finite. Therefore Suppg is finite, which
implies that g is finite dimensional. Q.E.D.

By the previous theorem, the classification of all integrable Lie algebras
in the class G′ follows from the classification of finite dimensional simple Lie
algebras of the class G′.

For the class G, the classification will be explicit. Let L = π∗g as in
Theorem 2’.

Lemma 39: Assume moreover that L belongs to the class G. Then we
have:

(i) dimgµ = 1 for any µ ∈ Λ/M ,
(ii) dimg = a2n for some a ∈ {1, 3, 5} and some n ≥ 0.
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Proof: It is obvious that dimgµ = 1 for any µ ∈ Λ/M . Since Λ =
SuppL, it follows from Lemma 35 that Λ is an union of at most five Λ′-
cosets, therefore the index [Λ : Λ′] is ≤ 5. By Lemma 38, M contains 8Λ′,
so [Λ′ : M ] is a power of 2. Thus the index [Λ : M ] can be written as
a′2n

′

, where a′ ≤ 5. Thus this index is of the form a2n, with a = 1, 3 or 5.
Therefore

dimg = [Λ :M ] = a2n,
with a = 1, 3 or 5. Q.E.D.

Lemma 40: Let g be a finite dimensional simple Lie algebra of di-
mension a2n for some a ∈ {1, 3, 5} and some n ≥ 0. Then g is of type A,
or g is isomorphic to sp(4) ≃ so(5).

Remark: More precisely, a type A Lie algebra of dimension a2n for some
a ∈ {1, 3, 5} and some n ≥ 0 is isomorphic to sl(l) for l = 2, 3, 4, 5, 7 or
9. However this remark is not essential.

Proof: Assume that g is not of type A.
The dimension of the exceptional Lie algebras G2, F4, E6, E7 and E8

are respectively 14 = 2.7, 52 = 4.13, 78 = 6.13, 133 = 7.19 and 248 = 8.31,
and therefore g is not exceptional.

Thus g is of type B, C or D, and its dimension is m(m + 1)/2 for
some integer m. Consider the equation m(m+ 1)/2 = a2n, for some n ≥ 0
and some a ∈ {1, 3, 5}. Obviously m = 1 is a solution. For m > 1, m
or m + 1 is a odd factor of m(m + 1)/2, and therefore m or m + 1 should
be 3 or 5. The case m = 5 being not a solution, the only solutions are:
m = 1,m = 2,m = 3 and m = 4.

However the following values should be excluded:
(i) m = 1 because so(2) is abelian,
(ii) m = 2 because so(3) ≃ sp(2) is of type A,
(iii) m = 3 because so(4) is not simple.
The remaining case m = 4 is precisely the dimension of sp(4) ≃ so(5).

Q.E.D.

Let g be a simple Lie algebra and let F be an abelian group. A grada-
tion g = ⊕α∈F gα of g is called simple if dimgα = 1 for any α ∈ F . This
implies that F is finite, of order dimg.
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Lemma 41: (i) The Lie algebra sp(4) ≃ so(5) does not admit a simple
gradation.

(ii) The Lie algebra sl(n) does not admit admit a simple gradation for
n > 3.

Proof: Point (i): Set g = sp(4) and let g = ⊕α∈F gα be a simple
gradation of g. Since dimg = 10, the group F is isomorphic to Z/2Z ×
Z/5Z. This gradation induces a Z/2Z-gradation g = g0 ⊕ g1, where each
component gi has dimension 5. Since g0 is reductive of dimension 5, it is
isomorphic with sl(2) ⊕ C2 or C5 and its rank is ≥ 3. Since the rank of
sp(4) is two, this is impossible.

Point (ii): Set g = sl(n), let g = ⊕α∈F gα be a simple gradation of g
by a finite abelian group F . Let X = Hom(F,C∗) be its character group.
The gradation induces a natural action of X on g: an element χ ∈ X acts
on gα by multiplication by χ(α).

Let ρ : X → Aut(g) be the corresponding morphism. Since the adjoint
group PSL(n) has index ≤ 2 in Aut(g), there is a subgroup Y of X of index
≤ 2 such that ρ(Y ) ⊂ PSL(n). Let ψ : Y → PSL(n) be the corresponding
morphism. The group F has order dimg = n2 − 1, hence the order of Y is
prime to n. Thus the map ψ can be lifted to a morphism ψ̂ : Y → SL(n).

Let K be the commutant of ψ̂(Y ) and let k be its Lie algebra. Let
F ′ = {α ∈ F |χ(α) = 1∀χ ∈ Y }. Since [X : Y ] ≤ 2, the group F ′ has at
most two elements. It is clear that k is the subalgebra of fixed points under
Y , hence k = ⊕β∈F ′ gβ , from which it follows that

dimK = dim k ≤ 2 .
However Y being commutative, ψ̂(Y ) lies inside a maximal torus, and

thus we have
dimK ≥ n− 1.

It follows that n ≤ 3. Q.E.D.

The Lie algebra sl(2) has a simple Z/3Z-gradation Γ3 defined as follows
deg e = 1, degh = 0 and deg f = −1,

where e, f, h is the standard basis.
The Lie algebra sl(3) has a simple Z/8Z-gradation Γ8 defined as follows
deg f1 + f2 = −1, degh1 + h2 = 0, deg e1 + e2 = 1, deg [f1, f2] = 2,
deg f1 − f2 = 3, degh1 − h2 = 4, deg e1 − e2 = 5, and deg [e1, e2] = 6,

where e1, e2, h1, h2, f1, f2 are the standard Chevalley generators of sl(3).
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Lemma 42: Any simple finite dimensional Lie algebra with a simple
gradation is isomorphic to (sl(2),Γ3) or (sl(3),Γ8).

Proof: By Lemma 41, it is enough to prove that Γ3 is the unique simple
gradation of sl(2) and that Γ8 is the unique simple gradation of sl(3). The
first assertion is clear.

Set g = sl(3) and let g = ⊕γ∈Γ gγ be a simple gradation of g by a
group Γ of order 8. Let α ∈ Σ1. Since the s(α)-module g is spherical, it
follows easily that, under the subalgebra s(α), the natural 3 dimensional
representation of g is irreducible. So the eigenvalue of L0 on C3 are −1,
0 and 1 and we can assume that L0 = h1 + h2. Since [L0, Lα] = Lα it
follows that, up to a scalar multiple Lα = ae1 + be2 and L−α = bf1 + af2
for some non-zero scalar a, b. Up to scalar multiple and conjugacy, it can
be assumed that Lα = e1 + e2 and L−α = f1 + f2. Since g−2 = C[f1, f2]
is one dimensional, it follows that [f1, f2] is Γ-homogenous. Let β be its
degree.

So up to a scalar multiple, we have Lβ = [f1, f2], Lβ+α = f1 − f2,
Lβ+2α = h1 − h2, Lβ+3α = e1 − e2 and Lβ+4α = [e1, e2]. Since Lβ and
Lβ+4α are not proportional, we have 4α 6= 0. Thus Γ is cyclic and it
is generated by α. Since the 8 elements of Γ are 0, ±α and β + iα for
0 ≤ i ≤ 4, it follows easily that β = 2α. Thus the gradation is isomorphic
to Γ8. Q.E.D.

Remark: Lemma 42 is quite closed to the general results of the recent
paper [E].

Theorem 2: Let Λ be a lattice and let L be an integrable primitive Lie
algebra of the class G. Then Λ = Z and L is isomorphic to A1

1 or A2
2.

Proof: By Theorem 2’, there exists a finite abelian group F , a simple
Lie algebra g with a simple F -gradation and a surjective morphism π :
Λ → F such that L ≃ π∗g. By the previous lemma, F is cyclic. Since L is
primitive, Kerπ contains no primitive vectors. Hence Λ = Z.

Moreover the graded simple Lie algebra g is isomorphic to (sl(2),Γ3) or
(sl(3),Γ8).It is clear that π

∗((sl(2),Γ3)) ≃ A1
1, for any surjective morphism

π : Z → Z/3Z and π∗((sl(3),Γ8)) = A2
2 for any surjective morphism π :

Z → Z/8Z. It follows that L is isomorphic to A1
1 or A2

2. Q.E.D.
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ch. III: Classification of non-integrable Lie algebras of the class
G.

11. Rank 1 subalgebras

From now on, let Λ be a lattice and let L ∈ G(Λ) be a non-integrable
Lie algebra. The goal of this section is Lemma 46, namely that any graded
subalgebra isomorphic to sl(2) lies in a Witt algebra.

For any λ ∈ Λ, set
Ω(λ) = Supp [L, Lλ].

Lemma 43: Let λ ∈ Λ. Then we have Λ = F + Ω(λ), for some finite
subset F of Λ.

Proof: By Theorem 1, the function l is additive, and moreover l 6≡ 0
(otherwise L0 would be central). Since Ω(0) = {µ ∈ Λ| l(µ) 6= 0}, we have
Λ = Ω(0) ∪ α+Ω(0), where α is any element with l(α) 6= 0.

However by Lemma 4, we have Ω(λ) ≡ Ω(0). Therefore we have Λ =
F +Ω(λ) for some finite subset F of Λ. Q.E.D.

For α ∈ Λ− {0}, set L(Lα) = {x ∈ L| adn(Lα)(x) = 0, ∀n >> 0}.

Lemma 44: Let α ∈ Σ. There are no λ ∈ Λ such that [L, Lλ] ⊂
L(Lα).

Proof: Step 1: A subset X ⊂ Λ is called α-bounded if for any β ∈ Λ
there exists n(β) ∈ Z such that β + nα /∈ X for any n ≥ n(β).

Set s(α) = CL−α ⊕CL0 ⊕CLα. By hypothesis, s(α) is isomorphic to
sl(2). For any β ∈ Λ, set M(β) = ⊕n∈Z Lβ+nα. As a sl(2)-module, M(β)
is a weight module with weight mutiplicities 1. It follows from Gabriel’s
classification ([D], 7.8.16) that [Lα, Lβ+nα] 6= 0 for n >> 0. Therefore
SuppL(Lα) is α-bounded.

Step 2: Since SuppL(Lα) is α-bounded, there is no finite subset F of
Λ such that F + SuppL(Lα) = Λ. Therefore by Lemma 43, we have:

Ω(λ) 6⊂ L(Lα),
which proves the lemma. Q.E.D.
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The Witt algebra W = DerC[z, z−1] has basis Ln = zn+1d/dz, where
n runs over Z. We have [Ln, Lm] = (m−n)Ln+m. It contains two subalge-
bras W± = DerC[t±1]. The Lie algebra W+ has basis (Ln)n≥−1 and W−

has basis (Ln)n≤1. Their intersection W
+ ∩W− is isomorphic to sl(2).

Set V ± = W/W±. Then V ± is a W±-module, V + ⊕ V − is a sl(2)-
module. Identify the elements Ln ∈ W with their images in V ±. Then
(Ln)n≤−2 is a basis of V +, and (Ln)n≥2 is a basis of V −.

Let V be the class of all Lie algebras D with a basis (dn)n∈Z satisfying
[d0, dn] = n dn, for all n ∈ Z. An algebra D ∈ V admits a Z-gradation,
relatively to which dn is homogenous of degree n.

Lemma 45: ([M1]) Let D ∈ V. Assume that [d1, d−1] 6= 0. As
a Z-graded Lie algebra, D is isomorphic to one of the following four Lie
algebras:

(i) W
(ii) W+

l× V +

(iii) W−
l× V −

(iv) sl(2) l× (V + ⊕ V −),
where, V ± and V + ⊕ V − are abelian ideals.

Proof: See [M1], Lemma 16. In loc. cit., the statement is slightly
more general, because it is only assumed that dimDn ≤ 1. The assumption
dimDn = 1 for all n corresponds with the following four types of the Lemma
16 of [M1]: type (2,2), type (2,3) (with q = 1), type (3,2) (with p = 1) and
type (3,3) (with p = q = 1).

For any α ∈ Λ, set L(α) = ⊕n∈Z Lnα. If l(α) 6= 0, L(α) belongs to the
class V.

Lemma 46: Let α ∈ Σ. Then L(α) is isomorphic to W .

Proof: Step 1: Assume otherwise. By the previous lemma, L contains
an abelian ideal. Exchanging the role of ±α if necessary, we can assume
that M = ⊕n≤−2 Lnα is an abelian ideal of L(α).

Set Q = ⊕n≤1 Lnα. It follows that Q ≃ sl(2) l× M . For any Zα-
coset β ⊂ Λ, set M(β) = ⊕γ∈β Lγ and F(β) = M(β)/M(β)(Lα), where
M(β)(Lα) = M(β) ∩ L(Lα). Since ad(Lα) is locally nilpotent on Q,
M(β)(Lα) is a Q-submodule and thus F(β) is a Q-module.
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In the next two points, we will prove the following assertion:
(A) for any Zα-coset β, L−2α acts trivially on F(β).

Step 2: Assume first that M(β)(Lα) 6= 0 and prove Assertion (A) in
this case.

It follows from sl(2)-theory that Ker ad(Lα)|M(β) has dimension ≤ 2

(see [D] 7.8.16 or [Mi]). So there exists γ ∈ β such that M(β)(Lα) =
⊕n>0Lγ−nα. Thus, F(β) is the free C[Lα]-module of rank one generated
by Lγ . Since Lγ−2α ⊂ M(β)(Lα), we have:

[L−2α, Lγ ] = 0 modulo M(β)(Lα).
So L−2α acts trivially on the generator Lγ of the C[Lα]-module F(β). Since
[L−2α, Lα] = 0, it follows that L−2α acts trivially on F(β).

Step 3: Assume now that L(β)(Lα) = 0 and prove Assertion (A) in this
case.

After a renormalization of L0, it can be assumed that l(α) = 1. AlsoM
is isomorphic to an irreducible Verma module, so we have [Lα, L−3α] 6= 0.
After a suitable renormalization, it can be assumed that [L−3α, Lα] = L−2α.

Let t be the action of Lα on M(β) and let γ ∈ β. By hypothe-
sis, t acts injectively on M(β). Since t.M(β)γ+nα ⊂ M(β)γ+(n+1)α and
dimM(β)γ+nα = 1 for any n, it follows that t acts bijectively. Hence M(β)
is the free C[t, t−1]-module of rank 1 generated by Lγ .

Use this generator Lγ to identify M(β) with C[t, t−1] and denote by
ρ : Q → End(C[t, t−1]) the corresponding action.

Set d = ρ(L0). Since [L0, Lα] = Lα and [L0, Lγ ] = l(β)Lγ , we get that
[d, t] = t and d.1 = l(γ). Therefore d = td/dt+ l(γ).

Set X = ρ(L−2α). Since [Lα, L−2α] = 0 and [L0, L−2α] = −2L−2α, we
get [t,X] = 0 and [td/dt,X] = −2X. So we have X = at−2 for some a ∈ C.

Set Y = ρ(L−3α). Since [L−3α, Lα] = L−2α and [L0, L−3α] = −3L−3α,
we get [Y, t] = at−2 and [td/dt, Y ] = −3Y . So we have Y = at−2d/dt+bt−3

for some b ∈ C.
Since M is an abelian ideal, we have [ρ(L−3α), ρ(L−2α)] = 0, i.e.

[at−2d/dt+ bt−3, at−2] = 0,
from which it follows that a = 0 and X = 0. Therefore L−2α acts trivially
on M(β) = F(β).

Step 4: Assertion (A) is equivalent to
[L, L−2α] ⊂ L(Lα).

This contradicts Lemma 44. It follows that L(α) is necessarily isomorphic
to W .
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12. Symbols of twisted pseudo-differential operators on the
circle.

(12.1) Ordinary pseudo-differential operators on the circle: Denote by
A the Laurent polynomial ring C[z, z−1]. By definition, SpecA is called
the circle. Let D+ be the algebra of differential operators on the circle. An
element in D+ is a finite sum a =

∑
n≥0 an∂

n, where an ∈ A and where ∂

stands for d
dz

. The product of the differential operator a by a differential

operator b =
∑

m≥0 bm∂
m is described by the following formula:

a.b =
∑

k≥0

∑
n,m≥0 (

n
k )an(∂

k bm) ∂n+m−k.
A pseudo-diferential operator on the circle is a formal series

a =
∑

n∈Z
an∂

n,
where an ∈ A and an = 0 for n >> 0. The space D of all pseudo-differential
operators has a natural structure of algebra (see below for a precise defini-
tion of the product).

(12.2) Twisted differential operators on the circle: It is possible to
enlarge the algebra D+ by including complex powers of z.

Let A be the algebra with basis (zs)s∈C and product zszt = zs+t. The
derivation ∂ extends to A by ∂zs = s.zs−1. Set D+ = A ⊗A D+. The
product on D+ extends naturally to D+. The algebra D+ will be called the
algebra of twisted differential operators on the circle.

As usual, set (sk) = (1/k!)s(s − 1) . . . (s − k + 1) for any s ∈ C and
any k ∈ Z≥0. When s is a non-negative integer, (sk) is the usual binomial
coefficient. The product in D+ is defined by the following formula:

zs∂m.zt∂n =
∑

k≥0 k!(
m
k )(tk) z

s+t−k∂m+n−k.
Here the sum is finite, because (mk ) = 0 for k > m.

Let D+
≤n be the space of all differential operators of order ≤ n. Set

P+ = ⊕n≥0 D
+
≤n/D

+
≤n−1. As usual we have D+

≤m.D
+
≤n ⊂ D+

≤m+n and

[D+
≤m,D

+
≤n] ⊂ D+

≤m+n−1, therefore P+ has a natural structure of Poisson

algebra. As usual, an element a ∈ D+
≤n \ D+

≤n−1 has exactly order n, and

its image σ(a) = a mod D+
≤n−1 in P+ is called its symbol. That is why P+

is called the algebra of symbols of twisted differential operators. In what
follows, the Poisson bracket of symbols will be denoted by {, }.

(12.3) Twisted pseudo-differential operators on the circle: Similarly, it
is possible to enlarge the algebra D by adding complex powers of z and ∂.

Since the formula involves an infinite series in powers of ∂, a restriction
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on the the support of the series is necessary to ensure the convergence of
the series defining the product.

For any s ∈ C, set ]−∞, s] = {s− n|n ∈ Z≥0}. Say that a subset X
of C is good if there exists a finite set S such that X ⊂ ∪s∈S ]−∞, s]. Let
D be the space of all formal series

∑
x ax∂

x, where ax ∈ A for any x ∈ C
and where ax = 0 for all x outside a good subset of C. An element of D is
called a twisted pseudo-differential operator. Then one can define a product
on D by the formula

zs∂x.zt∂y =
∑

k≥0 k!(
x
k)(

t
k) z

s+t−k∂x+y−k.
Thank to the restriction on the support, the product of general twisted
pseudo-differential operators is well-defined.

Unfortunately, the definition of the order of a twisted pseudo-differen-
tial operator requires a non-natural choice of a total ordering < on C
(viewed as an abelian group) in a such way that its restriction to Z is
the usual order. Then say that the operator a ∈ D has order x if a can be
writen as a = ax∂

x +
∑

y<x ay∂
y, where ax ∈ A is not zero. Let D≤x (re-

spectively D<x) be the subspace of all twisted pseudo-differential operators
of order ≤ x (respectively of order < x) and set P = ⊕D≤x/D<x

We have D≤x.D≤y ⊂ D≤x+y and [D≤x,D≤y] ⊂ D≤x+y−1 and therefore
P has a natural structure of Poisson algebra. It should be noted that any
good subset of C has a maximal element, therefore the symbol σ(a) of any
a ∈ D is well-defined. For λ = (s, t) ∈ C2, set Eλ = σ(zs+1∂t+1). Then the
commutative product of P is given by the formula Eλ.Eµ = Eλ+µ+ρ and
the Poisson bracket by {Eλ, Eµ} =< λ+ρ|µ+ρ > Eλ+µ, where <,> is the
standard symplectic form on C2 and ρ = (1, 1). Indeed for any s, t ∈ C
the symbol of zs∂t is independent on the choice of a total order <. Thus
the whole Poisson structure does not depend on this non-natural choice.

(12.4) Decomposition of P under the Witt algebra W : For any integer
n, set Ln = σ(zn+1∂). We have {Ln, Lm} = (m − n)Ln+m. Therefore,
the Lie algebra W = ⊕n CLn is isomorphic to the Witt algebra, i.e. the
derivation algebra of C[z, z−1].

Fix δ ∈ C. Set Ωδ = D≤−δ/D<−δ. Thus W is a Lie subalgebra of
Ω−1 and each Ωδ is a W -module. For any x, set uδx = σ(zx−δ∂−δ) =
Ex−δ−1,−δ−1. Note that

{Ln, u
δ
x} = (x+ nδ)uδx+n.

For any coset s ∈ C/Z, set
Ωδ

s = ⊕x∈s Cu
δ
x.
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There is a decomposition Ωδ = ⊕x∈C/Z Ωδ
s, where each Ωδ

s is a W -submo-

dule. These W -modules Ωδ
s are called the tensor densities modules.

It is clear that Ω0
0 = A and Ω1

0 = Ω1
A. As W -module, Ω0

0 and Ω1
0 have

lenght two. Indeed, set A = C[z, z−1]/C. Their composition series are
described by the following exact sequences:

0 → C → Ω0
0 → A→ 0 and 0 → A→ Ω1

0 → C → 0.
Otherwise, for s 6= 0 or for δ /∈ {0, 1}, the W module Ωδ

s is irreducible. It
should be noted that W = Ω−1

0 .

(12.5) The W -equivariant bilinear maps P δ,δ′

s,s′ and Bδ,δ′

s,s′ : Set Par =

C×C/Z. There is a decomposition P = ⊕(δ,s)∈Par Ω
δ
s. It follows from the

explicit description of the Poisson structure on P that we have:

Ωδ
s.Ω

δ′

s′ ⊂ Ωδ+δ′

s+s′ and {Ωδ
s,Ω

δ′

s′} ⊂ Ωδ+δ′+1
s+s′ .

for any quadruple (δ, s), (δ′, s′) ∈ Par. Accordingly, we get two W -equiva-
riant bilinear maps:

P δ,δ′

s,s′ : Ωδ
s × Ωδ′

s′ → Ωδ+δ′

s+s′ and B
δ,δ′

s,s′ : Ω
δ
s × Ωδ′

s′ → Ωδ+δ′+1
s+s′ .

In what follows, these morphisms P δ,δ′

s,s′ and Bδ,δ′

s,s′ will be called the com-
mutative product and the Poisson bracket product. These bilinear maps are
always non-zero, except the Poisson bracket for δ = δ′ = 0.

(12.6) The outer derivations log z and log ∂: Recall the following obvi-
ous fact:

Lemma 47: Let R be a Poisson algebra, and let d ∈ R be an invertible
element. Then the map log d : R→ R, r 7→ {d, r}/d is a derivation.

In what follows, it will be convenient to use the notation ad(log d)(r) or
{log d, r} for {d, r}/d. Since the ordinary bracket of operators is denoted by
[, ] and the Poisson bracket of symbol is denoted by {, }, it will be convenient
to write zs∂δ for σ(zs∂δ). In an expression like {zs∂δ, zs

′

∂δ
′

} it is clear that
the arguments are symbols of operators.

In the Poisson algebra P, both z and ∂ are invertible. Therefore ad log z
and ad log ∂ are derivations of P. Let E ⊂ DerP the vector space generated
by adΩ0

0, ad log z and ad log ∂. Also set A = A/C = Ω0
0/C. As a vector

space, it is clear that E = A⊕C log z ⊕C log ∂.
We have:

{zs∂δ, log z} = δzs−1∂δ−1, and
{log ∂, zs∂δ} = szs−1∂δ−1.
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It follows that E is a W -module, with basis {log z, log ∂, (en)|n 6= 0} and
the W -module structure is given by:

{Ln, em} = men+m if n+m 6= 0 and 0 otherwise,
{Ln, log z} = en if n 6= 0 and 0 otherwise,
{Ln, log ∂} = −(n+ 1)en if n 6= 0 and 0 otherwise,

where en is the image of zn in A. For e ∈ E , it will be convenient to denote
by ad(e) its natural action on P.

Lemma 48: (i) As a W -module, there is an exact sequence:
0 → A→ E → C2 → 0

(ii) ad(E)Ωδ
s ⊂ Ωδ+1

s , for all (δ, s) ∈ Par.

Proof: Both assertions follow from the previous computations.

(12.7) The Lie algebra Wπ: As a Lie algebra, P has a natural C2-
gradation P = ⊕λ∈C2 Pλ where Pλ = CEλ. For any additive map π : Λ →
C2 set, Wπ = π∗P. When π is one-to-one, Wπ has been defined in the
introduction. In general, the notation π∗ has been defined in Section 2.

Lemma 49:
(i) The Lie algebra Wπ is simple graded iff:

Imπ 6⊂ Cρ and 2ρ /∈ Imπ.
(ii) Moreover if π is one to one, then Wπ is simple.

Proof: We may assume that π is one-to-one. Thus Λ can be viewed as
a subgroup of C2. Thus Wπ has basis (Eλ)λ∈Λ and the bracket is given by
the formula [Eλ, Eµ] =< λ+ ρ|µ+ ρ > Eλ+µ.

First prove that Wπ is simple as a graded Lie algebra.
Let λ, µ ∈ Λ. For θ ∈ Λ, set
g(θ) =< λ+ ρ|θ + ρ >
h(θ) =< λ+ θ + ρ|µ+ 2ρ >

Since Λ 6⊂ Cρ, λ + ρ 6= 0 and µ + 2ρ 6= 0, it is easy to show that g and h
are not constant. Since g and h are affine, they vanishes on a proper coset
of Λ. So there is θ ∈ Λ such that g(θ)h(θ) 6= 0.

Note that h(θ) =< λ+ θ + ρ|µ− λ− θ + ρ >, and therefore:
[Eµ−θ−λ, [Eθ, Eλ]] = g(θ)h(θ)Eµ.

It follows that for any λ, µ ∈ Λ, Eµ belongs to Ad(U(Wπ))(Eλ). So Wπ is
simple as a Λ-graded Lie algebra.
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Next prove that Wπ is simple. Let ψ be an homogenous element of
the centroid C(Wπ), and let µ be its degree. Since ψ is injective and since
ψ(L0) commutes with L0, we have µ = τρ for some τ .

Fix any λ ∈ Λ with < λ| ρ > 6= 0. Define the function c : Λ → C by the
requirement:

ad(E−λ)ad(Eλ)(Eµ) = c(µ)Eµ.

Using the facts that ψ commutes with ad(E−λ)ad(Eλ) and that ψ is injec-
tive, it follows that c(µ + τρ) = c(µ), ∀µ ∈ Λ and therefore the function
n ∈ Z 7→ c(µ + nτρ) is constant. However we have c(µ) =< −λ + ρ|λ +
µ + ρ >< λ + ρ|µ + ρ >, so c(µ + nτρ) is a degree two polynomial in n
with highest term is −τ2 < λ| ρ >2 n2. Therefore τ = 0, which means that
C(Wπ) = C.

It follows from Section 2, in particular Lemma 9, that Wπ is simple.

13. Tensor products of generalized tensor densities modules.

This section is a review of the results of [KS] and [IM] which are used
later on. Indeed [IM] contain the whole list of all W -equivariant bilinear
maps µ :M1×M2 → N , whereM1, M2 and N are in S(W ). However the
classification contains many cases. Here we will only state the consequences
which are of interest for this paper.

(13.1) The Kaplansky Santharoubane Theorem:

As before, W = DerC[z, z−1] denotes the Witt Lie algebra. Given a
W -module M , set Mx = {m ∈ M |L0.m = xm}. Let S(W ) be the class
of all W -modules such that there exists s ∈ C/Z satisfying the following
conditions:

(i) M = ⊕x∈sMx

(ii) dimMx = 1 for all x ∈ s.

All the tensor densities modules Ωδ
s, which have been defined in Section 12,

are in the class S(W ). Conversely, the modules in the class S(W ) are called
generalized tensor densities modules. For (a, b) ∈ C2, define the modules
Aa,b and Ba,b as follows:

(i) the module Aa,b has basis (un)n∈Z and we have

Lm.un = (m+ n)um+n if n 6= 0, and

Lm.u0 = (am2 + bm)um.

(ii) the module Ba,b has basis (vn)n∈Z and we have
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Lm.vn = nvm+n if m+ n 6= 0, and
Lm.v−m = (am2 + bm)v0.

The family of modules Aa,b with (a, b) ∈ C2 is called the A-family. Sim-
ilarly, the family of all modules Ba,b is called the B-family. The union of
the two families is called the AB-family.

Set A = C[z, z−1] and A = A/C. If M is in A-family, then there is an
exact sequence 0 → A→M → C → 0. Similarly, if N is in B-family, then
there is an exact sequence 0 → C → N → A → 0. Since we have A⊕C ≃
A0,0 ≃ B0,0, theW -module A⊕C is in both families. Otherwise the modules
Aa,b and Ba,b are indecomposable. Since Aa,b ≃ Axa,xb (respectively Ba,b ≃
Bxa,xb) for any non-zero scalar x, the indecomposable modules of the A-
family (respectively of the B-family) are parametrized by P1.

Indeed I. Kaplansky and R. Santharoubane gave a complete classifica-
tion of all modules in S(W ).

Theorem [KS]: (Kaplansky-Santharoubane Theorem)
(i) Any irreducible module M ∈ S(W ) is isomorphic to Ωδ

s for some
δ ∈ C, s ∈ C/Z with the condition s 6= 0 if δ = 0 or δ = 1.

(ii) Any reducible module M ∈ S(W ) is in the AB-family.

The theorem is due to Kaplansky and Santharoubane. The original
paper [KS] is correct, but the statement contains a little misprint (the
indecomposable modules were classified by the affine line instead of the
projective line). For the A-family, see [MS] for a correct statement, and in
general see [MP] (see also [Kap]).

(13.2) Degree of modules in S(W ): The de Rham differential provides a
W -equivariant map d : Ω0

s → Ω1
s. For s /∈ Z, the map d is an isomorphism.

Otherwise, the modules Ωδ
s are pairwise non-isomorphic. Therefore one can

define the degree degM of any M ∈ S(W ) as follows:
degM = {δ} if M ≃ Ωδ

s for some δ 6= 0, 1, and
degM = {0, 1} otherwise.

Note that the degree is a multivalued function. By definition, a degree for
M is a value δ ∈ degM . Let S∗(W ) be the class of pairs (M, δ) where
M ∈ S(W ) and δ is a degree of M . For example, (Ω0

s, 0) and (Ω0
s, 1) belong

to S∗(W ). Usually an element of (M, δ) ∈ S∗(W ) will be simply denoted
by M , and we will set degM = δ. So the degree is an ordinary function on
S∗(W ).
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(13.3) Degree of bilinear maps in S(W ):
Let B(W ) (respectively B∗(W )) be the set of allW -equivariant bilinear

maps µ :M1×M2 → N , whereM1,M2 andN are in S(W ) (respectively in
S∗(W )). Let µ ∈ B(W ) (respectively µ ∈ B∗(W )). By definition the degree
of µ is the set (respectively the number) deg µ = degN−degM1−degM2.
As before, the degree is a multivalued map on B(W ) and an ordinary map
on B∗(W ).

Let now µ : M1 ×M2 → N be a non-zero bilinear map, where M1,
M2, N are in S∗(W ). Set δ1 = degM1, δ2 = degM2 and γ = degN .

Lemma 50 [IM]: Let µ, δ1, δ2 and γ as before.
Then degµ ∈ [−2, 3]. Moreover the possible triples (δ1, δ2, γ) are the

following:
(i) if degµ = 3: only (−2/3,−2/3, 5/3), (0, 0, 3), (0,−2, 1) or (−2, 0, 1),
(ii) if degµ = 2: any triple (0, δ, δ + 2), (δ, 0, δ + 2) or (δ, −1− δ, 1),
(iii) if degµ = 1: any triple (δ1, δ2, δ1 + δ2 + 1),
(iv) if degµ = 0: any triple (δ1, δ2, δ1 + δ2),
(v) if degµ = −1: any triple (1, δ, δ), (δ, 1, δ) or (δ, 1− δ, 0),
(vi) if degµ = −2: only (1, 1, 0).

For the proof, see [IM], Section 3.

(13.4) Bilinear maps of degree 1: Recall from Section 12.5 that the
Poisson bracket of symbols induces a W -equivariant bilinear map:

Bδ,δ′

u,u′ : Ωδ
u × Ωδ′

u′ → Ωδ+δ′+1
u+u′ ,

for any (δ, u), (δ′, u) ∈ P .

Lemma 51 [IM]: Let µ : Ωδ
u × Ωδ′

u′ → Ωδ+δ′+1
u+u′ be a W -equivariant

map.

(i) If (δ, δ′) 6= (0, 0), then µ is proportional to Bδ,δ′

u,u′ .
(ii) If (δ, δ′) = (0, 0), there exist two scalars a,b such that

µ(f, g) = afdg + bgdf , for any (f, g) ∈ Ω0
u × Ω0

u′ ,
where d is the de Rham differential.

For the proof, see [IM], Section 4.

(13.5) Degenerated bilinear maps with value in W :
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Let µ : M1 × M2 → N be a bilinear map in the class B(W ). The
bilinear map µ is called non-degenerated if the set of all (x, y) such that
µ(Mx×Ny) 6= 0 is Zarisky dense in C2. Otherwise, it is called degenerated.

Lemma 52 [IM]: Let µ : M1 ×M2 → W be a non-zero degenerated
bilinear map in B(W ). Then one of the following assertion holds:

(i) There is a non-zero morphism φ : M1 → C and an isomorphism
ψ : M2 → W such that µ(m1,m2) = φ(m1)ψ(m2) for all m1 ∈ M1, m2 ∈
M2.

(ii) There is an isomorphism ψ : M1 → W and a non-zero morphism
φ : M2 → C such that µ(m1,m2) = φ(m2)ψ(m1) for all m1 ∈ M1, m2 ∈
M2.

Proof: This follows from Section 3 of [IM].

(13.6) Non-degenerated bilinear maps with value in W :
Two families of W -equivariant bilinear maps µ : M ×N → W will be

defined. SinceW ≃ Ω−1
0 , the product of symbols πδ

s : Ωδ
s×Ω−1−δ

−s →W and

the Poisson bracket of symbols βδ
s : Ωδ

s × Ω−2−δ
−s → W are W -equivariant

bilinear maps. With the notations of Section 12.5, we have πδ
s = P δ,−1−δ

s,−s

and βδ
s = Bδ,−1−δ

s,−s

The ordinary family is the set of all these maps πδ
s and βδ

s .
The second family is called the complementary family. Its definition

requires the following obvious Lemma.

Lemma 53: The indecomposable modules of the A-family are exactly
the codimension one submodules of E.

The lemma follows easily from the structure constant of module E given
in Section 12.6 and the the structure constant of the modules Aa,b given in
Section 13.1.

The left complementary family consists of bilinear maps µl
M : M ×

Ω−2
0 →W , whereM belongs to the AB-family, which are defined as follows.

If M is an indecomposable module in the A-family, the Lemma 53
provides an injection j :M → E . OtherwiseM contains a trivial submodule
and M/C ≃ A. Thus there is a natural map j :M → E whose image is A.

Recall that ad(E)(Ωδ
0) ⊂ Ωδ+1

0 and that Ω−1
0 ≃ W . So define µl

M :
M × Ω−2

0 → W by µl
M (m,ω) = ad(j(m))(ω). This family of maps µl

M is
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called the left complementary family. The right complementary family is
the family of maps µr

M : Ω−2
0 ×M → W obtained by exchanging the two

factors. The complementary family is the union of the left and of the right
complementary families.

It should be noted that these definitions contain the following ambigu-
ities. First, when s 6= 0 mod Z, the de Rham operator d is an isomorphism
d : Ω0

s → Ω1
s, which provides the following commutative diagram:

Ω0
s × Ω−2

−s−
β0
s

−−→ Ω−1
0

| |
| d× id | −1/2
↓ ↓

Ω1
s × Ω−2

−s−
π1
s

−−→ Ω−1
0

So, up to conjugation, we have β0
s = π1

s and β
−2
s = π−2

s . Next, the maps
π1
0 : Ω1

0 ×Ω−2
0 →W and β0

0 : Ω0
0 ×Ω−2

0 →W are in the left complementary
family. Similarly, β−2

0 and π−2
0 are in the right complementary family.

Lemma 54 [IM]: Any W -equivariant non-degenerated bilinear map
µ : M × N → W belongs to the ordinary or to the complementary family.
More precisely, µ is conjugated to one of the following map:

(i) the map πδ
s for some δ 6= 1, −2,

(ii) the map βδ
s , for (δ, s) 6= (0, 0), (−2, 0),

(iii) or to a map of the complementary family.

Proof: See [IM].

14. The Main Lemma (non-integrable case):
Let L ∈ G be a non-integrable Lie algebra. Recall that Σ is the set of

all λ ∈ Λ such that Lλ ⊕ L0 ⊕ L−λ is isomorphic to sl(2).
The aim of this section is the proof of the Main Lemma in the non-

integrable case, Lemma 62. A similar statement had been already proved
for integrable Lie algebras of type I (see Lemma 33) and of type II (see
Lemma 25). However the proof in the three cases are quite different.
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Lemma 55: Let M, N ∈ S(W ) and let π : M × N → W be a non-
zero W -equivariant bilinear map. Then one of the following three assertions
holds:

(i) π(Mx ×N−x) 6= 0 for all x ∈ SuppM with x 6= 0.
(ii) There is a surjective morphism φ : M → C and an isomorphism

ψ : N →W such that π(m,n) = φ(m)ψ(n) for all m ∈M, n ∈ N .
(iii) There is an isomorphism φ : M → W and a surjective morphism

ψ : N → C such that π(m,n) = ψ(n)φ(m) for all m ∈M, n ∈ N .

Proof: Assume that neither Assertion (ii) or (iii) hold. Then by Lemma
52, the map π is non-degenerated. Moreover, the non-degenerated bilinear
maps π :M ×N →W are classified by Lemma 54. They are isomorphic to
πδ
s , β

δ
s or they are in the complementary family.
If π = πδ

s for some (δ, s) ∈ P , then π is the restriction of the commu-
tative product of the Poisson algebra P. Since the commutative algebra P
has no zero divisors, it follows that π(m,n) 6= 0 whenever m and n are not
zero, thus the assertion is clear if π = πδ

s for some (δ, s) ∈ P .
If π = βδ

s for some (δ, s) ∈ P , then π is the restriction of the Poisson
bracket of P. Let x ∈ SuppM and let m ∈ Mx, n ∈ N−x be non-zero
vectors. When M and N are realized as submodules of P, m and n are
identified with vectors which are homogenous in z and ∂. So, up to some
non-zero scalar, we have m = Eλ and n = E−λ for some λ ∈ C2 and
π(m,n) can be identified with {Eλ, E−λ}. However we have {Eλ, E−λ} =
2 < λ| ρ > E0, and therefore we get:

{Eλ, E−λ} = 0 implies that {E0, Eλ} = 0.
So π(m,n) = 0 implies that x = 0. Thus the assertion is proved if π = βδ

s

for some (δ, s) ∈ P .
Assume now that π is in the left complementary family. Since Ω0

0/C ≃
A, the map β0

0 : Ω0
0 × Ω−2

0 → W induces a map β : A × Ω−2
0 → W . It

follows from the previous computation that β(a, ω) 6= 0 if a and ω are non-
zero eigenvectors of L0 with opposite eigenvalues. Since any bilinear map
of the left complementary family is a lift, or an extension of β, it follows
that π(Mx ×N−x) 6= 0 for any x 6= 0.

A subset S of Λ is called quasi-additive if it satisfies the following three
conditions:

(i) we have l(λ) 6= 0 for any λ ∈ S,
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(ii) S = −S, and
(iii) we have λ+ µ ∈ S for any λ, µ ∈ S with l(λ+ µ) 6= 0.

For a quasi-additive set S, let K(S) be the set of all elements of the form
λ+ µ where λ and µ belong to S and l(λ+ µ) = 0. Set Q(S) = S ∪K(S).

Lemma 56: Let S be a quasi-additive subset of Λ. Then Q(S) and
K(S) are subgroups of Λ.

Proof: It is clear that K(S) = Q(S) ∩ Ker l. So it is enough to prove
that Q(S) is a subgroup. Moreover Q(S) = −Q(S), so it is enough to show
that Q(S) is stable by addition. By definition, we have Q(S) = S ∪ S + S.
So it is enough to show that S + S + S ⊂ S + S.

Let λ1, λ2, λ3 ∈ S. There are two distinct indices 1 ≤ i < j ≤ 3 such
that l(λi + λj) 6= 0. Otherwise we would have l(λ1) = −l(λ2) = l(λ3) =
−l(λ1) which whould contradict l(λ1) 6= 0. Sinces all indices play the same
role, we can assume that l(λ1 + λ2) 6= 0. It follows that λ1 + λ2 ∈ S and
therefore λ1 + λ2 + λ3 = (λ1 + λ2) + λ3 ∈ S + S. Q.E.D.

As it is well-known, if L = L1 ∪L2, where L1, L2 and L are subgroups
of Λ, then L = L1 or L = L2. Indeed a similar property holds for quasi-
additive subsets.

Lemma 57: Let S, S1, S2 be quasi-additive subsets of Λ. If S =
S1 ∪ S2, then S = S1 or S = S2.

Proof: Assume otherwise. Choose α ∈ S \ S2 and β ∈ S \ S1. Since
l(β) 6= 0, there exists ǫ ∈ {±1} with l(α) + l(ǫβ) 6= 0.

Since α + ǫβ ∈ S, α + ǫβ belongs to S1 or to S2, it can be assumed
that α+ ǫβ ∈ S1. However we have:

ǫβ = (α+ ǫβ)− α, and
l(α+ ǫβ) + l(−α) 6= 0

which implies that ǫβ = −α+ (α+ ǫβ) belongs to S1. This contradicts the
hypothesis β ∈ S \ S1. Q.E.D.

Let L ∈ G be a non-integrable Lie algebra.

Lemma 58: The set Σ is quasi-additive.
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Proof: It is obvious that Σ satisfies the conditions (i) and (ii) of the
definition of quasi-additivity.

In order to prove condition (iii), consider α, β ∈ Σ with l(α)+l(β) 6= 0.
Set L(α) = ⊕n∈Z Lnα and M(±β) = ⊕n∈Z L±β+nα. We have

[M(β),M(−β)] ⊂ L(α),
therefore the Lie bracket induces a L(α)-equivariant bilinear map:

π : M(β)×M(−β) → L(α).
By Lemma 46, the Lie algebra L(α) is isomorphic to W and by hy-

pothesis M(±β) belong to S(W ). Moreover we have π(Lβ , L−β) 6= 0.
Therefore π cannot satisfy Assertion (ii) or Assertion (iii) of the Lemma 55.
Thus Assertion (i) of Lemma 55 holds. Since l(α + β) 6= 0, it follows that
π(Lα+β , L−α−β) 6= 0, and therefore α+ β belongs to Σ. Q.E.D.

Set Q = Q(Σ).

Lemma 59: Assume Q 6= Λ. Then there exists δ ∈ Λ \Q such that
[Lδ, L−δ] 6= 0 and l(δ) = 0.

Proof: By Lemma 12, the set Π generates Λ. So there is an element
δ ∈ Π with δ /∈ Q. Since Σ lies in Q, δ lies in Π \ Σ. Therefore, we have
[Lδ, L−δ] 6= 0 and l(δ) = 0. Q.E.D.

Recall that L∗
λ is the element of the graded dual L′ defined by

< L∗
λ|Lµ >= δλ,µ,

where δλ,µ is Kronecker’s symbol. Similarly, denote by L∗
n the dual basis of

the graded dual W ′ of W . Assume that Q 6= Λ, and let δ ∈ Λ \ Q be the
element defined in the previous lemma.

Lemma 60: For each α ∈ Σ, there exists a sign ǫ = ǫ(α) such that
Lnα.L

∗
ǫδ = 0 and Lnα.L

∗
−ǫδ 6= 0

for all non-zero integer n.

Proof: Set L(α) = ⊕n∈Z Lnα and M(±δ) = ⊕n∈Z L±δ+nα. We have
[M(δ),M(−δ)] ⊂ L(α), therefore the Lie bracket induces a L(α)-equiva-
riant bilinear map:

π : M(δ)×M(−δ) → L(α).
By Lemma 46, the Lie algebra L(α) is isomorphic to W , and therefore

M(δ) and M(−δ) belong to S(W ).
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Since we have Σ ⊂ Q, it follows that δ + α /∈ Q and therefore we get
δ + α /∈ Σ. Since l(δ + α) = l(α) 6= 0, it follows that π(Lδ+α, L−δ−α) = 0.
Using again that l(δ + α) 6= 0, π satisfies Assertion (ii) or Assertion (iii) of
Lemma 55.

First, assume that π satisfies Assertion (ii) of Lemma 55. Thus there
are a surjective morphism φ : M(δ) → C and an isomorphism ψ : M(−δ) →
L(α) such that π(m,n) = φ(m)ψ(n) for all (m,n) ∈ M(δ)×M(−δ). Since
φ is proportional to L∗

δ , it follows that L
∗
δ is L(α)-invariant. In particular,

we have Lnα.L
∗
δ = 0 for all integer n. Moreover, ψ induces an isomorphism

M(−δ)′ ≃W ′ under which L∗
−δ is a non-zero multiple of L∗

0. Since Ln.L
∗
0 =

2nL∗
−n, we have Lnα.L

∗
−δ 6= 0 for all non-zero integer n. Hence, if π satisfies

Assertion (ii) of the Lemma, then the Lemma holds for ǫ = 1.

Otherwise, π satisfies Assertion (iii), and the same proof shows that
the Lemma holds for ǫ = −1. Q.E.D.

Assume again that Q 6= Λ. Let δ ∈ Λ − Q be the element defined in
Lemma 59 and let ǫ : Σ → {±1}, α 7→ ǫ(α) be the function defined by the
previous lemma.

Lemma 61: The function ǫ : Σ → {±1} is constant.

Proof: Let S± be the set of all α ∈ Σ with ǫ(α) = ±1. We claim that
the sets S± are quasi-additive.

For simplicity, let consider S+. Let α, β ∈ S+ with l(α + β) 6= 0. As
before, set L(α) = ⊕n∈Z Lnα and M(β) = ⊕n∈Z Lβ+nα. Also let N be the
L(α)-module generated by Lβ . Since L(α) is isomorphic to W , the module
M(β) belongs to S(W ). Since [L0, Lβ ] 6= 0, the module N is not trivial.
Therefore, N = M(β) or M(β)/N ≃ C. It follows that N contains Lα+β .

By definition of S+, L
∗
δ is L(α)-invariant. Since it is also invariant by

Lβ , we have N .L∗
δ = 0. In particular, we have Lα+β .L

∗
δ = 0. This implies

that ǫ(α + β) = 1, i.e. α + β ∈ S+. So S+ satisfies Condition (iii) of the
definition of quasi-additivity. Since the other conditions are obvious, S+ is
quasi-additive.

Similarly S− is quasi-additive. Since Σ = S+ ∪ S−, it follows from
Lemma 57 that Σ = S+ or Σ = S−. So ǫ(α) is independant of α and the
lemma is proved.
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Lemma 62: (Main Lemma non-integrable Lie algebras) Let L ∈ G
be a non-integrable Lie algebra. Then Σ is the set of all λ ∈ Λ such that
l(λ) 6= 0.

Proof: Assume otherwise. By Lemma 56, the subgroup Q generated
by Σ is proper. Let δ ∈ Λ \Q be the element of Lemma 59. By Lemma 60,
the function ǫ : Σ → {±1} is constant. In order to get a contradiction, we
can assume that ǫ(γ) = 1 for all γ ∈ Σ.

Set A = ⊕l(λ)=0 Lλ and B = ⊕l(λ) 6=0 Lλ. We have L = A ⊕ B and
[A,B] ⊂ B. By Lemma 3, B+[B,B] is an ideal, and therefore L = B+[B,B].
Thus A ⊂ [B,B].

Since l(δ) = 0, we have Lδ ∈ [B,B]. Therefore there are γ1, γ2 ∈ Λ
with l(γ1) 6= 0, l(γ2) 6= 0 such that [Lγ1

, Lγ2
] is a non-zero multiple of

Lδ. Since [Lδ, L−δ] 6= 0, [[Lγ1
, Lγ2

], L−δ] is a non-zero multiple of L0.
Thus [Lγ1

, [Lγ2
, L−δ]] or [Lγ2

, [Lγ1
, L−δ]] is a non-zero multiple of L0. By

symmetry of the role of γ1 and of γ2, we can assume that [Lγ1
, [Lγ2

, L−δ]] =
cL0, where c is not zero. Thus γ1 belongs to Σ.

Since [Lγ1
, Lγ2

] is a non-zero multiple of Lδ, we get < L∗
δ |[Lγ1

, Lγ2
] > 6=

0, and therefore Lγ1
.L∗

δ 6= 0. Thus we have ǫ(γ1) = −1, which contradicts
the hypothesis ǫ(γ) = 1 for all γ ∈ Σ.

For any λ ∈ Λ, set Ω∗(λ) = SuppL.L∗
λ. As a corollary of the Main

Lemma, we get:

Lemma 63: For any λ ∈ Λ, there is a finite set F such that Λ =
F +Ω∗(λ).

Proof: By the Main Lemma 61, we have Ω∗(0) ⊃ {µ ∈ Λ|l(µ) 6= 0}. So
we have Λ = Ω∗(0) ∪ α+Ω∗(0), where α is any element with l(α) 6= 0.

However by Lemma 4, we have Ω∗(λ) ≡ Ω∗(0). Therefore we have
Λ = F +Ω∗(λ), for some a finite subset F of Λ.

15. Local Lie algebras of rank two.
The aim of this chapter is Lemma 66, i.e. the fact that some local Lie

algebras do not occur in a Lie algebra L ∈ G.
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First, start with some definitions. Let L, S be Lie algebras. The Lie
algebra S is called a section of L if there exists two Lie subalgebras G and
R in L, such that R is an ideal of G and G/R ≃ S.

Let a be another Lie algebra. The relative notions of a Lie a-algebra,
an a-subalgebra, an a-ideal and an a-section are defined as follows. A Lie
a-algebra is a Lie algebra L on which a acts by derivation. An a-subalgebra
(respectively an a-ideal ) of a Lie a-algebra L is a subalgebra (respectively
an ideal) G of L which is stable by a. Let L, S be Lie a-algebras. The Lie
algebra S is called an a-section of L if there exist an a-subalgebra G of L,
and an a-ideal R of G such that G/R ≃ S as a Lie a-algebra.

Following V.G. Kac [Ka1], a local Lie algebra is a quadruple
V = (g, V +, V −, π), where:

(i) g is a Lie algebra and V ± are g-modules
(ii) π : V + × V − → g is a g-equivariant bilinear map.
As for Lie algebras, there are obvious notions of local subalgebras, local

ideals of V and local sections of V . By definition a local Lie a-algebra is
a local Lie algebra V = (g, V +, V −, π) such that g, V + and V − are a-
modules and all the products of the local structure are a-equivariant. As
for Lie algebras, one defines the notion of a local a-subalgebra, of a local
a-ideal and of a local a-section of V

Let L = ⊕n∈Z Ln be a weakly Z-graded Lie algebra. The subspace
Lloc = L−1 ⊕ L0 ⊕ L1 is called its local part. It is clear that Lloc carries a
structure of a local Lie algebra. Indeed g = L0 is a Lie algebra, V ± = L±1

are L0-modules and the Lie bracket induces a bilinear map π : L1 ×L−1 →
L0. By definition, the Lie algebra L is associated to the local Lie algebra V
if L is generated by its local part and if Lloc ≃ V .

Given a local Lie algebra V , there are two associated Lie algebras
Lmax(V ) and Lmin(V ) which satisfies the following conditions. For any Lie
algebra L associated to V , there are morphisms of Lie algebras Lmax → L
and L → Lmin. Here it should be understood that the local parts of these
morphisms are just the identity.

Let F (V ±) be the free Lie algebra generated by V ±. Indeed it is shown
in [Ka1] that F (V +)⊕g⊕F (V −) has a natural structure of a Lie algebra. It
follows that Lmax(V ) = F (V +)⊕g⊕F (V −). The weak Z-gradation of the
Lie algebra L := Lmax(V ) is described as follows: L0 = g, L±1 = V ±, so
F (V +) is positively weakly graded and F (V −) is negatively weakly graded.

Let R be the maximal graded ideal of Lmax(V ) with the property that
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its local part R−1⊕R0⊕R1 is zero. Then we have Lmin(V ) = Lmax(V )/R.
Let a be an auxiliary Lie algebra. It should be noted that Lmax(V )

and Lmin(V ) are Lie a-algebras whenever V is a local Lie a-algebra.

Lemma 64: Let L be a weakly Z-graded algebra, and let V be an
L0 local Lie algebra. If V is an L0-section of Lloc, then Lmin(V ) is an
L0-section of L.

Proof: By definition, there is a local L0-subalgebra U of Lloc and a
local L0-ideal R of U such that U/R ≃ V as a local Lie L0-algebra. Let
L(U) be the subalgebra of L generated by U .

By definition, there is a surjective morphism Lmax(U) → L(U) which
is the identity on the local part. Since the positively graded part and the
negatively graded part of Lmax(V ) are free Lie algebras, the local map
U → V extends to a surjective map Lmax(U) → Lmin(V ). It follows that
L(U) = Lmax(U)/I and Lmin(V ) = Lmax(U)/J , where I and J are graded
ideals. We have I−1 ⊕ Io ⊕ I1 = 0, and J is the maximal graded ideal such
that J−1 ⊕ Jo ⊕ J1 ⊂ R.

It follows that I ⊂ J . Thus Lmin(V ) is the quotient of the L0-
subalgebra L(U) by its L0-ideal J/I. Hence Lmin(V ) is an L0-section of L.
Q.E.D

Recall that the tensor densities W -module Ωδ
s have been defined in

Section 12. Its elements are symbols σ(f∂−δ), where f ∈ zs−δC[z, z−1]. To
simplify the notations, this symbol will be denoted by f∂−δ. Let δ, η, s, t
be four scalars. Define three maps:

π : Ωδ
s ⊗ Ωη

t → Ωδ+η
s+t , f∂

−δ ⊗ g∂−η 7→ fg∂−δ−η ,

β1 : Ωδ
s ⊗ Ωη

t → Ωδ+η+1
s+t , f∂−δ ⊗ g∂−η 7→ fg′∂−δ−η−1 ,

β2 : Ωδ
s ⊗ Ωη

t → Ωδ+η+1
s+t , f∂−δ ⊗ g∂−η 7→ f ′g∂−δ−η−1.

The map π is the product of symbols P δ,η
s,t . Denote by K its kernel. Since

π is a morphism of W -modules, K is a W -submodule.

Lemma 65: (i) We have β1(ω) + β2(ω) = 0 for any ω ∈ K.
(ii) The restriction of β1 to K is surjective, and it is a morphism of

W -modules.

Proof: For f∂−δ ⊗ g∂−η ∈ Ωδ
s ⊗Ωη

t we have (β1 + β2)(f∂
−δ ⊗ g∂−η) =

(fg)′∂−δ−η−1, and therefore β1(ω) + β2(ω) = 0 for any ω ∈ K.
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Note that ηβ2− δβ1 is the Poisson bracket Bδ,η
s,t of symbols, thus ηβ2−

δβ1 is a morphism of W -modules. Since β1 + β2 = 0 on K, the restriction
of (δ+η)β1 to K is a morphism of W -module. Thus β1|K is a W -morphism
when δ + η 6= 0. By extension of polynomial identities, it is always true
that β1|K is a morphism of W -modules.

Let w ∈ (s+ t− δ−η)+Z. Choose a ∈ (s− δ)+Z, b ∈ (t−η)+Z with
a+ b = w. Set ω = za∂−δ ⊗ zb∂−η − za+1∂−δ ⊗ zb−1∂−η. Then ω belongs
to K and β1(ω) = zw∂−δ−η−1. Since the symbols zw∂−δ−η−1 form a basis

Ωδ+η+1
s+t , the restriction of β1 to K is onto. Q.E.D.

Let V = (g, V +, V −) be a local Lie algebra with the following prop-
erties: g = ⊕xgx is a C-graded Lie algebra, V ± = ⊕x V

±
x are C-graded

g-modules and the bilinear map π : V +×V − → g is homogenous of degree
zero. Then the Lie algebras Lmax(V ) and Lmin(V ) are naturally weakly
Z×C-graded. Set L = Lmin(V ) and denote by L = ⊕Ln,x the correspond-
ing decomposition. With the previous notations, let Floc be the class of
C-graded local Lie algebras V such that

dimLn,x ≤ 1, for any (n, x) ∈ Z×C.
Since W ≃ Ω−1

0 , the commutative product on P induces a W -equiva-
riant bilinear map π−δ

s : Ω−δ
s × Ωδ−1

−s →W .

Lemma 66: Assume that the local Lie algebra (W,Ω−δ
s ,Ωδ−1

−s , π
−δ
s ) is

in Floc. Then δ = −1 or δ = 2.

Proof: For clarity, the proof is divided into four steps. It is assumed,
once for all, that δ 6= −1 and δ 6= 2.

Step 1: Let V be any local Lie algebra. Set L = Lmax(V ) and let R
be the kernel of the morphism L → Lmin(V ).

In order to compute by induction, for n ≥ 1, the homogenous compo-
nents Ln/Rn of Lmin(V ), it should be noted that:

(i) L≥1 := ⊕n≥1 Ln is the Lie algebra freely generated by V + = L1,
and therefore Ln+1 = [L1,Ln] for all n ≥ 1,

(ii) R1 = 0 and Rn+1 = {x ∈ Ln+1| [L−1, x] ⊂ Rn} for any n ≥ 1 .
More precisely, the following procedure will be used. Assume by in-

duction that:
(i) the L0-modules Li/Ri,
(ii) the brackets [, ] : L1 × Li−1 → Li,
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(iii) the brackets [, ] : L−1 × Li → Li−1

have been determined for all 1 ≤ i ≤ n.
Thus define the bilinear map: Bn : L−1 × L1 ⊗ Ln/Rn → Ln/Rn by

the formula Bn(x, y ⊗ z) = [[x, y], z] + [y, [x, z]], for any x ∈ L−1, y ∈ L1

and z ∈ Ln/Rn. Let K ⊂ L1 ⊗Ln/Rn be the right kernel of Bn. It follows
from Jacobi identity that the following diagramm is commutative:

L−1 × L1 ⊗ Ln/Rn

|
| id× [, ] ց

Bn

↓

L−1 × Ln+1/Rn+1 −−
[,]
−→ Ln/Rn

By definition of Lmin(V ), the right kernel of the horizontal bilinear
map: [, ] : L−1 × Ln+1/Rn+1 → Ln/Rn is zero. Moreover the natural map
[, ] : L1 ⊗ Ln/Rn → Ln+1/Rn+1 is onto. Therefore, we have:

Ln+1/Rn+1 = (L1 ⊗ Ln/Rn)/K

This isomorphism determines the structure of L0-module of Ln+1/Rn+1 as
well as the bracket [, ] : L1×Ln → Ln+1. The bracket [, ] : L−1×Ln+1 → Ln

comes from Bn.

Step 2: Set V = (W,Ω−δ
s ,Ωδ−1

−s , π
−δ
s ), set L = Lmax(V ) and set A =

C[z, z−1], Ak = zk(s+δ)A for any k ∈ Z. We will use the map B1 of step 1
to compute L2/R2.

The elements of L1 (respectively of L−1) are symbols f∂δ (respectively
g∂γ), where f ∈ A1 (respectively where g ∈ A−1) and where γ = 1− δ. In
the local Lie algebra V , we have:

[f∂δ, g∂γ ] = π(f∂δ, g∂γ) = fg∂ ∈W .
Let f∂δ, g∂δ ∈ L1 and let h∂γ ∈ L−1. It follows that:

B1(h∂
γ , f∂δ ⊗ g∂δ) = [hf∂, g∂δ] + [f∂δ, hg∂]

= (hfg′ − δg(hf)′ + δf(hg)′ − f ′hg)∂δ

= (1 + δ)h(fg′ − f ′g)∂δ

Define β : L1⊗L1 → Ω1−2δ
2s by the formula β(f∂δ⊗ g∂δ) = (1+δ)(fg′−

f ′g)∂2δ−1. In terms of Poisson brackets, we have β(b⊗ c) = (1 + δ)/δ{b, c}
for any b, c ∈ Ωδ

s, and therefore β is a morphism of W -modules (for δ = 0,
this follows by continuity). Moreover it is easy to show that β is surjective.
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Since δ 6= −1, it is clear from the previous formula that the right kernel
of B1 is precisely the kernel of β. So we get L2/R2 ≃ Ω1−2δ

2s .
One can choose such an isomorphism in a way that:
[f∂δ, g∂δ] = (1 + δ)(fg′ − f ′g)∂2δ−1,
[h∂γ , k∂2δ−1] = hk∂δ.

for any f∂δ, g∂δ ∈ L1, h∂
γ ∈ L−1 and k∂1−2δ ∈ L2/R2.

Step 3: We will use the map B2 of step 1 to compute L3/R3.
Let f∂δ ∈ L1, k∂

2δ−1 ∈ L2/R2 and let h∂γ ∈ L−1. We get
B2(h∂

γ , f∂δ ⊗ k∂2δ−1)
= [hf∂, k∂2δ−1] + [f∂δ, hk∂δ]
= (hfk′ − (2δ − 1)(hf)′k + (1 + δ)(f(hk)′ − f ′hk))∂2δ−1

= ((2− δ)h′fk − 3δhf ′k + (2 + δ)hfk′)∂2δ−1

= ((2− δ)fk)h′∂2δ−1 + (−3δf ′k + (2 + δ)fk′)h∂2δ−1.
Since δ 6= 2, it is clear that the right kernel of B2 is

Kerπ ∩Ker ((2 + δ)β1 − 3δβ2),
where π : Ω−δ

s ⊗ Ω1−2δ
2s → Ω1−3δ

3s and β1, β2 : Ω−δ
s ⊗ Ω1−2δ

2s → Ω2−3δ
3s are

defined in Lemma 65. However we have ((2+δ)β1−3δβ2)(ω) = (4δ+2)β1(ω)
for all ω ∈ Kerπ.

Assume now that δ 6= −1/2, i.e. 4δ + 2 6= 0. It follows that L3/R3 ≃
[L1 ⊗ L2/R2]/Kerπ ∩Kerβ1 and there is an exact sequence:

0 → Kerπ/Kerβ1∩Kerπ → L3/R3 → [L1⊗L2/R2]/Kerπ → 0. Using
Lemma 65, we get an exact sequence:

0 → Ω2−3δ
3s → L3/R3 → Ω1−3δ

3s → 0.
Thus, the homogenous components of L3/R3 have dimension two. It follows
that the local Lie algebra V is not in Floc if δ 6= −1/2.

Step 4: Assume now that δ = −1/2. The opposed local Lie algebra

is V ′ = (W,Ω
−3/2
−s ,Ω

1/2
s , π

−3/2
−s ). It follows from the previous step that the

homogenous components of L−3/R−3 have dimension two. Thus the local
Lie algebra V is not in Floc. Q.E.D.

16. The degree function δ

Let L ∈ G be non-integrable.
By Lemma 62, we have Σ = {α| l(α) 6= 0}. Therefore Σ contains

primitive elements of Λ. So fix, once for all, aprimitive α ∈ Λ which is in Σ.
Set L(α) = ⊕n∈Z Lnα and, for any β ∈ Λ/Zα, set M(β) = ⊕n∈Z Lβ+nα.
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By Lemma 46, the Lie algebra L(α) is isomorphic to W . Since M(β)
belongs to the class S(W ), the map β ∈ Λ/Z 7→ degM(β) is a multivalued
function. In this section, Lemma 66 is used to define an ordinary function
δ : Λ/Z → C, which has the property that δ(β) ∈ degM(β) for all β.
Additional properties of δ will be proved in Sections 16 and 17.

A weakly Z-graded Lie algebra L = ⊕n∈Z Ln is called minimal iff it
satisfies the following conditions:

(i) L is generated by its local part Lloc := L−1 ⊕ L0 ⊕ L1

(ii) Any graded ideal I such that I ∩ Lloc = 0 is trivial.
Equivalently, L = Lmin(V ) where V is the local part of L.
For any integer a, the notation Z>a has been defined in Section (1.1).

It will be convenient to extend this notation for a = −∞. In this case, set
Z>−∞ = Z.

Lemma 67: Let a ∈ Z ∪ {−∞} and let L = ⊕n∈Z>a
Ln be a weakly

graded Lie algebra. Assume that Ln is a simple L0-module, [L−1, Ln+1] 6= 0
and [L1, Ln] 6= 0, for any n > a.

Then L is minimal.

Proof: Let L′ be the subalgebra generated by Lloc, let R be any graded
L′-submodule of L.

By simplicity of the L0-module Ln, we have [L−1, Ln] = Ln−1 and
[L1, Ln] = Ln+1 for all n > a. Let n ∈ SuppR. By simplicity of L0-module
Ln, we have Rn = Ln and n+ 1 belongs to SuppR. Moreover if n− 1 > a,
we also have n− 1 ∈ SuppR. Thus SuppR = Z>a and R = L.

Thus L = L′, i.e. L is generated by its local part. Moreover L is a
simple graded Lie algebra. Therefore L is minimal.

Recall that E−ρ ∈ P represents the symbol of 1. The center of the

Lie algebras P+ and P is CE−ρ. Thus set P̃+ = P+/C.E−ρ and P̃ =

[P,P]/CE−ρ. Since P = [P,P]⊕CE−2ρ, the Lie algebra P̃ has basis (Eλ)
when λ runs over C2 \ {−ρ, −2ρ}, and the barcket is defined as before by:

[Eλ, Eµ] = 0 if λ+ µ = −ρ or −2ρ
[Eλ, Eµ] =< λ+ ρ|µ+ ρ > Eλ+µ otherwise,

for any λ, µ ∈ C2 \ {−ρ, −2ρ}.
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Set Par+ = Z≥0 ×C/Z, Par = C×C/Z. As a W -module, there are
decompositions:

P+ = ⊕(δ,u)∈Par+ Ωδ
u and P = ⊕(δ,u)∈Par Ω

δ
u

Accordingly, there are decompositions of P̃+ and P̃:
P̃+ = ⊕(δ,u)∈Par+ Ω̃δ

u and P̃ = ⊕(δ,u)∈Par Ω̃
δ
u,

where: Ω̃0
0 = Ω0

0/C, Ω̃1
0 = dΩ0

0 ≃ Ω0
0/C, and Ω̃δ

u = Ωδ
u for (δ, u) 6= (0, 0) or

(1, 0).
In P, we have:

{Ωδ
u,Ω

δ′

u′} ⊂ Ωδ+δ′+1
u+u′ .

Similarly, in P̃ we have

{Ω̃δ
u, Ω̃

δ′

u′} ⊂ Ω̃δ+δ′+1
u+u′ .

Let (δ, u) ∈ Par. Set P̃n
δ,u = Ω̃

n(δ+1)−1
nu and P̃δ,u = ⊕n∈Z P̃n

δ,u. It

follows that P̃δ,u is a Lie subalgebra of P̃. Moreover the decomposition

P̃δ,u = ⊕n∈Z P̃n
δ,u is a weak Z-gradation of the Lie algebra.

Similarly, for u ∈ C/Z, set P̃+
n (u) = Ω̃−n−1

nu and P̃+(u) = ⊕n≥−1 P̃
+
n (u).

It is clear that P̃+(u) is a weakly Z-graded subalgebra of P̃+.

Lemma 68:
(i) Let (δ, u) ∈ Par with δ 6= 0 or −2. Then the weakly Z-graded Lie

algebra P̃δ,u is minimal,

(ii) Let u ∈ C/Z. Then the weakly Z-graded Lie algebra P̃+(u) is
minimal.

Proof: It should be noted that
(i) Ω̃δ

u is a simple W -module for all (δ, u) ∈ Par,
(ii) {Ω̃δ

u, Ω̃
δ′

u′} 6= 0, except when δ = δ′ = 0.
It follows that the Lie algebra P̃δ,u = ⊕n∈Z P̃n

δ,u. satisfies the hy-
pothesis of the previous lemma for a = −∞. Similarly, the Lie algebra
P̃+(u) = ⊕n≥−1 P̃

+
n (u) satisfies the hypothesis of the previous lemma for

a = −2. Thus these Lie algebras are minimal. Q.E.D.

For β ∈ Λ/Z, denote by V (β) the local Lie algebra M(−β) ⊕ L(α) ⊕
M(β).

Lemma 69: There exists (δ, s) ∈ Par such that the local Lie algebra
V (β) admits P̃ loc

δ,s as a W -section.
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Proof: Let µ : M(β) × M(−β) → L(α) ≃ W be the W -equivariant
bilinear map induced by the bracket.

Choose any γ ∈ β with l(γ) 6= 0. By Lemma 46, γ belongs to Σ,
hence µ(Lγ , L−γ) 6= 0. It follows from Lemma 52 that µ is non-degenerate.
However all W -equivariant non-degenerate bilinear maps µ : M ×N → W
are classified by Lemma 54. Indeed µ is either conjugated to the product
of symbols πδ

s : Ωδ
s × Ω−1−δ

−s → Ω−1
0 ≃ W , for δ 6= 1 or −2, to the Poisson

bracket of symbols βδ
s : Ωδ

s × Ω−2−δ
−s → Ω−1

0 ≃ W , for (δ, s) 6= (0, 0) or
(−2, 0) or µ is in the complementary family.

By Lemma 64, Lmin(V (β)) is a section of L. Therefore V (β) should
belong to the class Floc. It follows from Lemma 66 that µ cannot be pro-
portional to the map πδ

s , for δ 6= 1 or −2.
When µ is proportional to βδ

s , then V (β) is isomorphic to P̃ loc
δ,s if

(δ, s) 6= (0, 0), (−2, 0), (1, 0), (−3, 0). Assume now that µ is proportional
to β1

0 (respectively β−3
0 ). Note that Ω̃1

0 = dΩ0
0 is a codimension one W -

submodule of Ω1
0, therefore P̃ loc

1,0 (respectively P̃ loc
−3,0) is a codimension one

ideal of V (β). Thus V (β) admits a W -section isomorphic to some P̃ loc
δ,s ,

whenever µ is proportional to some βδ
s , with (δ, s) 6= (0, 0) or (−2, 0).

When µ is in the left complementary family, the W -module M(β)
belongs to the AB-family and then there is an exact sequence

0 → Ω̃0
0 → M(β) → C → 0, or 0 → C → M(β) → Ω̃0

0 → 0.
In the first case, V (β) has a codimension one ideal isomorphic to P̃ loc

0,0 . In
the second case, the trivial submodule of M(β) is the center Z of the local
Lie algebra V (β), and V (β)/Z is isomorphic to P̃ loc

0,0 . In both cases, P̃ loc
0,0 is

a W -section of V (β).
Similarly when µ is in the right complementary family, P̃ loc

−2,0 is a W -
section of V (β).

Thus the lemma is proved in all cases.

Lemma 70: Let β ∈ Λ/Zα. There exists a unique scalar δ(β) such
that

(i) δ(β) ∈ degM(β), and
(ii) −δ(β)− 2 ∈ degM(−β).

Proof: Let β ∈ Λ/Zα. Note that for β = 0, then δ(0) = −1 is the
unique degree of M(0) ≃ W and it satisfies (ii). From now on, it can be
assumed that β 6= 0.
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First prove the existence of δ(β).
By Lemma 69, there exists (δ, u) ∈ Par such that the local Lie algebra

V (β) admits P̃ loc
δ,u as W -section.

Hence the W -module Ω̃δ
u is a subquotient of M(β) and the W -module

Ω̃−δ−2
−u is a subquotient of M(−β). Thus δ ∈ degM(β) and −δ − 2 ∈

degM(−β). The scalar δ(β) = δ satisfies (i) and (ii), and the existence is
proved.

Next prove the unicity. If degM(β) is single valued, then δ(β) is
uniquely determined. Assume otherwise. Then degM(β) = {0, 1}. It fol-
lows from the previous point that −2 belongs to degM(β) + degM(−β).
Therefore −2 or −3 is a degree of M(−β). So degM(−β) is single val-
ued, and −2− δ(β) is uniquely determined. In both case, δ(β) is uniquely
determined. Q.E.D.

It follows from the previous lemma that there is a well determined
function δ : Λ/Zα→ C, β 7→ δ(β) with the property that δ(β) ∈ degM(β)
and δ(β) + δ(−β) = −2. This function will be called the degree function.

Lemma 71: Let β ∈ Λ/Zα. Then we have:
δ(nβ) = n(δ(β) + 1)− 1, ∀n ∈ Z

Proof: Set M = ⊕n∈Z Mn, where Mn = M(nβ) for all integer n.
Then M is a weakly Z-graded Lie algebra.

First assume that δ(β) 6= 0 or −2. Set d(n) = n(δ(β) + 1) − 1. By
Lemma 67, the local Lie algebra V (β) = M(−β) ⊕ L(α) ⊕ M(β) admits
P̃ loc
δ(β),u as a W -section, for some u ∈ C/Z. By Lemma 68, P̃δ(β),u is mini-

mal. Thus by Lemma 64, P̃δ(β),u is aW -section ofM. Hence theW -module

Ω̃
d(n)
nu is a subquotient of M(nβ). So we have d(±n) ∈ degM(±nβ).

Moreover, it is obvious that d(n) + d(−n) = −2. Therefore it follows
from Lemma 70 that d(n) = δ(nβ), and the lemma is proved in this case.

Next assume that δ(β) = −2. By Lemma 67, the local Lie algebra
V (β) admits P̃ loc

−2,u as a W -section, for some u ∈ C/Z. However P̃ loc
−2,u

is the local part of weakly Z-graded Lie algebra P̃+(u), which is minimal
by Lemma 68. Hence P̃+(u) is a W -section of M. Hence the W -module
Ω̃−n−1

nu is a subquotient of M(nβ) for all n ≥ −1. It follows that degM(nβ)
is single valued for all n ≥ 0, and that degM(nβ) = −n− 1. Thus we get
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δ(nβ) = −n − 1 for all n ≥ 0 Since δ(nβ) + δ(−nβ) = −2, it follows that
δ(nβ) = −n− 1 for all n ∈ Z, and the lemma is proved in this case.

The last case δ(β) = 0 is identical to the previous one, because δ(−β) =
−2. Q.E.D.

17. The degree function δ is affine:
As before, fix once for all, a primitive element α ∈ Λ such that l(α) 6= 0.

It follows from previous considerations that the Lie subalgebra L(α) =
⊕n∈Z Lnα is isomorphic to W . For simplicity, any Zα-coset β ∈ Λ/Zα will
be called a coset. For a coset β, set M(β) = ⊕γ∈β Lγ . We have

[M(β1),M(β2)] ⊂ M(β1 + β2)

for any cosets β1, β2.

Lemma 72: Let β, γ be cosets. Assume that δ(β) 6= 0. Then we have
[M(β),M(γ)] 6= 0.

Proof: Assume that δ(β) 6= 0. Set M = ⊕n∈Z Mn, where Mn =
M(nβ) for all integer n. Then M is a weakly Z-graded Lie algebra.

Step 1: We claim that:
[M(β),M(β)] ⊃ [L0,M(2β)].

By Lemma 67, the local Lie algebra V (β) := M(−β) ⊕ L(α) ⊕M(β)
admits P̃ loc

δ(β),u as a W -section, for some u ∈ C/Z.

If δ(β) 6= −2, the weakly Z-graded Lie algebra P̃δ(β),u is minimal. Thus

by Lemma 64, P̃δ(β),u is a W -section of M. Similarly the weakly Z-graded

Lie algebra P̃+(u) is the minimal Lie algebra associated to the local Lie
algebra P̃ loc

−2,u. Thus P̃
+(u) is a W -section of M if δ(β) = −2

In both case, we have [Ω̃
δ(β)
u , Ω̃

δ(β)
u ] = Ω̃

2δ(β)+1
2u . Since Ω̃

2δ(β)+1
2u is

a W -subquotient of M2, the C-graded vector spaces [L0, Ω̃
2δ(β)+1
2u ] and

[L0,M(2β)] are isomorphic, the claim follows.

Step 2: Let M ∈ S(W ) and let m ∈M be a non-zero vector such that
L0.m = xm for some x 6= 0. Then we have

L1.m 6= 0 or L2.m 6= 0.
This claim follows easily from Kaplansky-Santharoubane Theorem.
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Step 3: Fix β0 ∈ β and γ0 ∈ γ with l(β0) 6= 0 and l(γ0) 6= 0. We claim
that

[Lβ0
, Lγ0

] 6= 0 or [L2β0
, Lγ0

] 6= 0.
By Lemma 62, β0 lies in Σ, and by Lemma 46 the Lie subalgebra

L(β0) = ⊕n∈Z Lnβ0
is isomorphic to W . Thus the L(β0)-module

M(β0, γ0) := ⊕n∈Z Lγ0+nβ0
,

belongs to S(W ). Since l(γ0) 6= 0, it follows from Step 2 that [Lβ0
, Lγ0

] 6= 0
or [L2β0

, Lγ0
] 6= 0.

Final step: Let β0 and γ0 as before. By definition, Lβ0
belongs to

M(β). By Step 1, [M(β),M(β)] contains L2β0
. Thus by the previous

claim, we have [M(β), Lγ0
] 6= 0 or [[M(β),M(β)], Lγ0

] 6= 0. In both cases,
we have [M(β), Lγ0

] 6= 0 and therefore [M(β),M(γ)] 6= 0. Q.E.D.

Lemma 73: Let β, γ be cosets. We have:
δ(β + γ) = δ(β) + δ(γ) + 1.

Proof: Step 1: Let η be any coset. By Lemma 71, we have
δ(nη) = n(δ(η) + 1)− 1,

so we have
δ(nη) ≡ −1 for all n or |δ(nη)| → ∞ when n→ ∞.

So there exists k 6= 0 such that the set {δ(kβ), δ(−kβ), δ(kγ), δ(k(β+ γ))}
contains neither 0 nor 1.

Step 2: Let k as before and let
µ+ : M(kβ)×M(kγ) → M(k(β + γ)), and
µ− : M(−kβ)×M(k(β + γ)) → M(kγ)

be theW -equivariant bilinear maps induced by the Lie bracket. By Lemma
72, µ± are non-zero. We have

degµ+ + degµ−

= [δ(k(β+γ))−δ(kβ)−δ(kγ)]+[δ(kγ)−δ(−kβ)−δ(k(β+γ))]
= −δ(kβ)− δ(−kβ)

So it follows from Lemma 70 that
degµ+ + degµ− = 2.

Observe that, in the list of Lemma 50, the bilinear maps of degree −2,
−1 or 2 involves at least one module of degree 0 or 1. Thus it follows from
the choice of k that the degrees of µ± are 0, 1 or 3. So the only solution of
the previous equation is:

degµ+ = degµ− = 1,
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and therefore δ(k(β + γ)) = δ(kβ) + δ(kγ) + 1. It follows from Lemma 71
that:

k(δ(β + γ) + 1)− 1 = [k(δ(β) + 1)− 1] + [k(δ(γ) + 1)− 1] + 1,
from which the relation δ(β + γ) = δ(β) + δ(γ) + 1 follows. Q.E.D.

Lemma 74: Let M , N in S(W ).
(i) If there is a non-zero W -morphism µ : M → N , then degM =

degN .
(i) If there is a non-zero W -invariant bilinear map ν : M × N → C,

then degM = 1− degN .

Proof: If µ is an isomorphism, the assertion is clear. Otherwise both
M and N are reducible, and degM = degN = {0, 1}. Thus Assertion (i) is
proved. The bilinear map ν gives rise to a non-zero morphism ν∗ :M → N ′,
thus we get degM = degN ′ = 1− degN . Q.E.D.

Lemma 75: For any coset β, the W -module M(β) is irreducible.

Proof: Step 1: Let x ∈ C, x 6= −1, and set Λx = δ−1(x). We claim
that there are no finite sets F ⊂ Λ such that:

Λ = F + Λx.
Indeed, it can be assumed that Λx 6= ∅. By the previous lemma, δ is affine.
Since δ(0) = −1 and δ−1(x) 6= ∅, the function δ takes infinitely many values.
However δ takes only finitely many values on F + Λx for any finite set F .
So the claim is proved.

Step 2: First prove that M(β) does not contain a trivialW -submodule.
Assume otherwise. There exists µ ∈ β such that Lµ is a non-zero W -
invariant vector.

For any coset γ such that [Lµ,M(γ)] 6= 0, the operator adLµ provides
a non-zero W -morphism from M(γ) → M(β + γ). So the previous lemma
implies

degM(γ) = degM(β + γ).
By Lemma 73, we have δ(β + γ) = δ(β) + δ(γ) + 1. Since M(β) is

reducible, we get δ(β) = 0 or 1. So we get
δ(β + γ) = δ(γ) + 1, or δ(β + γ) = δ(γ) + 2.

The unique solution of these equations is
δ(β) = 0, δ(γ) = 0, and δ(β + γ) = 1.

66



It follows that Ω(µ) ⊂ Λ1, where Ω(µ) = Supp [L, Lµ]. By the first
step, there are no finite set F such that Λ = F + Ω(µ), which contradicts
Lemma 43.

Step 3: Now prove that M(β) does not contain a codimension one
W -submodule. Assume otherwise. Let H ⊂ M(β) be a codimension one
W subspace and let µ be the unique element of β \ SuppH. It follows that
L∗
µ is a W -invariant vector of the graded dual L′ of L.

For any coset γ such that [M(γ),M(β − γ)] 6⊂ H, the Lie bracket
provides a non-zero bilinear map: M(γ) × M(β − γ) → M(β)/H ≃ C.
The previous lemma implies

degM(γ) = 1− degM(β − γ).

By Lemma 73, we have δ(β) = δ(γ)+δ(β−γ)+1. Since M(β) is reducible,
we get δ(β) = 0 or 1. So we get

δ(γ) + δ(β − γ) = 0, or δ(γ) + δ(β − γ) = −1.

The unique solution of these equations is
δ(β) = 1, δ(γ) = 0, and δ(β − γ) = 0.

It follows that M(γ).L∗
µ 6= 0 only if δ(γ) = 0. It follows that Ω∗(µ) ⊂

−Λ0, where Ω∗(µ) = SuppL.L∗
µ. By the first step, there are no finite set F

such that Λ = F +Ω∗(µ), which contradicts Lemma 63.

Step 4: It follows that the W -module M(β) contains neither a trivial
submodule nor a codimension one submodule. By Kaplansky-Santharou-
bane Theorem, the W -module M(β) is irreducible. Q.E.D.

18. The quasi-two-cocycle c.

In this section, a certain W -equivariant map φ : L → P is defined.
Indeed, φ is not a Lie algebra morphism, but we have

φ([Lλ, Lµ]) = c(λ, µ){φ(Lλ), φ(Lµ)}

for some c(λ, µ) ∈ C∗. The main result of the section, namely Lemma 79,
shows that c satisfies a two-cocycle identity. However its validity domain
is only a (big) subset of Λ3. Since c is not an ordinary two-cocycle, it is
informally called a “quasi-two-cocycle”.

Let P be the Poisson algebra of symbols of twisted pseudo-differential
operators. Recall that

P = ⊕(δ,u)∈Par Ωδ
u
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Set A = C[z, z−1], Au = zuA for u ∈ C/Z. As before, it will be convenient
to represent elements in Ωδ

u as f∂−δ, where f ∈ Au−δ. Relative to the

Poisson bracket, we have {Ωδ
u,Ω

η
v} ⊂ Ωδ+η+1

u+v .
Let (δ, u), (η, v) and (τ, w) ∈ Par.

Lemma 76: Let a, b, c be three scalars. Assume that
a{X, {Y, Z}}+ b{Z, {X,Y }}+ c{Y, {Z,X}} = 0

for any (X,Y, Z) ∈ Ω−δ
u × Ω−η

v × Ω−τ
w

If none of the four couples (η, τ), (δ, η + τ − 1), (η, δ), (τ, δ + η − 1) is
(0, 0), then we have

a = b.

Proof: Define three maps µi : Ω−δ
u × Ω−η

v × Ω−τ
w → Ω−δ−η−τ+2

u+v+w ,
(X,Y, Z) 7→ µi(X,Y, Z) as follows:

µ1(X,Y, Z) = {X, {Y, Z}}
µ2(X,Y, Z) = {Z, {X,Y }}
µ3(X,Y, Z) = {Y, {Z,X}}

Set X = f∂δ, Y = g∂η and Z = h∂τ , where f ∈ Au+δ, g ∈ Av+η and
h ∈ Aw+τ . We have:

µ1(X,Y, Z)
= {f∂δ, {g∂η, h∂τ}}
= {f∂δ, (ηgh′ − τg′h)∂η+τ−1}
= [δηfgh′′ − δτfg′′h+ (δη − δτ)fg′h′ − (η + τ − 1)ηf ′gh′

+(η + τ − 1)τf ′g′h]∂δ+η+τ−2,
So [aµ1 + bµ2 + cµ3](X,Y, Z) can be expressed as:

(Afgh′′ +Bfg′′h+ Cf ′′gh+Dfg′h′ + Ef ′gh′ + Ef ′g′h)∂δ+η+τ−2,
where the six coefficients are given by:

A = (a− c)δη
B = (b− a)τδ
C = (c− b)ητ
D = [a(η − τ)− b(δ + η − 1) + c(τ + δ − 1)]δ
E = [−a(τ + η − 1) + b(δ + η − 1) + c(τ − δ)]η
F = [a(τ + η − 1) + b(τ − η)− c(δ + τ − 1)]τ .
The equation aµ1 + bµ2 + cµ3 = 0 implies that the six coefficients

A,B, . . . , F are all zero.
If δτ 6= 0, the equality a = b follows from B = 0. Assume otherwise.

Since δ or τ is zero, we have η 6= 0.
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If τ 6= 0 but δ = 0, it follows from C = 0 that b = c. Therefore the
identity E = 0 implies that (b − a)(τ + η − 1) = 0. Since δ = 0, we get
τ + η − 1 6= 0 and thus a = b.

The case τ = 0 but δ 6= 0 is strictly similar.
In the case τ = δ = 0, from E = 0 we get (b − a)(η − 1) = 0. Since

(δ, η + τ − 1) = (0, η − 1), it follows that η − 1 6= 0 and therefore a = b.
Q.E.D.

Let δ ∈ C, let u, v, w ∈ C/Z and let θ : Ω0
u × Ω0

v → Ω1
u+v be any

W -equivariant bilinear map.

Lemma 77: Let a, b, c be three scalars, with a 6= 0. Assume that
a{X, θ(Y, Z)}+ b{Z, {X,Y }}+ c{Y, {Z,X}} = 0

for any (X,Y, Z) ∈ Ω−δ
u × Ω0

v × Ω0
w. Then we have θ = 0.

Proof: Define three maps µi : Ω
−δ
u × Ω0

v × Ω0
w → Ω−δ+2

u+v+w, (X,Y, Z) 7→
µi(X,Y, Z) as follows:

µ1(X,Y, Z) = {X, θ(Y, Z)}
µ2(X,Y, Z) = {Z, {X,Y }}
µ3(X,Y, Z) = {Y, {Z,X}}
As before, identify Ω0

s with As. By Lemma 51, there are two constant
A,B such that θ(g, h) = Ahdg+Bgdh. In term of symbols, we get θ(g, h) =
[Ag′h+Bgh′]∂−1.

Set X = f∂δ, Y = g and Z = h, where f ∈ Au+δ, g ∈ Av and h ∈ Aw.
We have:

µ1(X,Y, Z)
= {f∂δ, [Ag′h+Bgh′]∂−1}
= [Aδfg′′h+Bδfgh′′ + δ(A+B)fg′h′ +Af ′g′h+Bf ′gh′]∂δ−2.

µ2(X,Y, Z)
= {h, {f∂δ, g}}
= −δ(δ − 1)fh′g′∂δ−2

µ3(X,Y, Z)
= {g, {h, f∂δ}}
= δ(δ − 1)fh′g′∂δ−2.

The coefficient of the monomial f ′g′h and the monomial f ′gh′ in the
expression (aµ1 + bµ2 + cµ3)(X,Y, Z) are respectively A and B. Thus
A = B = 0 and so θ vanishes.
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Let L be non-integrable Lie algebra in the class G. As before, fix once
for all a primitive element α ∈ Λ such that l(α) 6= 0. One can normalize L0

in a way that l(α) = 1.
By Lemmas 46 and 62, the Lie subalgebra L(α) = ⊕n∈Z Lnα is iso-

morphic to W . For any Zα-coset β, set M(β) = ⊕γ∈β Lγ . For such β,
denote by s(β) the spectrum of L0 on M(β). It is clear that s(β) is exactly
a Z-coset, therefore s(β) is a well defined element of C/Z.

By Lemma 75, the W -module M(β) is irreducible, and by Kaplansky-
Santharoubane Theorem, there is an isomorphism of W -modules

φβ : M(β) → Ω
δ(β)
s(β).

Fix once for all the isomorphism φβ for all β ∈ Λ/Zα. Let φ : L → P be
the map whose restriction to each M(β) is φβ . Thus φ is a morphism of
W -modules. As it will be seen later on, some modification of φ will be a
morphism of Lie algebras.

Let β, γ be two Zα-cosets. It is clear that [M(β),M(γ)] ⊂ M(β+ γ),
so the Lie bracket provides a morphism of W -modules

[, ] : M(β)×M(γ) → M(β + γ).
By Lemma 73, we have δ(β + γ) = δ(β) + δ(γ) + 1. Therefore the bracket
of symbols provides another morphism of W -modules:

{, } : Ω
δ(β)
s(β) × Ω

δ(γ)
s(γ) → Ω

δ(β+γ)
s(β+γ).

Thus we get a diagram of W -modules :

M(β)×M(γ)−
[,]
−→ M(β + γ)

| |
|φβ × φγ |φβ+γ
↓ ↓

Ω
δ(β)
s(β) × Ω

δ(γ)
s(γ)

{,}
−→ Ω

δ(β+γ)
s(β+γ)

This diagram is almost commutative:

Lemma 78: There exists a function c : Λ/Zα×Λ/Zα→ C∗ such that
φ([X,Y ]) = c(β, γ){φ(X), φ(Y )}

for any β, γ ∈ Λ/Zα and any X, Y ∈ M(β)×M(γ). Moreover
c(β, γ) = c(γ, β)

if (δ(β), δ(γ)) 6= (0, 0).

Proof: Let β, γ ∈ Λ/Zα.
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First consider the case (δ(β), δ(γ)) 6= (0, 0). By Lemma 51, any W -

equivariant bilinear map Ω
δ(β)
s(β) × Ω

δ(γ)
s(γ) → Ω

δ(β+γ)
s(β+γ) is proportional to the

Poisson bracket of symbols. Thus there is a constant c(β, γ) ∈ C such that
φ([X,Y ]) = c(β, γ){φ(X), φ(Y )} for any X, Y ∈ M(β)×M(γ). Moreover,
by Lemma 72, we have [M(β),M(γ)] 6= 0. Therefore c(β, γ) 6= 0. Since
the Poisson bracket and the Lie bracket are skew symmetric, we also have
c(β, γ) = c(γ, β).

Next consider the case (δ(β), δ(γ)) = (0, 0). We claim that
[M(β),M(γ)] = 0.

In order to prove the claim, we may assume that δ takes the value 0.

Define the W -equivariant bilinear map θ : Ω
δ(β)
s(β) × Ω

δ(γ)
s(γ) → Ω

δ(β+γ)
s(β+γ) by the

requirement: φβ+γ([X,Y ]) = θ(φβ(X), φγ(Y )).
Since δ(0) = −1, δ takes the value 0 and δ is affine, there is some

ξ ∈ Λ/Zα such that δ(ξ) 6∈ {0,−1}. Let X, Y, Z ∈ M(β)×M(γ)×M(ξ).
Since δ(ξ) + 1 6= 0, we get

φ([X, [Y, Z]]) = c(β, γ + ξ){φ(X), φ([Y, Z]}.
= c(β, γ + ξ)c(γ, ξ){φ(X), {φ(Y ), φ(Z)}}

Similarly, we have
φ([Y, [Z,X]]) = c(γ, β + ξ)c(β, ξ){φ(Y ), {φ(Z), φ(X)}}, and
φ([Z, [X,Y ]) = c(ξ, α+ β){φ(Z), θ(X,Y )}.

Thus the Jacobi identity in L: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0
implies that

c(β, γ + ξ)c(γ, ξ){X, {Y, Z}}+ c(γ, β + ξ)c(β, ξ){Y, {Z,X}}
+c(ξ, α+ β){Z, θ(X,Y )} = 0,

for any (X,Y, Z) ∈ Ω0
s(β) × Ω0

s(γ) × Ω
δ(ξ)
s(ξ). Since c(ξ, α + β) is not zero, it

follows from Lemma 77 that θ vanishes. Thus the claim is proved.
Since [M(β),M(γ)] = 0 and {Ω0

s(β),Ω
0
s(γ)} = 0, any value c(β, γ) ∈ C∗

is convenient.

Lemma 79: Let β, γ and η be three Zα-cosets. If none of the four
couples (δ(β), δ(γ)), (δ(β + γ), δ(η)), (δ(γ), δ(η)) and (δ(β), δ(γ + η)) is
(0, 0), then we have:

c(β, γ)c(β + γ, η) = c(β, γ + η)c(γ, η).

Proof: As in the previous proof, we have:
φ([X, [Y, Z]]) = c(β, γ + η)c(γ, η){φ(X), {φ(Y ), φ(Z)}}.
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for any (X,Y, Z) ∈ M(β) × M(γ) × M(η). It follows from the Jacobi
identity in L that

c(β, γ + η)c(γ, η){X, {Y, Z}}+ c(η, β + γ)c(β, γ){Z, {X,Y }}
+c(γ, η+β)c(γ, η){Y, {Z,X}} = 0,

for any (X,Y, Z) ∈ Ω
δ(β)
s(β) × Ω

δ(γ)
s(γ) × Ω

δ(η)
s(η). Thus the Lemma follows from

Lemma 76. Q.E.D.

Remark: The equation satisfied by c is exactly the equation of a two-
cocycle of Λ/Zα with values in C∗, except that its validity domain is a
subset of (Λ/Zα)3. So c is a “quasi-two-cocycle”.

19. Proof Theorem 3:
As before, L ∈ G is non-integrable Lie algebra. Fix once for all a

primitive element α ∈ Λ such that l(α) 6= 0 and recall that L(α) ≃ W . In
the previous section, a W -equivariant map φ : L → P has been defined.
The map φ is not a Lie algebra morphism, but the defect is accounted by a
map c : Λ/Zα× Λ/Zα→ C∗.

In this section, it is proved that c is indeed a “quasi-boundary”. This
allow to modify φ to get an algebra morphism ψ : L → P, from which
Theorem 3 is deduced.

Lemma 80: Let M be a lattice and let R = ⊕m∈M Rm be a commu-
tative associative M -graded algebra satisfying the following conditions:

(i) dimRm ≤ 1 for all m ∈M ,
(ii) X.Y 6= 0 for any two non-zero homogenous elements X, Y of R.
Then there exists an algebra morphism χ : R → C with χ(X) 6= 0 for

any non-zero homogenous element X ∈ R.

Proof: Let S be the set of non-zero homogenous elements of R. By
hypothesis, S is a multiplicative subset. Since S/C∗ ≃ SuppR is countable,
the algebra RS has countable dimension, therefore any maximal ideal of RS

provides an algebra morphism χ : RS → C. So its restriction to R is an
algebra morphism χ : R→ C with χ(X) 6= 0 for any X ∈ S. Q.E.D.

Let M be a lattice, and let d : M → C be an additive map. Let
c :M ×M → C∗, (l,m) 7→ c(l,m) be a function.
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Lemma 81: Assume the following hypotheses for all l,m, n ∈M :
(i) c(l,m) = c(m, l) whenever (d(l), d(m)) 6= (−1,−1).
(ii) c(l,m)c(l +m,n) = c(l,m + n)c(m,n) whenever none of the four

couples (d(l), d(m)), (d(l +m), d(n)), (d(l), d(m + n)) and (d(m), d(n)) is
(−1,−1).

Then there exists a function b :M → C∗ such that
c(l,m) = b(l)b(m)/b(l +m)

for any couple (l,m) with (d(l), d(m)) 6= (−1,−1).

Proof: Define an algebra structure on C[M ] by the formula:
el ∗ em = c(l,m)el+m.

Set N = {m ∈ M |R d(m) ≥ 0}, where the notation R z means the
real part of the complex number z and let C[N ] be the subalgebra of C[M ]
with basis (en)n∈N . Since d(n) 6= −1 for any n ∈ N , it follows from
Identities (i) and (ii) that C[N ] is a commutative and associative algebra.
By the previous lemma, there is an algebra morphism χ : C[N ] → C with
χ(X) 6= 0 for any element X ∈ S, where S denotes the set of non-zero
homogenous elements in C[N ].

By restriction, the product ∗ defines a bilinear map β : C[N ]×C[M ] →
C[M ]. There are no couples (n,m) ∈ N ×M with (d(n), d(m)) = (−1,−1).
Therefore β is a structure of C[N ]-module on C[M ]. Indeed for n1, n2 ∈ N
and m ∈M , we have en1 ∗ (en2 ∗ em) = (en1 ∗ en2) ∗ em.

Since each X ∈ S acts bijectively on C[M ], C[M ] is isomorphic to
C[N ]S as a C[N ]-module. Therefore χ extends to a morphism of C[N ]-
modules χ : C[M ] → C. So it satisfies

χ(en ∗ em) = χ(en)χ(em)
for any couple (n,m) ∈ N ×M .

Next, prove the stronger assertion that
χ(em ∗ el) = χ(em)χ(el)

for any couple (m, l) with (d(m), d(l)) 6= (−1,−1). Choose any n ∈ N with
R d(m+ n) ≥ 0. Since n ∈ N , it follows from the previous identity that:

χ(en ∗ (em ∗ el)) = χ(en)χ(em ∗ el).
Similarly, it follows from the fact that n ∈ N and n+m ∈ N that

χ((en ∗ em) ∗ el) = χ(en ∗ em)χ(el) = χ(en)χ(em)χ(el)
By hypothesis (d(m), d(l)) 6= (−1,−1), and each couple (d(n), d(m + l)),
(d(n), d(m)) and (d(n +m), d(l)) contains a scalar with non-negative real
part. So none of these couples is (−1,−1), and therefore we have
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en ∗ (em ∗ el) = (en ∗ em) ∗ el

It follows that χ(em ∗ el) = χ(em)χ(el) and therefore we have
c(m, l)χ(em+l) = χ(em)χ(el),

for any (m, l) with (d(m), d(l)) 6= (−1,−1). Thus the function b(m) =
χ(em) satisfies the required identity. Q.E.D.

Remark: It follows that a symmetric two-cocycle ofM with value in C∗

is a boundary. This corollary is obvious. Indeed a a symmetric two-cocycle
gives rise to a central extension

1 → C∗ → M̂ →M → 0
where M̂ is an abelian group. It is split because M is free in the category
of abelian groups.

Let b : Λ/Zα → C∗ be a function. Recall that L = ⊕β∈Λ/Zα M(β).
Define a new morphism of W -modules ψ : L → P by the formula:

ψ(X) = b(β)φ(X)
for any X ∈ M(β) and any β ∈ Λ/Zα.

Lemma 82: There exists a function b : Λ/Zα → C∗ such that ψ :
L → P is a morphism of Lie algebras.

Proof: Set M = Λ/Zα and for β ∈M , set d(β) = −1− δ(β). It follows
from Lemma 73 that the map d : M → C is additive. By Lemmas 78 and
79, the quasi-two-cocycle c and the additive map d satisfies the hypothesis
of the previous lemma. Therefore there exists a function b : Λ/Zα → C∗

such that
c(β, γ) = b(β)b(γ)/b(β + γ)

for any couple (β, γ) with (δ(β), δ(γ)) 6= (0, 0).
Choose such a function b. We claim that ψ([X,Y ]) = {ψ(X), ψ(Y )}

for any X ∈ M(β), Y ∈ M(γ) and any β, γ be in Λ/Zα.
First assume that (δ(β), δ(γ)) 6= (0, 0). We have
ψ([X,Y ]) = b(β + γ)φ([X,Y ])

= b(β + γ)c(β, γ) {φ(X), φ(Y )}
= b(β)b(γ) {φ(X), φ(Y )}

Thus ψ([X,Y ]) = {ψ(X), ψ(Y )}.
Consider now the case (δ(β), δ(γ)) 6= (0, 0). Since {Ω0

u,Ω
0
s} = 0,

∀u, s ∈ C/Z it follows that ψ([X,Y ]) = {ψ(X), ψ(Y )} because both sides
of the identity are zero.
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Therefore ψ is an algebra morphism. Q.E.D.

Define the map π : Λ → C2 by the formula:
π(λ) = (l(β + 1 + δ(λ),−1− δ(λ)).

it follows from Lemma 73 that π is additive. Since P is C2-graded, one
can define the Λ-graded Lie algebra π∗P. When π is one-to-one, π∗P is the
Lie algebra Wπ defined in the introduction. In general, the notation π∗ has
been defined in Section 1.6 and Wπ in Section 12.7.

Lemma 83: We have L ≃ π∗P.

Proof: Let λ ∈ Λ. By defintion, ψ(Lλ) = f∂−δ(β), for some twisted

function f . Moreover [L0, Lλ] = l(β)Lλ, therefore we have z d
dz
f = [l(β) +

δ(β)]f , therefore f is proportional to zl(β)+δ(β). It follows that ψ maps
isomorphically Lλ to Pπ(λ). By Lemma 1, L is precisely π∗P. Q.E.D.

Recall that the condition (C):
(C) Imπ 6⊂ Cρ and 2ρ /∈ Imπ

Theorem 3: Let Λ be a lattice.
(i) If L ∈ G is a primitive non-integrable Lie algebra, then there is

an injective additive map π : Λ → C2 satisfying condition (C) such that
L ≃Wπ.

(ii) Conversely, if π : Λ → C2 is injective and satisfies condition (C),
then the Lie algebra Wπ is simple (and, in particular, it is primitive).

Proof: By the previous lemma, L ≃ π∗P =Wπ. SetM = Kerπ. There
is a sublattice Λ1 such that Λ =M⊕Λ1. It follows thatWπ ≃ C[M ]⊗Wπ1

,
where π1 : Λ1 → C is the restriction of π to Λ1. Since L is primitive, it
follows that M = 0, hence π is injective.

If π(Λ) ⊂ Cρ, then Wπ is abelian. If 2ρ ∈ π(Λ), then E−2ρ belongs
to Wπ and therefore Wπ 6= [Wπ,Wπ]. Since L is simple graded, then π
satisfies the condition (C).

The converse follows from Lemma 49. Q.E.D.

Remark: Set ω = (1, 0), so that Eω is the symbol of z2∂. It follows
from the proof that, for any primitive vector α ∈ Λ with l(α) 6= 0, there
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exists a unique πα : Λ → C2 such that πα(α) = ω and L ≃Wπα
. Therefore,

there are many injective additive maps π such that L ≃ Wπ and some of
them do not contain ω in their image.
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Inv. Math 108 (1992) 455-519.

[MS] A. Meurman and L.J. Santharoubane: Cohomology and Harish-
Chandra modules over the Virasoro algebra. Comm. Algebra 16 (1988)
27-35.

[Mi] W. Miller: On Lie algebras and some special functions of mathe-
matical physics. Mem. Amer. Math. Soc. 50 (1964)

[Mo] Robert Moody: A new class of Lie algebras. J. Algebra 10 (1968)
211-230.

[T] Jacques Tits: Une classe d’algèbres de Lie en relation avec les
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