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A general assumption of quasispecies models of replicons dynamics is that the fitness of a geno-
type is entirely determined by its sequence. However, a more biologically plausible situation is
that fitness depends on the proteins that catalyze metabolic reactions, including replication. In a
stirred population of replicons, such as viruses replicating and accumulating within the same cell,
the association between a given genome and the proteins it encodes is not tight as it can be repli-
cated by proteins translated from other genomes. We have investigated how this complementation
phenomenon affects the error threshold in simple quasispecies mean field models. We first studied
a model in which the master and the mutant genomes code for wild-type and mutant replicases, re-
spectively. We assume that the mutant replicase has a reduced activity and that that the wild-type
replicase does not have increased affinity for the master genome. The whole pool of replicases can
bind and replicate both genomes. We then analyze a different model considering a more extreme
case of mutant genomes, the defective interfering particles (DIPs) described in many cases of viral
infection. DIPs, with a higher replication rate owed to their shorter genomes, do not code for repli-
case, but they are able of using the replicase translated from the master genome. Our models allow
to study how the probability of interaction between the genomes and the whole pool of replicases
affects the error threshold. In both systems we characterize the scenario of coexistence between
master and mutant genomes, providing the critical values of mutation rate, μc, and the critical
interaction rate between master genomes and replicases, γc, at which the quasispecies enters into
error catastrophe, a situation in which the mutant genomes dominate the population. In both cases,
we showed that the error-threshold transition is given by transcritical-like bifurcations, suggesting
a continuous phase transition. We have also found that the region in the parameter space (μ, γ) in
which the master sequence survives is reduced when DIPs are introduced into the system.

Keywords: complementation, defective interfering particles, error threshold, quasispecies theory, RNA
viruses, systems biology

I. INTRODUCTION

RNA viruses are the most important pathogens infect-
ing plants and animals, and they are also a continuous
source of emerging infectious diseases. The extremely
short generation time, large population size and high
mutation rates make RNA viruses excellent tools for ex-
perimental evolution and for testing basic principles of
Evolutionary Theory [14]. RNA viruses are character-
ized as highly polymorphic populations which are usu-
ally assimilated to quasispecies by many virologists [1–3].
The quasispecies population structure arises as a conse-
quence of fast replication coupled with high mutation
rates [4–7]. The mathematical quasispecies theory [8–
11] describes populations of replicons as a collection of a
master genomes and a diverse cloud of mutants, which
all together contribute to the phenotypic properties of

∗Author for correspondence: Instituto de Bioloǵıa Molecular y
Celular de Plantas, Consejo Superior de Investigaciones Cient́ıficas-
UPV, Ingeniero Fausto Elio s/n, 46022 València, Spain. E-mail:
josep.sardanes@upf.edu; Phone: 34 963 878 638; Fax: 34 963 877
859

the entire population. Under this view, the entire qua-
sispecies, rather than individuals, is the target of natural
selection [12, 13]. A remarkable result of the quasispecies
theory is the prediction of the existence of a phase tran-
sition at a critical mutation rate, μc, the error-threshold,
beyond which the master sequence is lost and the qua-
sispecies is dominated by the mutant genomes. Roughly
speaking, the critical mutation rate can be obtained as
μc ≈ ν−1, being ν the sequence length. The theory pre-
dicts that replicons with mutation rates μ > μc, might
enter into the so-called error catastrophe regime, involv-
ing the out-competition of the master sequence by the
pool of mutant genomes. Hence, genomic information is
lost as the population enters into a drift phase [8, 15].
The standard quasispecies mathematical model as-

sumes that the fitness of any particular genotype entirely
depends on its genome, without specifically distinguish-
ing between effects at the genotypic and protein (phe-
notypic) levels. However, this assumption is highly un-
realistic, because the fitness of a genome would depend
on the functionality of the proteins it encodes. Further-
more, as master and mutant genomes coexist and both
may contribute to the pool of proteins, it is conceivable
that wild-type proteins may, for instance, act over mu-
tant genomes, replicating and/or encapsidating them and
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FIG. 1: Schematic representation of the flow reactor approach
used as abstract model to study quasispecies dynamics with
complementation. The master (white) and the mutant (red)
genomes encode for wild-type and mutant replicases, respec-
tively. In Section II we consider the case where the mutant
genomes code for deficient replicase with a reduced polymer-
ization activity. In Section III we study the dynamics con-
sidering the mutant genomes as defective interfering particles
(DIPs), which do not encode for a replicase (i.e., the process
framed with the dotted line is removed). In both cases, the
mutant genomes take advantage of the wild-type replicase to
make more copies of themselves. Both systems are equiva-
lent to a two-member hypercycle formed by a replicator and
a parasite, which share the replicase (solid and dashed arrows
indicate, respectively, replication and translation processes).

vice versa, in a clear case of functional trans complemen-
tation [16]. Henceforth, the phenotype of a genome may
not reflect its genotype, a situation which in the case of
viruses is known as phenotypic mixing and hiding [17–20].
Moreover, a substantial amount of evidences, gathered
with viruses as different as the murine cytomegalovirus
[21], foot-and-mouth disease virus [22] or tobacco mosaic
virus [23], give support to the fact that deletion mutants
can be replicated in cells coinfected with the full-genome
helper viruses.
Several mathematical models have been proposed that

take into consideration trans interactions between differ-
ent viral genomes with different fitness properties [24].

For instance, studying the dynamics of defective inter-
fering particles (DIPs) as an extreme case of complemen-
tation [25–29]. DIPs are mutant viruses that lack most
of the viral genome and cannot complete the infectious
cycle by themselves [30, 31] (see also [32] for a review).
However, they can be replicated and encapsidated by the
proteins translated from a helper virus coinfecting the
same cell. The mechanisms ensuring the survival and
persistence of DIPs are not entirely clear, as they behave
as hyperparasites and usually get involve in an arms race
with the full virus [33–35]. It is possible that the emer-
gence of genomes shortened by deletions might confer an
advantage in terms of replication speed compared with
the full virus [22]. Furthermore, there is also evidence of
a stronger form of interference whereby the DIPs genome
competes more successfully for the viral replicative ma-
chinery [34, 36].
As previously mentioned, several authors have theoret-

ically investigated the dynamics of full viruses replicating
together with DIPs. For example, Szathmáry [28] ana-
lyzed simple models based on mass action kinetics con-
sidering standard viruses and DIPs. In [28], structured
deme models where developed to provide a description
of the coexistence of virus segments considering standard
virus and DIPs, sensitive and resistant viruses together
with DIPs, covirus pairs (i.e., virus that exist as two or
more separated particles all of which must be present for
the complete replication cycle of a virus to occur), and
virus-covirus systems. A deeper analysis of the model
with standard virus and DIPs was later developed by
Szathmáry [29] considering cell populations infected by
particles differing in number. Several different coexis-
tence situations were shown to be possible by means of
stable equilibria governed by fixed points or periodic or-
bits; also evidence was found of stable coexistence out of
equilibrium governed by strange attractors.
Later, Kirkwood et al [27] developed a differential

equations model to analyze a system formed by host cells,
wild-type virions and DIPs. Such a model was able to
explain several dynamic behaviors found in experiments,
especially the fluctuations in virus titers on successive
passages. Their model also gathered some interesting
dynamical phenomena such as self-curing, which involves
the extinction of the full virus together with the DIPs,
and that had been previously observed to occur in vitro
[37]. They found that self-curing was associated to tran-
sient chaos, which might arise due to the presence of
chaotic saddles in phase space.
More recently, Wilke et al [16], analyzed a simple

model of complementation with differential fitness be-
tween master and mutant viruses due to an impaired
ability to infect cells. The model studied by these au-
thors predicted a strong influence of phenotypic mixing
and hiding on population dynamics of viruses at high
multiplicity of infection as well as important effects on
the mutation-selection balance at low multiplicity of in-
fection.
None of the aforementioned models, and to the ex-
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FIG. 2: Dynamics generated by the model given by Eqs. (1-3). (a) Phase diagram showing the region in the parameter space
(γ, μ) in which the master sequence extincts (gray region, with parameters k0 = k1 = 0.4). The solid line indicates the error-
threshold boundary, which can be achieved by increasing μ or decreasing γ. This critical curve perfectly fits with the analytical
values of μc = 2 − γ−1 and γc = (2 − μ)−1, obtained from linear stability analysis. We also display some phase portraits
showing several trajectories (the arrows show the directions of the flows) on the phase plane (x0, p0) with: (b) k0 = k1 = 0.4
and γ = 1/2; (c) k0 = k1 = 0.4 and γ = 0.75. In (d) we show the dynamics of the master and the mutant genomes in the
simplex (x0, x1), here with parameters k0 = 0.8, k1 = 0.4 and γ = 0.75. In all the plots we used r0 = 0.9, r1 = 0.1 and μ = 0.3.
Thin trajectories correspond to the biologically meaningful initial conditions with 0 < x0(0) ≤ 1 and x1(0) = p0(0) = p1(0) = 0.
In (b) and (c) we used x1(0) = p1(0) = 0; in (d) we used p0(0) = p1(0) = 0. All the numerical results are obtained with the
fourth-order Runge-Kutta method with a constant time step-size δt = 0.1.

tend of our knowledge no one else, explores the effect
of complementation on the error threshold predicted by
the standard quasispecies theory. Therefore, neither the
parametric regions in which the master sequence sur-
vives nor the bifurcations causing the error threshold
have been characterized for systems of replicons in which
complementation between mutant and master genomes
may occur. We sought to cover this hole by studying two
simple quasispecies models taking into account comple-
mentation during replication between master and mutant
genomes.
The model studied in Section II considers that both

master and mutant genomes encode, respectively, for
wild-type and mutant replicases, with the mutant repli-
case having a lower catalytic activity. Hence, the fitness
landscape is included at the replicase level and is given
by the Swetina-Schuster fitness landscape [42]. However,
since both types of replicases contribute to the cellular
pool of proteins, both can replicate the master and mu-
tant genomes. From a more biologically relevant perspec-
tive, the model can also give insights on the population
dynamics of master and mutant viruses replicating within
the same cell and may help to understand under which
conditions master genomes can survive in the population.
The second model, developed in Section III, considers a

problem of relevance in virology: the production of DIPs
by some viruses and the effect they may exert on the
full-length virus. In this model DIPs do not encode for
replicase and have a faster replication rate and/or higher
effective interaction with the wild-type replicase. Such a
model will also provide some insights into the effect of
competition between master genomes and DIPs, as well
as into the possible persistence scenarios of the master
sequence under the presence of DIPs. In both systems,
replication is governed by a nonlinear, density-dependent
growth. Actually, this system is equivalent to a two-

member hypercycle with replicase-mediated replication
(see Fig. 1). Some models of hypercycles coding for a
replicase able to instruct the synthesis of other replicators
can be found in [38].

II. QUASISPECIES MODEL WITH
COMPLEMENTATION

We analyze the effect of complementation in the dy-
namics of RNA viruses with a simple quasispecies mean
field model that describes the replication-mutation dy-
namics of RNA macromolecules in a flow reactor (see
Fig. 1). Hence we study an unstructured model that
only gathers the replication kinetics with a constant pop-
ulation, obviating the details of viral intracellular ampli-
fication. This is a standard method used in replicator
theoretical models (see e.g., [39–41]). For mathemati-
cal convenience we studied the Swetina-Schuster single
peak fitness landscape [42], where mutations are assumed
to be largely deleterious and all mutant genotypes have
identical low fitness. For simplicity we will not consider
beneficial or neutral mutations. Our model considers
the simplest scenario dividing the population of genomes
in two types of sequences, the master and the mutant
genomes, which are grouped into an “average” mutant
sequence. The relative concentrations for such sequences
are denoted x0 ≥ 0 (master) and x1 ≥ 0 (mutant), re-
spectively. Such sequences are assumed to be positive-
sense strands that encode, respectively, for the wild-type
(denoted as p0 ≥ 0) and the mutant replicases (named
p1 ≥ 0). Hence, the master genomes are considered to
be the sequences coding for the more efficient replicases.
As a first approach we obviated the polarity of both se-
quences (i.e., genomic and antigenomic strands) not con-
sidering the effect of the intermediaries of replication.
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The model assumes a constant population (CP) con-
straint with

∑1
i=0 xi = 1 and

∑1
i=0 pi = 1. Let us also

assume that mutations occur from the master to the sec-
ond compartment but not in the reverse sense. The enor-
mous size of the sequence space makes this assumption
a first good approximation. The model is then given by
the following set of differential equations:

ẋ0 = (1− μ)x0γ
[
r0p0 + r1p1

]− x0Φ(x), (1)

ẋ1 =
(
μγx0 + (1− γ)x1

)[
r0p0 + r1p1

]− x1Φ(x), (2)

ṗi = kixi − piΞ(p), (3)

with i = 0, 1. The outflux terms, which are computed
from

∑1
i=0 ẋi = 0 and

∑1
i=0 ṗi = 0, are given by

Φ(x) =
(
x0γ + (1− γ)x1

)[
r0p0 + r1p1

]
,

and Ξ(p) =
∑1

i=0 kixi. Note that we use two differ-
ent outfluxes because the RNA genomes and the repli-
case enzymes are competing for different resources (i.e.,
mononucleotides and amino acids, respectively). Here
r0 > 0 and r1 > 0 are the replication rates due to the
action of the wild-type and mutant replicases, respec-
tively. We will consider that the mutant genome will
always produce a mutant replicase whith a replication
rate r1 ≤ r0. Note that the term (r0p0 + r1p1) appears
symmetrically in Eqs. (1)-(2) because of complementa-
tion. Hence, both replicases, the master and the mutant,
are able to bind and replicate both genome classes. The
parameter μ, associated to the replication kinetics, is the
average mutation rate. Finally, the parameter ki denote
the translation rate of the replicases from both master
and mutant genomes.
Finally, the parameter γ > 0 is the probability of inter-

action between the pool of replicases (i.e., wild-type and
mutant replicases) and the master genomes, being (1−γ)
the interaction probability between the mutant genomes
and the pool of replicases. Our model allows to consider
the effect of mutations at the level of the replicase and of
the genomes, depending on the value of γ: with γ = 0.5
the replicase will interact with the same probability with
the master and the mutant genomes. For this case, the
deleterious effects of mutations are only incorporated at
the level of the replicase. However, with γ > 0.5 the
pool of replicases will undergo a better interaction with
the master genomes, and the effect of mutations on the
fitness will be also reflected at the level of the genotype.
For the moment, we will not consider the case where the
mutant genomes have more affinity for the pool of repli-
cases (i.e., γ < 0.5).
The CP constraint allows reducing the previous model

to a two-dimensional system because of the linear rela-
tions x1 = 1 − x0 and p1 = 1 − p0. Hence, we can
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FIG. 3: Values of the coordinates of the fixed points, P ∗i
(i = 1...3), for the two-dimensional model at increasing μ (a)
and γ (b) with k0 = 0.8, k1 = 0.4, r0 = 0.9 and r1 = 0.1
(in black we show the coordinate x∗0 and in red the coordi-
nate p∗0). We indicate P ∗2 and P ∗3 with solid and dashed lines,
respectively. Note that P ∗3 remains negative in both panels.
The intersections of the two lines (i.e., black and red) be-
tween fixed points are bifurcations. In (a) we use γ = 0.75
and in (b) we use μ = 0.3. The arrows indicate the stability
of the extinction equilibrium P ∗1 , which is indicated with a
solid thin line. For comparison, we show the prediction of
the error threshold for a simple quasispecies model without
complementation, computing numerically the concentration
of the master genomes (solid thick line) from Eqs. (6)-(7) us-
ing f0 = 0.9, f1 = 0.1 and x0(0) = 1 and x1(0) = 0 as initial
conditions. The critical values (e.g., μc) involving the transi-
tion from viable to non-viable master genomes are indicated
with a vertical dotted line.

study the time dynamics of the master genomes and
the wild-type replicase, now defined in the phase plane
Γ :=

{
(x0, p0) ∈ R

2 : 0 ≤ x0, p0 ≤ 1
}
. The reduced

model is given by

ẋ0 = (1− μ)x0γ
[
r0p0 + r1(1− p0)

]− Φ(x)x0, (4)

ṗ0 = k0x0 − p0

(
k0x0 + k1(1− x0)

)
. (5)

Now with Φ(x) =
(
x0γ + (1 − γ)(1 − x0)

)[
r0p0 +

r1(1− p0)
]
. This two-dimensional model has three equi-

librium points. The first fixed point is the trivial one,
P ∗1 = (0, 0), which involves the extinction of the master
genomes. Such a case would correspond to an absorb-
ing state, in which the system remains trapped forever.
The other two equilibria are P ∗2 =

(
x
∗(2)
0 = 1 + γμ/(1−

2γ), p∗(2)0 = k0(1+γ(μ−2))/(k0(1+γ(μ−2))−γk1μ)
)
and
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FIG. 4: Equilibrium concentration of the master (a) and mutant (b) genomes numerically computed from the four-dimensional
system (1-3) in the parameter space (μ, γ), using r0 = 1, r1 = 0.1, k0 = 0.8 and k1 = 0.4. Initial conditions were: x0(0) = 1
and x1(0) = p0(0) = p1(0) = 0.

P ∗3 =
(
x
∗(3)
0 = k1r1/(k1r1 − k0r0), p

∗(3)
0 = r1/(r1 − r0)

)
.

We note that under the CP constraint, the fixed points
for Eqs. (1-3) are fully determined and are given by:
P ∗1 = (0, 1, 0, 1), P ∗2 =

(
x
∗(2)
0 , 1 − x

∗(2)
0 , p

∗(2)
0 , 1 − p

∗(2)
0

)
and P ∗3 =

(
x
∗(3)
0 , 1− x

∗(3)
0 , p

∗(3)
0 , 1− p

∗(3)
0

)
. According to

the equilibrium values for the two-dimensional system,
when k1 = k0 the fixed points P ∗2 and P ∗3 live on the
lines x

∗(2)
0 = p

∗(2)
0 and x

∗(3)
0 = p

∗(3)
0 , respectively. The

Jacobian matrix for Eqs. (4-5) is given by

J =

⎛
⎝ ∂ẋ0/∂x0 ∂ẋ0/∂p0

p0(k1 − k0) + k0 x0(k1 − k0)− k1

⎞
⎠ ,

with ∂ẋ0/∂x0 = −(p0(r0−r1)+r1)(1−2x0+γ(−2+μ+
4x0)) and ∂ẋ0/∂p0 = −(r0 − r1)x0(1− x0 + γ(−2 + μ+
2x0)). In order to analytically find the critical mutation
rate, μc, responsible of the error-threshold, we study the
stability of the trivial fixed point P ∗1 , which, if stable,
will involve the extinction of the master sequence. The
Jacobian matrix evaluated at the trivial equilibrium takes
the form

J(0) =

⎛
⎝r1

(
(1− μ)γ + (γ − 1)

)
0

k0 −k1

⎞
⎠ .

The stability is studied from det |J(P ∗1 ) − λI| = 0. We
obtain two eigenvalues: λ(1) = (1−μ)γr1+ r1(γ−1) and
λ(2) = −k1. Note that λ(2) is always negative, and thus
the stability of this fixed point will entirely depend on
λ(1). The trivial fixed point, which involves the extinc-
tion of the master genomes, will be stable when μ > μc

or when γ < γc, with μc = 2 − γ−1 and γc = (2 − μ)−1,
respectively. When γ = 1/2 the critical mutation rate
is μc = 0, and then, for any value of the mutation rate
μ > 0, the master sequence is not able to survive. In Fig.
2 we display the dynamics obtained numerically from the
full model with four variables. The critical boundary
involving the error threshold and the extinction of the

master genomes is shown in the phase diagram of Fig.
2(a). Here we computed the pairs of μ and γ where the
master genome is able to persist for t ≤ 105 (white re-
gion). The solid line indicates the critical values of each
of these parameters causing the error threshold phase
transition. This curve perfectly fits with the analytical
expressions of μc and γc previously derived from linear
stability analysis. For this model, values of γ < 1/2 in-
volve the extinction of the master genome independently
of μ (results not shown). The dynamics with γ = 1/2
is illustrated in Fig. 2(b) by means of two-dimensional
phase. For this case the master sequence extincts, being
the entire phase plane (x0, p0) a basin of attraction of the
point (0, 0), which is globally stable. The exploration of
the phase portraits using γ > 1/2 shows the non-trivial
equilibrium of the master genome, and thus the coexis-
tence of the master and the mutant genomes (see Figs.
2(c) and 2(d)).
If we now focus again in the reduced, two-dimensional

model we can compute the values of the coordinates of
the fixed points P ∗2,3 at increasing μ and γ > 1/2. In
Fig. 3(a) we show the values of such coordinates us-
ing μ as control parameter. We saw a linear decrease
of the equilibrium concentration for the master genome,
corresponding to the first coordinate of the fixed point
P ∗2 . This decrease was followed by the coordinate p

∗(2)
0 ,

because the production of wild-type replicase is propor-
tional to the concentration of master genomes. The two
coordinates of the equilibrium P ∗3 remain negative for
the parameter values used in Fig. 3. Similar results are
shown in Fig. 3(b) using γ as control parameter. As γ
decreases, the equilibria for the master genome and for
the wild-type replicase decreased, and after the bifurca-
tion value γ = γc (with γ < γc) the master genomes are
not able to persist.
The results shown in Figs. 3(a) and 3(b) display a

transcritical bifurcation which may govern a continuous
phase transition involved in the error threshold. This
bifurcation can be inferred from the intersections of the
lines corresponding to the fixed points P ∗1 and P ∗2 and
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FIG. 5: Same as in Fig. 2 but now considering the population dynamics with mutant genomes being DIPs and using Eqs. (10)-
(12). (a) Phase diagram with the critical boundary in the parameter space (γ, μ) involved in the error threshold (black line).
This boundary perfectly matches with the critical parameter values analytically derived, and given by μc = 1− ((1− γ)r1/γr0)
and γc = r1/(r0(1− μ) + r1). The phase portraits are displayed for: (b) μ = 0.4 and γ = 0.6; (c) and (d) μ = 0.2 and γ = 0.9.
In all the plots we use r0 = 0.5, r1 = 0.9 and k0 = 0.5. In (b) and (c) x1(0) = 0 and in (d) p0(0) = 0.

from the stability properties of such points. These inter-
sections indicate that these two fixed points collide at the
critical values μc = 2/3 (a) and γc ≈ 0.588 (b), which are
in agreement with the critical values of these parameters
analytically derived. Actually, we generically obtain

P ∗2
∣∣∣
μc=2− 1

γ

= (0, 0) and P∗2
∣∣∣
γc=(2−μ)−1

= (0, 0).

Hence, P ∗2 = P ∗1 for the critical values of μ and γ, indi-
cating that such points collide and the bifurcation occurs.
After the collision, the coordinate x∗0 of the fixed point
P ∗2 is negative, being out of Γ. Numerical computations
show that after the collision, these two fixed points in-
terchange the stability properties: with μ < μc the fixed
point P ∗1 is unstable, while for μ > μc becomes stable,
as previously shown by the linear stability analysis. The
stability of P ∗2 works in an opposite way, that is, when
μ < μc, P ∗2 is stable, and with μ > μc is unstable.
To better illustrate the effect of complementation in

the behavior of the error threshold transition, we con-
structed the standard quasispecies model under the CP
constraint (i.e., x0+x1 = 1) and the Swetina-Schuster fit-
ness landscape. The dynamical system, following similar
notation than for the previous model, is given by

ẋ0 = f0(1− μ)x0 − x0η(x), (6)

ẋ1 = f0μx0 + f1x1 − x1η(x). (7)

now with the outflow term given by η(x) =
∑

fixi.
Here f0 and f1 are the replication rates of the master (x0)
and the mutant (x1) genomes, respectively. Equations
(6)-(7) can be reduced to a one-dimensional system, given
by

ẋ0 = f0x0

(
1− μ− f1

f0
− x0

(
1− f1

f0

))
. (8)

Actually, we can compute the time evolution of this
single equation, which gives a logistic-like solution

x0(t) =
ω0

ω1

[
1 +

(
ω0/ω1 − x0(0)

x0(0)

)
exp(−ω0f0t)

]−1

,

with ω0 = 1−μ− f1/f0 and ω1 = 1− f1/f0. The critical
mutation rate for this simple quasispecies model without
complemention, involving the extinction of the master
genome is given by

μc = 1− f1/f0. (9)

To compare the critical mutation rate with and with-
out complementation we compute the equilibrium of the
master genome by increasing mutation rate (indicated
with a thick black line in Fig. 3a). Although both models
with and without complementation are structurally dif-
ferent, we will use the same values of the replication rate
studied in Fig. 3a. As expected, the results show that the
critical mutation rate without complementation is higher.
From expression (9), using f0 = 0.9 and f1 = 0.1, we
obtain μc = 0.888.... That is, considering complementa-
tion involves a lower mutation threshold because mutant
genomes are taking advantage of the replicase translated
from the master genomes and are, therefore, better com-
petitors.
Finally, the equilibrium concentrations of the master

and mutant genomes, computed numerically in the pa-
rameter space (μ, γ) using Eqs. (1-3), were in complete
agreement with the previous results. We showed a de-
crease in the concentration of the master genomes at in-
creasing mutation rate or decreasing γ, which is followed
by an increase in the equilibria for the mutant genomes
under such parameter changes (see Fig. 4).
In conclusion, we have shown that when complementa-

tion is incorporated into the picture, the critical mutation
rate becomes independent of the replication rate of mas-
ter and mutant genomes and only depends on the affinity
of replicases for the master genome. From our results is
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also possible to conclude that complementation reduces
the value of mutation rate at which transition to error
catastrophe occurs.

III. QUASISPECIES MODEL WITH DIPS

Next, we focus our attention to a particularly interest-
ing case in virology, namely the generation and ampli-
fication of defective interfering particles (DIPs) lacking
the replicase gene. DIPs can only replicate in presence
of a master genome that contributes with the wild-type
replicase. This new model thus considers that the mutant
genomes synthesized from the replication of the wild-type
sequence produce a stronger interference because they are
not producing mutant replicase which could contribute
for replication of both genomes. As commented in the
Introduction, experimental results suggest two different
kinetic effects for DIPs: (i) the DIP, owed to its shorter
genome length, replicates faster than the full-length mas-
ter sequence and (ii) the DIP competes more successfully
for interaction with the viral replicase machinery. Our
model allows for the study of both effects: to simulate
(i) we will set r1 > r0, and by setting γ < 1/2, we will
simulate (ii).
The DIPs model follows a similar notation than the

one presented and analyzed in Section II. It is worth men-
tioning that, for this system with DIPs, the term master
sequence should be redefined as the one coding for the
replicase, even though this replicase synthesizes faster or
has stronger affinity for the mutant genomes. The model
is given by the following set of three nonlinear ODEs:

ẋ0 = (1− μ)γr0x0p0 − x0Φ(x), (10)

ẋ1 = p0

(
μγr0x0 + (1− γ)r1x1

)− x1Φ(x), (11)

ṗ0 = k0x0 − p0Ξ(p0). (12)

Here we also use the CP constraint, with
∑1

i=0 xi = 1
and 0 ≤ p0 ≤ 1. The outflux terms are now given by

Φ(x) = p0 (γr0x0 + (1− γ)r1x1) ,

and Ξ(p0) = k0x0. This model is close to the one analyzed
by Szathmáry (see section 2.3 in [28]). This author ana-
lyzed the dynamics of standard and defective interfering
viruses with a structured deme model. Although in such
a work a model with mutation was also presented, the
characterization of the critical parameters and the bifur-
cation involved in the error-threshold were not thought-
fully studied. As a difference, our model considers in an
explicit way the product of the template (i.e., replicase)
and differential probabilities of interaction between the
DIP and the wild-type replicase.
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FIG. 6: Numerical values of the equilibria obtained from Eqs.
(10)-(12) using μ and γ as control parameters. The equilib-
rium concentration for the master and mutant genomes are
indicated with solid and dashed thick lines, respectively. The
solid thin lines correspond to the population equilibria of the
replicase. In (a) we use γ = 0.75 (red) and γ = 0.9 (black). In
(b) we use μ = 0.05 (red) and μ = 0.2 (black). In both plots
r0 = 0.5, r1 = 0.9, k0 = 0.5 and initial conditions x0(0) = 1
and x1(0) = p0(0) = 0. The arrows indicate the values of μc

(a) and γc (b) for each analysis.

Let us analyze our model also reducing the system to a
two-dimensional model using the linear relation obtained
from the CP constraint, x1 = 1 − x0. This system, also
defined in the phase plane Γ (see Section II), is given by

ẋ0 = x0p0Ψ(x0), (13)

ṗ0 = k0x0(1− p0). (14)

with

Ψ(x0) =
[
(1− μ)γr0 −

(
γr0x0 + (1− γ)(1− x0)r1

)]
.

The points in the straight line {(0, p0)} are fixed points.
For this case, the asymptotic state of the master sequence
is the extinction. Hence, it can be interpreted as a (“one-
dimensional”) absorbing state tied to the error catastro-
phe. This line of equilibria involves the extinction of the
master genomes with the presence of wild-type replicase.
This state is found because during the transient dynamics
towards the extinction of the master genome, wild-type
replicase molecules are still produced. As the wild-type
replicases are not degraded, they remain in the system
and, asymptotically, they reach a non-trivial value, al-
though the master genomes become extincted. If (x0, p0)
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FIG. 7: Equilibrium concentration of the master genomes obtained numerically from Eqs. (10)-(12) in the parameter spaces
(μ, r1) (a), and (γ, r1) (b). In (a) we use γ = 0.75 and in (b) μ = 0.2. In both plots we set k0 = 0.5 and r0 = 0.5. Initial
conditions were: x0(0) = 1 and x1(0) = p0(0) = 0.

is a fixed point with x0 �= 0, from Eq. (14) p0 = 1, and
then from Eq. (13) we obtain

x∗0 =
(1− μ)γr0 − (1− γ)r1

γr0 − (1− γ)r1
.

Then, assuming that 0 < x∗0 ≤ 1 we have another fixed
point:

(x∗0, 1) ≡
(
(1− μ)γr0 − (1− γ)r1

γr0 − (1− γ)r1
, 1

)
.

The Jacobian matrix for this model is

J =

⎛
⎝p0

(
Ψ(x0) + x0Ψ′(x0)

)
x0Ψ(x0)

k0(1− p0) −k0x0

⎞
⎠ .

At the point (0, 0) both eigenvalues are zero (i.e., de-
generate case). The linearized equation is unstable,

⎛
⎝u̇

v̇

⎞
⎠ =

⎛
⎝ 0 0

k0 0

⎞
⎠

⎛
⎝u

v

⎞
⎠ ,

u̇ = 0 and v̇ = k0u, and has solution u(t) = C1 and
v(t) = k0C1t + C2. These solutions with u(0) = C1 �= 0
go away from any neighborhood of (0, 0). At the points
(0, p0),

J =

⎛
⎝ p0

(
Ψ(0)) 0

k0(1− p0) 0

⎞
⎠ ,

and the two eigenvalues are λ1 = 0 and λ2 = p0[(1 −
μ)γr0 − (1 − γ)r1]. Note that the points (0, p0) will be
the ones involved in the extinction of the master sequence
for the model with DIPs. If

(1− μ)γr0 − (1− γ)r1 < 0, (15)

these points have a one-dimensional invariant stable man-
ifold. From the previous inequation we can obtain the

critical values responsible of the error threshold, which
are given by

μc = 1− ((1− γ)r1/γr0)

and

γc = r1/(r0(1− μ) + r1).

Then, if μ > μc or γ < γc the master genomes will dis-
appear of the population, which will be completely dom-
inated by the mutant DIPs. The previous critical values
are in complete agreement with numerical simulations.
In Fig. 5(a) we repeated the phase diagram shown in
Fig. 2(a), where we represented (in gray) the pairs of the
parameters (γ, μ) involving the extinction of the mas-
ter genomes. Note that the critical boundary displayed
with the solid black line perfectly fits with the values of
γc and μc previously characterized. For the other fixed
point (x∗0, 1), Ψ(x

∗
0) = 0, and

J =

⎛
⎝x∗0Ψ

′(x∗0) 0

0 −k0x
∗
0

⎞
⎠ .

The eigenvalues for this case are λ1 = −kx∗0 < 0 and
λ2 = x∗0Ψ

′(x∗0), with

x∗0Ψ
′(x∗0) = −(1− μ)γr0 + (1− γ)r1.

With this basic information obtained only from the linear
study we can see that

(1− μ)γr0 − (1− γ)r1, (16)

plays an important role in the dynamics of the system. If
expression (16) is negative, the points of the straight line
{(0, p0)} are (weakly) attractive. However, with a posi-
tive value for expression (16) the point (x∗0, 1) is attrac-
tive. The previous analytical results have been checked
numerically. As previously discussed, the straight line
{(0, p0)} contains fixed points, as it is shown in Fig. 5(b)
in the scenario where {(0, p0)} has a stable invariant man-
ifold (i.e., (1−μ)γr0− (1−γ)r1 < 0). Note that different
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initial conditions achieve different asymptotic values in
such a straight line, in which the master genomes become
extinct. The other possible scenario, in which the master
genomes survive and coexist with the DIPs, is shown in
Figs. 5(c) and 5(d). For these two cases μ < μc and
γ > γc. The crossing of these critical values also involves
transcritical-like bifurcations. This type of bifurcations,
also found for the general model analyzed in Section II,
is displayed in Fig. 6.
The increase of mutation rate in the range μ < μc in-

volves a linear decrease in the concentration of the mas-
ter genome and a linear increase of the mutant genomes
concentration (Fig. 6(a)). Moreover, the decrease of γ
involves a decrease in the equilibrium concentration of
the master genomes, and when γ < γc the population of
master genomes is not able to survive at all (Fig. 6(b)).
The previous results suggest that under the condition
that the DIP has a higher affinity in the binding with
the replicase, even for very small mutation rates (e.g.,
with μ = 0.05 as shown in Fig. 6(b) in red), these mu-
tant DIPs will outcompete the master ones. Actually, the
phase diagram of Fig. 5(a) shows that below γ < 0.5, the
mutant DIPs outcompete the master one for any muta-
tion rate (a similar result was also found in Section II).
We finally analyzed the effect of increasing the replica-

tion rate of the mutant genomes in the range r0 < r1 ≤ 1.
The increasing of r1 might correspond to the study of sev-
eral DIPs with shorter genome lengths, assuming a lin-
ear relation between genome length and replicative speed
for mutant genomes. These analyses were performed by
computing numerically the equilibrium values of the mas-
ter genomes in the parameter spaces (μ, r1) (Fig. 7(a))
and (γ, r1) (Fig. 7(b)). In both graphs it can be seen
that the master genomes become extinct as the values of
μc and γc are crossed. Moreover, as expected, we showed
that an increase of the replication speed for the mutant
DIPs involved an earlier extinction in both parameter
spaces. That is, the values of μc decreases as r1 grows,
and the values of γc increase at increasing r1.
In conclusion, the previous results show that when

DIPs are considered as a particular case of mutants,
the critical mutation rate depends both on the replica-
tion rates and binding affinities. Furthermore, the more
replicative advantage of the DIPs relative to the master
genomes, the lower the critical mutation rate.

IV. DISCUSSION

The quasispecies theory [8–10] has become the paradig-
matic theoretical framework for the study of the dynam-
ics and evolution of error-prone populations of replica-
tors like RNA viruses. In the light of this theory, sev-
eral interesting results have been reported, among them,
the existence of the so-called error-threshold [8, 11, 15].
The error threshold has been defined as the value of the
mutation rate below which populations equilibrate in a
traditional mutation-selection balance and above which

the population experiences an error catastrophe through
excessive deleterious mutations [11]. The standard qua-
sispecies model directly associates the fitness of a given
replicator to its genotype. Translating this assumption
to real viral populations may be cumbersome, since it
has been amply demonstrated that the phenotype of a
viral particle does not necessarily reflects the genotype it
contains [17–20].
Complementation between different viral genomes by

means of trans interactions between different virus geno-
types has been shown to be of importance in the dynam-
ics of viral replication and cell infection, as shown in some
theoretical studies [27–29]. Previous modeling attempts
of viral complementation, including interaction between
DIPs and full viral genomes, focused in the ecological in-
teractions [25–27] or population genetics [24] of the dif-
ferent genotypes and the host cell. The main difference
between these previous analyses and this work, is that
here we studied two simple quasispecies models consid-
ering complementation during the replication of master
(wild-type) and mutant genomes and the effect of such
trans interactions on the error-threshold.
We first analyzed a model with master and mu-

tant genomes coding for wild-type and mutant (func-
tionally impaired) replicases. Due to complementa-
tion, both genomes can be replicated by both replicases,
with differential interactions probabilities between mas-
ter and mutant genomes with the whole pool of replicases
(parametrized with γ) synthesized from both genome
classes. Then, we analyzed a different model consider-
ing a particular case of complementation in which DIPs
(see the review [32]) replicate faster due to their short-
ened genomes. Moreover, we can also incorporate into
this model differential binding affinities for the unique,
wild-type replicase.
For both models we characterized the coexistence sce-

nario between master and mutant genomes, as well as
the critical values of mutation and γ involving the en-
try into error catastrophe. That is, the values of such
parameters with the full population dominated by the
mutant genotypes. We found that the error-catastrophe
scenario in the parameter space (μ, γ) was enlarged in
the complementation model compared with the standard
quasispecies model. Furthermore, we also found that the
parameter space in which error-catastrophe occurs was
even larger for the DIPs model than for the simple com-
plementation one. We have also characterized the error-
threshold transition when crossing μ = μc and γ = γc

as transcritical-like bifurcations in both systems under
study, suggesting the presence of continuous phase tran-
sitions in the qualitative shift from viable master genomes
to error catastrophe. Such a phase transition was char-
acterized in previous works for the standard quasispecies
model [39]. However, other works with quasispecies mod-
els defined on sharp, single-peak landscapes have shown
the presence of first-order phase transitions [43] as well as
the possibility of both transitions occurring in the same
system at increasing mutation rates [44]. As mentioned
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in the Introduction, our system might be equivalent to
a hypercycle system with replicase-mediated replication.
The consideration of replicases, as we have shown, might
involve the presence of a smoothed phase transition,
which is in contrast with the governing bifurcations of
ribozyme-like hypercycles, in which the extinction of the
replicons is governed by saddle-node bifurcations [45, 47]
and by absorbing first-order phase transitions [46].
Focusing in our first studied model, we have compared

the critical mutation rate under complementation with
the critical mutation obtained from a simple standard
quasispecies model, also under the Swetina-Schuster fit-
ness landscape. We have shown that the error threshold
occurs at a lower mutation rate with complementation.
We have also determined an error-threshold mediated by
the binding probability of genomes with the replicases.
Our results suggest that even for viruses that may be
replicating far away from the mutation threshold (i.e.,
μ << μc), the population can be forced to error catastro-
phe by the existence of mutant RNA genomes for which
the replicase may show an increased affinity.
For mathematical convenience, we have used the

Swetina-Schuster single peak fitness landscape [42] in our
models, despite its clear lack of biological realism. In a
previous study, we have shown that different fitness land-
scapes, with variable degrees of epistasis, have substan-
tially different effects on the error threshold [48]. There-
fore, a logical follow up of the present study would be to
explore the combined effect of epistasis and complemen-
tation among mutations on the properties of the error
threshold. Gao and Feldman [24] have recently devel-
oped a population genetic model of the effect of trans
complementation with epistasis in viral dynamics. These
authors found that the election of the epistasis function
(i.e., synergistic or antagonistic) have profound effects on

the genetic composition of complementing viral genomes.
For instance, synergistic epistasis tends to strengthen the
selection against the combinations of less-fit mutations,
while frequent coinfection generally weakens the selection
against all mutations, with the result that the master and
single mutants constitute a major proportion of the virus
population, and the stronger the complementation is, the
lower the frequency of master genomes.
By contrast, antagonistic epistasis among deleterious

mutations produce a much more complex picture and de-
pends on whether antagonistic epistasis takes the form of
magnitude or sign epistases [49]. With sign antagonistic
epistasis (e.g., if both the master and high-order mutants
are fitter than the single mutants), master genomes tend
to disappear and the population is dominated by geno-
types with large numbers of mutations. However, with
magnitude antagonistic epistasis (e.g., the strength of
epistasis depends on the genetic background but the sign
is unconditional), the master, single and double mutants
dominate the population. These analytical results sug-
gest that with complementation the error threshold may
occur at lower critical mutation rates with sign antagonis-
tic epistasis than with magnitude antagonistic epistasis
and than with synergistic epistasis.
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