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Abstract

The heat shock response (HSR) is a highly evolutionarily conserved defence

mechanism allowing the cell to promptly react to elevated temperature con-

ditions and other forms of stress. It has been subject to intense research

for at least two main reasons. First, it is considered a promising candidate

for deciphering the engineering principles underlying regulatory networks.

Second, heat shock proteins (main actors of the HSR) play crucial role in

many fundamental cellular processes. Therefore, profound understanding of

the heat shock response would have far-reaching ramifications for the cell

biology.

Recently, a new deterministic model of the eukaryotic heat shock response

has been proposed in the literature. It is very attractive since it consists of

only the minimum number of components required by any functional regu-

latory network, while yet being capable of biological validation. However,
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it admits small molecule populations of some of the considered metabolites.

In this paper a stochastic model corresponding to the deterministic one is

constructed and the outcomes of these two models are confronted. The aim

with this comparison is two show that, in the case of the heat shock response,

the approximation of a discrete system with a continuous model is a reason-

able approach. This is not always the truth, especially when the numbers of

molecules of the considered species are small. By making the effort of per-

forming and analysing 1000 stochastic simulations, we investigate the range

of behaviour the stochastic model is likely to exhibit. We demonstrate that

the obtained results agree well with the dynamics displayed by the continuous

model, which strengthens the trust in the deterministic description. A proof

of the existence and uniqueness of the stationary distribution of the Markov

chain underlying the stochastic model is given. Moreover, the obtained view

of the stochastic dynamics and the performed comparison to the outcome

of the continuous formulation provide more insight into the dynamics of the

heat shock response mechanism.

Keywords:

Mathematical modelling, Stochastic model, Computer simulations, Markov

chain, Gillespie algorithm, Stationary distribution, Steady-state, Clustering

1. Introduction

The heat shock response is the most highly evolutionarily conserved de-

fence mechanism (Lindquist and Craig, 1988). It exists in all eukaryotic cells,

protects them from the damaging influence of elevated temperature and al-

lows them to promptly react to other forms of environmental stress. The
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heat shock response has been subject to intense research recently, see (Chen

et al., 2007; Powers and Workman, 2007; Voellmy and Boellmann, 2007),

for at least two reasons. On one hand, as a well-conserved mechanism, it is

considered a promising candidate for deciphering the engineering principles

underlying regulatory networks. On the other hand, heat shock proteins play

crucial roles in many fundamental cellular processes such as protein biogen-

esis, dismantling of damaged proteins, activation of immune responses and

signalling, see (Kampinga, 1993; Pockley, 2003). Therefore, profound under-

standing of the heat shock response would have far-reaching ramifications

for the cell biology and could potentially allow for treatment of a number

of diseases, such as neurodegenerative and cardiovascular disorders, cancer,

ageing, see (Balch et al., 2008; Liu et al., 2002; Lukacs et al., 2000; Morimoto,

2008; Workman and de Billy, 2007).

Although a number of mathematical models describing the heat shock

response both in eukaryotes as well as in bacteria have been presented in the

literature, see Donati et al. (1990); Jones et al. (1993); Parsell and Lindquist

(1993); Peper et al. (1997); Petre et al. (2009b); Remondini et al. (2006);

Rieger et al. (2005); Szymańska and Żylicz (2009), still a comprehensive

mechanistic understanding of this process is lacking. In Petre et al. (2009b)

a new model of the eukaryotic heat shock response together with an asso-

ciated continuous mathematical model based on ordinary differential equa-

tions have been discussed. The novelty of the model in Petre et al. (2009b) is

due to the fact that, unlike other previous models, it is based solely on well-

documented reactions and does not incorporate modelling “blackboxes” such

as hypothetical, experimentally unsupported cellular mechanisms whose only
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purpose is to enforce appropriate behaviour. The simplified version of the

model (see Petre et al. (2009a) for details) includes the temperature-induced

protein misfolding, all three forms of heat shock factors: monomers, dimers

and trimers, the backregulation of the transactivation of the heat shock pro-

tein encoding gene and the chaperone activity of heat shock proteins. At the

same time, it contains as few reactions and reactants as possible. It is worth

noticing that the model consists of only the minimum number of components

required by any functional regulatory network: an activation mechanism and

a feedback mechanism. Nonetheless, the associated continuous model pre-

dictions correlate well with experimental observations on the heat-induced

transactivation of the hsp-encoding genes at different temperatures from the

range 37 ◦C − 43 ◦C (in particular, the prolonged transcription at 43 ◦C is

confirmed) and the return to the original level of hsp production once the

stress is removed (publication in preparation). Moreover, the model perfectly

illustrates the experimentally observed process of “self-learning” of the HSR

system: the response to a second consecutive heat shock is significantly lower.

This is due to a transient increase in the free hsp level caused by the prelimi-

nary heat shock. In other words, the increase is a form of temporary memory

of the fact that the cell was recently exposed to heat shock conditions.

However, the undertaken modelling approach that utilises ordinary differ-

ential equations is just one of many other modelling paradigms (e.g. stochas-

tic formulation, process calculi, Petri nets, etc.), which could be exploited in

the context of the heat shock response. In this paper we follow one of the

other formalisms: we develop a stochastic model associated with the simpli-

fied version of the model from Petre et al. (2009b) which has been described
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in Petre et al. (2009a). According to current scientific knowledge, ignoring

quantum mechanical effects, biological systems can be viewed as determinis-

tic of their very nature, with their dynamics entirely specified, given sufficient

information on the state of the system (position, orientation and momentum

of every single molecule) and a complete understanding of the chemistry and

physics of the interactions between biomolecules. Unfortunately, we are still

unable to model biological systems of realistic complexity and size using such

a molecular dynamic approach (Wilkinson (2006)). Therefore the current

models admit far-reaching simplifications, which result in a higher level view

of the system being modelled. However, these abstractions change the char-

acter of the dynamics, which becomes intrinsically stochastic and requires

consideration of statistical physics to describe the stochastic process govern-

ing it. Especially at low concentrations of the involved reactants, random

fluctuations may have a significant impact on the reaction dynamics, but the

deterministic approach to chemical kinetics fails to capture such phenomena,

see McAdams and Arkin (1999); Srivastava et al. (2002). For example, let

us consider the famous Lotka-Volterra system of coupled ordinary differen-

tial equations describing an ecological predator-prey model. The solutions

of this system are known to be periodic (except for the stationary point)

independently of the initial size of predator and prey populations. However,

in the stochastic formulation there exists a ”catastrophic“ sequence of events

which leads to depletion of preys by predators and, in consequence, to the

extinction of predators as well. When running the model long enough, the

probability of not executing this catastrophic sequence drops to zero. This

leads to radical qualitative differences in the trajectories obtained by these

5



Acc
ep

te
d m

an
usc

rip
t 

two approaches: in the deterministic case the trajectory in the predator ver-

sus prey phase space is an ellipse, while in the stochastic case the trajectory

eventually reaches the trivial steady state of no predators and no prey indi-

viduals in the system. The expected time it takes to reach this state depends

on the initial number of species. Such discrepancy in the trajectories is es-

pecially easily observed when the initial population sizes are small.

Another significant impact of random fluctuations can be observed in the

model of T cell receptor signalling presented in Lipniacki et al. (2008), where

it is shown that, because of bistability of the system and the fact that the

T cell activation is due to a small number of foreign peptides, the responses

are highly stochastic. This results in stochastic trajectories not following

the deterministic trajectory, which converges to a steady state. Instead, the

stochastic realisations may occasionally jump between the basins of attrac-

tion of two possible states. In particular, as was shown in Lipniacki et al.

(2008), stochastic noise can cause a transition from the higher stable state to

the lower one and most of the stochastic trajectories are trapped in the basin

of attraction of the latter steady state in contrast to the deterministic case.

As a result, the qualitative behaviour revealed by the stochastic approach

differs significantly from the behaviour obtained from the deterministic de-

scription. For details we refer the reader to Lipniacki et al. (2008).

Although for a complex system detailed mathematical analysis based

on the “chemical master equation” is intractable (Wilkinson (2006)), it is

possible to gain insight into the system’s dynamics by performing a series

of stochastic simulations of the time-evolution of such system by so called

Gillespie algorithm (Gillespie (1976)). The algorithm is a well-established
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procedure for generating a stochastic realisation of the system’s temporal

behaviour. However, due to reasons such as computational efficiency, avail-

ability of dedicated simulation software with analysis tools (steady-state, sen-

sitivity analysis, etc.), and expertise in the theory of differential equations,

the deterministic modelling approach is commonly used in examination of

biological systems, although the stochastic formulation in many cases would

be more justified.

Bearing in mind the above mentioned merits of the new simplified heat

shock response model described in Petre et al. (2009a), the aim of this paper

is to show that in this particular case approximating a discrete system with

a continuous model is a valid approach. A stochastic model complementary

to the deterministic one is developed. An effort to perform 1000 stochastic

simulations is made in order to investigate whether the qualitative results

of the stochastic model agree with the deterministic outcome. Having the

problem of small number of molecules of some of the reactants in mind (ini-

tial number concentrations of hsf, hsf2, hsf3, hsf3 : hse, hse, hsp : mfp, see

Petre et al. (2009a) for details), as explained above, one could expect the

time-course trajectories obtained with the stochastic model to be substan-

tially different from the trajectories computed in the deterministic formalism.

However, we show that the influence of the random fluctuations does not in-

validate the continuous approach and the obtained results support the use of

the deterministic formulation in this case. In particular, we investigate the

number of steady states of the deterministic model and compare the obtained

results with the dynamics demonstrated by the stochastic model. We show

that the underlying stochastic process of our model has a unique stationary
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distribution and that the performed stochastic simulation results reveal no

evidence of multistationarity, which is consistent with the deterministic de-

scription. Additionally, this analysis let us gain some more insight into the

dynamics of the heat shock response mechanism. The question about the

stationarity and stability, i.e. the number of steady-states and whether they

are stable or unstable, is important in the examination of the dynamics of bi-

ological systems. For example, bistability in biological systems is, in general,

accompanied by hysteresis, which in turn promotes robustness (Karmakar

and Bose (2007); Lipniacki et al. (2008)).

The paper is organised as follows. In Section 2 we briefly describe the

simplified deterministic model (named deterministic model for compactness

in the continuation) of the heat shock response in eukaryotic cells which

was proposed in Petre et al. (2009a). Next, in Section 3, we discuss the

Markov jump process which constitutes the corresponding stochastic model

and show that it has a unique stationary distribution. Further, in Section 4,

the stochastic simulation results are discussed and a comparison between

the deterministic and stochastic model is presented. Finally, we end with

conclusions in Section 5.

2. Deterministic model

The model of the eukaryotic heat shock response consists of four main

modules: the heat-induced protein misfolding, the dynamic transactivation

of the genes encoding heat shock proteins, their backregulation and the chap-

erone activity of the heat shock proteins.

At elevated temperatures proteins tend to misfold and create aggregates,
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which has disastrous effects on the cell. In order to survive, the cell has to

promptly increase the level of heat shock proteins (hsp), which is the main

task of the heat shock response mechanism. Heat shock proteins act as chap-

erones: they interact with the misfolded proteins (mfp) and assist them in

refolding to their native conformation (prot). The control over the defence

mechanism against the temperature-induced harmful phenomena is imple-

mented through the regulation of the transactivation of the hsp-encoding

gene. Activation of the transcription proceeds along the following scheme:

heat shock factors (hsf) trimerize (through a transient dimerization) and in

this form bind to the heat shock element (hse), i.e. the promoter of the hsp-

encoding gene. Once the hsf-trimer (hsf3) is bound to the specific DNA

sequence (hsf3 : hse), the gene is transactivated and new hsp molecules are

eventually synthesised. Finally, when the level of hsps is high enough to cope

with the thermal stress, the production is switched off: hsps bind both to free

hsfs and hsfs that occur in compound forms (hsf2, hsf3, hsf3 : hse), which,

in consequence, get disassembled. As a result, DNA transcription of hsp-

encoding gene is turned off and the formation of new hsf trimers is blocked.

The full list of molecular reactions constituting the model is presented in

Table 1. By assuming the law of mass-action for all reactions (R1)–(R17),

the associated mathematical model based on ordinary differential equations

is obtained. The rate coefficient of protein misfolding with respect to the

temperature (ϕ(T )) in reaction (R14) is given by the following formula:

ϕ(T ) = (1− 0.4

eT−37
) · 1.4T−37 · 1.45 · 10−5 s−1, (1)

where T is the numerical value of the temperature of the environment in

Celsius degrees. The formula is valid for 37 ≤ T ≤ 45. It is based on

9



Acc
ep

te
d m

an
usc

rip
t 

experimental investigations in Lepock et al. (1993), Lepock et al. (1988) and

was originally proposed in Peper et al. (1997). Expression (1) in its current

form was obtained by adapting the original formula to the time unit of the

discussed mathematical model (see Petre et al. (2009a)). In our survey the

temperature is set to 42 ◦C, i.e. the cells are exposed to heat shock conditions.

As shown in Petre et al. (2009a), there are three mass-conservation re-

lations in the model: the total number of heat shock factor molecules, heat

shock elements and protein molecules (either misfolded or in native confor-

mation) is conserved in time. This can be written formally as

C1 = hse(t) + 3 hsf3 : hse(t) (2)

C2 = hsf(t) + 2 hsf2(t) + 3 hsf3(t)

+3 hsf3 : hse(t) + hsp : hsf (3)

C3 = prot(t) + mfp(t) + hsp : mfp(t) (4)

for all t ≥ 0, where C1, C2, C3 ≥ 0 are some constants determined by initial

conditions, i.e. right-hand side expressions at t = 0 in the above equations

(2)-(4).

The described model of eukaryotic heat shock response is based solely

on well-documented reactions and does not include any “artificial” elements

such as experimentally unsupported components or biochemical reactions.

For a detailed discussion of the model, we refer the reader to Petre et al.

(2009a).
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3. Stochastic model

Stochastic modelling of biochemical networks is today well-established.

The time-evolution of a reaction system can be regarded as a stochastic

process (cf. Wilkinson (2006)). In particular, the dynamics of a biochemical

network can be viewed as a continuous-time Markov process. A continuous-

time stochastic process {X(t), t ≥ 0} with discrete state space S is said to

be a continuous-time Markov chain (CTMC for short) if

P{X(tn) = in |X(t0) = i0, . . . , X(tn−1) = in−1}
= P{X(tn) = in |X(tn−1) = in−1}

for all 0 ≤ t0 < · · · < tn−1 < tn and i0, . . . , in−1, in ∈ S. The Markov property

expresses that the conditional distribution of a future state given the present

and past states depends only on the present state and is independent of the

past.

We consider a time-homogeneous Markov chain for which the transition

probability P{X(t+u) = j |X(u) = i} is independent of u. Let Q = (qij)i,j∈S

be the infinitesimal transition rate matrix of the continuous-time Markov

chain {X(t)} such that the following assumption is satisfied.

Assumption 1. νi =
∑

j �=i qij are positive and bounded in i ∈ S.

As stated in Tijms (2003), if Assumption 1 is fulfilled, it can be shown

that the infinitesimal transition rates determine a unique continuous-time

Markov chain which is precisely a Markov jump process constructed in the

following way:
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a) if the system jumps to state i, it then stays in state i for an expo-

nentially distributed time with mean 1/νi independently of how the

system reached state i and how long it took to get there (this explains

the name sojourn-time rates used for {νi});

b) if the system leaves state i, it jumps to state j (j �= i) with probability

pij independently of the duration of the stay in state i.

Further, let {Xn, n = 0, 1, . . . } be the embedded Markov chain, i.e. Xn is de-

fined as the state of {X(t)} just after the n-th transition with the convention

that X0 = X(0). The one-step transition probabilities of the discrete-time

Markov chain {Xn} are given by

pij =

⎧⎨
⎩ qij/νi j �= i,

0 j = i,

for all i, j ∈ S (e.g. see Tijms (2003)).

The corresponding stochastic formulation of the HSR molecular model

presented in Section 2 is a system of 10 chemically active species Si, (i =

1, . . . , 10), (S1 ≡ hse, S2 ≡ hsf, S3 ≡ hsf2, S4 ≡ hsf3, S5 ≡ hsf3 : hse,

S6 ≡ hsp, S7 ≡ hsp : hsf, S8 ≡ hsp : mfp, S9 ≡ mfp, S10 ≡ prot) that

participate in 17 chemical reactions (R1) – (R17) in some volume V . More

specifically, in our case the abstract volume V is simply a eukaryotic cell.
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The system’s state space S ⊂ N
10 is defined as

S = {(s1, . . . , s10)
T : ∀i∈{1,...,10} si ∈ N,

s1 + s5 = C1,

s2 + 2 s3 + 3 s4 + 3 s5 + s7 = C2,

s8 + s9 + s10 = C3,

s6 + s7 + s8 ≤ K},

(5)

where C1 ≥ 1, C2 ≥ 3 and C3 ≥ 1 are constants describing the fixed in time

total number of hse, hsf and protein (either misfolded or in native confor-

mation) molecules present in the system, respectively. The last inequality,

i.e. s6 + s7 + s8 ≤ K, requires some comment. In the absence of it the model

would make allowance for any unbounded number of free hsp molecules to

co-exist. However, this is certainly contrary to the fact that any living cell

has a limited volume and, in consequence, can only contain a finite number of

hsp molecules. Thus, in order to make the model more realistic, a big enough

(in the sense that it allows for the appropriate number of free hsp molecules

to be present in the system) constant K is introduced and an upper bound

on the value of the S6 variable is imposed by the last inequality. The direct

consequence of adding it is that the state space S becomes finite.

The system is in state s = (s1, . . . , s10)
T at time t if and only if the number

of molecules of species Si at time t is si for all i = 1, . . . , 10. The conditions

posed on the constants C1, C2 and C3 ensure that the HSR mechanism is

operational, i.e. that at least one hse molecule is present in the system, that

the system is able to produce at least one hsf3 molecule that can bind to the

DNA and, in consequence, initiate the transcription and translation of hsp.

Finally, that at least one generic protein prone to misfolding exists in the
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system.

Each reaction Rμ is characterised by a stochastic rate constant cμ (μ =

1, . . . , 17), see Table 3. The values were obtained from the deterministic

model (Petre et al., 2009a). In the case of reaction R1, the deterministic

rate constant value was multiplied by 2 in order to obtain the value for the

corresponding stochastic rate constant.

Let vμ be the μ-th column of the stoichiometry matrix of the HSR system

presented in Table 2. Reaction Rμ causes the system to make a transition

from some state i ∈ S to state j = i + vμ. The fundamental hypothesis of

the stochastic formulation of chemical kinetics (Gillespie, 1976) is that the

reaction parameter cμ can be defined as follows.

cμ dt ≡ average probability, to first order in dt,

that a particular combination of Rμ re-

actant molecules will react accordingly

in the next time interval dt.

As shown by Gillespie in Gillespie (1976), cμ is dependent on the radii of

the molecules involved in the reaction and their average relative velocities,

where the average relative velocity is a function of the temperature of the

system and the individual molecular masses. Further, it is shown that the

probability of reaction Rμ occurring in V in the time interval (t, t+dt), given

that the system is in state i at time t, has the form hi
μ cμ dt. hi

μ denotes the

number of possible combinations of reactant molecules involved in reaction

Rμ when the system is in state i. However, since the total number of hsp

molecules that might co-exist in a cell is limited, no further hsp production

(reaction (R7)) should take place when the system is in any of the states in

14
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which the limit is reached. Let us denote all these states by SK , i.e.

SK = {s | s6 + s7 + s8 = K}. (6)

Thus, the probability of reaction R7 occurring in V in the time interval

(t, t + dt) when the system is in i ∈ SK should be 0. Hence

hi
7 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

No. of combinations of

reactant molecules of R7 i ∈ S \ SK ,

0 i ∈ SK .

(7)

Due to the fact that the reaction hazards depend only on the current

state of the system, the time-evolution of the state of the reaction system

can be regarded as a CTMC. Since the state space S is finite, Assumption 1

is fulfilled and hence the chain is a Markov jump process constructed as de-

scribed above. The infinitesimal transition rates of the Markov jump process

are

qij = hi
μ cμ, (8)

where j = i + vμ.

Now, let us consider the reaction probability density function P i(τ, μ) dτ

of the HSR system, which forms the basis for the Gillespie’s simulation algo-

rithm. It is defined by

P i(τ, μ) dτ ≡ probability at time t (when the system is in state i ∈ S)

that the next reaction in V will occur in the differential time interval

(t + τ, t + τ + dτ), and will be an Rμ reaction.
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As shown in Gillespie (1976), the density function can be expressed as

P i(τ, μ) dτ = hi
μ cμ · exp

[
−

17∑
ν=1

hi
νcντ

]
dτ . (9)

The superscript i ∈ S indicates that in fact we deal with a whole family of

such functions. Which of them is considered at time t depends on the state

of the system at time t. In the continuation, in order to lighten the language,

“probability at time t” will be a shorthand for “probability at time t when

the system is in state i”. Let P i
1(τ) dτ denote the probability at time t that

the next reaction will occur between times t + τ and t + τ + dτ , irrespective

of which reaction it might be. By the definition of P i(τ, μ) we have that

P i
1(τ) =

17∑
μ=1

P i(τ, μ) (10)

= (
17∑

k=1

hi
k ck) · exp[−(

17∑
k=1

hi
k ck) · τ ].

Hence, the sojourn-time rates νi of the Markov jump process are given by

νi =
17∑

k=1

hi
k ck. (11)

The probability of the transition from state i to state j = i+vμ of the Markov

jump process (and, in consequence, of the embedded Markov chain {Xn}) is

the probability at time t that the next reaction in V will be an Rμ reaction.

Using equation (9), it can be expressed as

pij =

∫ ∞

0

P i(τ, μ) dτ =
hi

μ cμ∑17
k=1 hi

k ck

(12)

if j �= i and pii = 0 for all i ∈ S.

Lemma 1. The embedded Markov chain {Xn} is irreducible.
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Before presenting the proof let us divide the species into two groups. The

first one, called elementary species group (denoted by Gelementary), contains

hsf, hse, hsp, mfp and prot species. The other one, denoted by Gcompound

and named compound species group, is made of all the remaining species.

Proof of Lemma 1. Let i, j be any two states from the state space S. By

i� j we denote that the state j is reachable from the state i, i.e. that there

exists a sequence of reactions (R1)–(R17) which leads the system from the

state i to the state j.

In order to prove that {Xn} is irreducible it is enough to show that i� j,

since i and j are two arbitrarily chosen states. Let hsp(k), mfp(k) and prot(k)

be the total number of hsp, mfp and prot molecules present in the system

when in the state k, respectively. Further, let

z = (C1, C2, 0, 0, 0, hsp(i), 0, 0, mfp(i), prot(i))T .

z is obtained from i by disassembling all compound species from Gcompound.

Thus, in the state z the number of molecules of any species from Gcompound

is 0 and the number of molecules of any s ∈ Gelementary is equal to the total

number of s molecules in the system in the state i. Clearly z ∈ S and i� z,

since for any s ∈ Gcompound there exists a sequence of reactions (R1)–(R17)

which disassembles s into elements from Gelementary.

Let

z′ = (C1, C2, 0, 0, 0, hsp(j), 0, 0, mfp(i), prot(i))T

and

z′′ = (C1, C2, 0, 0, 0, hsp(j), 0, 0, mfp(j), prot(j))T .
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z′ ∈ S and we continue to show that z � z′. There are three cases:

hsp(i) = hsp(j), hsp(j) < hsp(i) or hsp(j) > hsp(i). In the first case z = z′

and trivially z � z′. If hsp(j) < hsp(i), z′ can be reached from z by ap-

plying reaction (R13) hsp(i) − hsp(j) times. If finally hsp(j) > hsp(i), first

hsf3 : hse is produced (this is doable since C1 ≥ 1 and C2 ≥ 3). Next, by ap-

plying reaction (R7) hsp(j)−hsp(i) times the required number of additional

hsp molecules is produced. Finally, hsf3 : hse is disassembled by applying

a sequence of reactions <(R6), (R3), (R2)>. Hence z � z′.

We continue to show that z′ � z′′. There are two cases. Either mfp(i) >

mfp(j) or prot(i) ≥ prot(j) since mfp(k) + prot(k) = C3 for any state k ∈ S.

In the first case, if hsp(j) = 0, first one hsp molecule is produced by applying

reaction sequence <(R1), (R3), (R5), (R7), (R6), (R4), (R2)>, which leads

to state (C1, C2, 0, 0, 0, 1, 0, 0, mfp(i), prot(i))T . Then, by applying reaction

sequence <(R15), (R17)> mfp(i)−mfp(j) times the system reaches state:

(C1, C2, 0, 0, 0, 1, 0, 0, mfp(j), prot(j))T

since, as mentioned before, mfp(k) + prot(k) = C3 for any state k ∈ S.

Finally, the only hsp molecule is degraded by applying reaction (R13) and

the system arrives in state z′′. If hsp(j) is greater than 0, state z′′ can be

reached by less steps since neither production nor degradation of the one

additional hsp molecule is required.

In the second case, when prot(i) ≥ prot(j), state z′′ can be reached by

applying misfolding reaction (R14) prot(i)− prot(j) times. Hence z′ � z′′.

At last z′′ � j. State j is reached by producing the appropriate num-

bers of molecules of all compound species. Since in state z′′ the required

number of molecules of all elementary species is already present, by apply-
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ing appropriate reactions all compound species molecules can be produced.

The mass-conservation law ensures that the numbers of elementary species

molecules will be decreased appropriately and that the system will reach

state j. Hence {Xn} is irreducible.

The irreducibility of the embedded chain {Xn} implies the irreducibility

of the continuous-time Markov chain {X(t)}. Since the state space S is finite,

it follows that the CTMC {X(t)} is positive recurrent. In consequence, it has

an invariant measure η which is unique up to multiplicative factors and can

be found as the solution of the equation ηT Q = 0. Moreover,
∑

i∈S ηi < ∞
since S is finite and there exists a unique stationary distribution π of {X(t)}
given by

π =

(
ηi∑

k∈S ηk

)
i∈S

. (13)

For the theoretical details we refer the reader to, e.g., Norris (1998); Resnick

(1992).

4. Results and discussion

The deterministic approach, based on the law of mass action, yields a sys-

tem of ordinary differential equations for molecular concentrations. In con-

sequence, the biochemical system is modelled as being continuous. But such

description does not capture effects that occur due to either the discrete-

ness of molecular quantities or the stochastic nature of chemical reactions

(McAdams and Arkin (1999); Pahle (2009); Sandmann (2008); Wilkinson

(2006)). As discussed in Section 1, random fluctuations may have a signifi-

cant impact on the reaction dynamics, especially as the numbers of molecules
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of some reactants become smaller (McAdams and Arkin, 1999; Srivastava

et al., 2002). This is the case of the deterministic heat shock response model

being discussed: except for prot, hsp, hsp : hsf and mfp, all the other species

have very small initial number of molecules (Table 3) and, as can be seen

from the continuous simulation results, stay at the low level throughout the

time of simulation. This might be the main objection to the continuous ap-

proach applied in Petre et al. (2009a,b). Since the stochastic modelling seems

more reasonable in this case, we made the effort to run 1000 stochastic simu-

lations in order to check whether the dynamics of the continuous description

agrees qualitatively with the behaviour demonstrated by the discrete sys-

tem. The results of 1000 independent stochastic simulation runs (blue and

green points) for 5 species: hsf3 : hse, hsp, mfp, hsp : hsf and hsp : mfp,

overlaid with the deterministic outcome (yellow line) are shown in Figure 1.

The mean together with the mean +/− standard deviation are shown in

Figure 2. The ratios of the sample standard deviation to the sample mean

were computed for the 5 considered species and are depicted in Figure 3.

According to Gillespie (1976), since the ratios are small (less than 0.12 in the

case of mfp and hsp, see Fig. 3c and 3b) and very small (less than 0.035 for

hsp : mfp and less than 0.007 for hsp : hsf, see Fig. 3e and 3d, respectively),

the results of independent runs of the system are expected not to vary much

and the presented outcomes of 1000 stochastic simulations together with the

estimated mean should provide a statistically adequate picture of the evo-

lution of the chemical system in time. One might argue that the ratio for

hsf3 : hse is however quite big: it peaks at about 1.1 and stabilises below 0.6

(see Fig. 3a). In this particular case the mean converges to approximately 3
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molecules of hsf3 : hse and the standard deviation is around 1.6, which all

in all gives a narrow range of possible values of molecule number and hence

this result can be accepted.

We first investigated the number of steady-states of the deterministic

model. Since our attempts to analytically solve the algebraic system of steady

state equations obtained from the differential ones did not bring any results,

we performed some numerical investigations. We randomly chose 10000 sets

of initial particle numbers for the continuous model from a wide range of val-

ues, but in such a way that the total amounts of hse, hsf and proteins in the

resulting system would always be the same as in the case of the original de-

terministic model presented in Petre et al. (2009a). For each of these sets we

run numerical time-course simulations and waited for the considered system

to stabilize. In all these cases the systems converged to exactly the same state

as the original model, i.e. no other steady states were found by this method.

Additionally, bifurcation analysis performed with the AUTO software (XP-

PAUT was used as the front-end, Doedel et al. (1997); Ermentrout (2002))

with respect to parameter values did not reveal multistationarity (data not

shown). These results suggest that the heat shock response mechanism is

rather monostable.

Next, we were interested in investigating the range of behaviour the

stochastic model was likely to exhibit. As shown in Section 3, there ex-

ists only one stationary limit distribution π given by Eq. (13), which governs

the transitions of the Markov jump process when the number of iterations

goes to infinity. In particular, we analysed the unimodality of the hsp level

by computing some appropriate statistics from the performed 1000 stochastic
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realisations.

First, we computed the median m(t) of the 1000 stochastic realisations

on the time interval T = {130000s, . . . , 150000s}. It is depicted in Fig. 4 as

the middle black line. The upper and lower black lines are m(t) +/− 1
4
· s

respectively, where s is the range of dynamics the model exhibits in the 1000

realisations on the considered time interval, i.e.

s = max
t∈T, i∈I

{ri(t)} − min
t∈T, i∈I

{ri(t)},

where I = {1, . . . , 1000} and ri is the i-th realisation. The mean (brown line)

basically coincides with the median on the whole time interval.

Next, in order to check whether the realisations ri, i = 1, . . . , 1000, can

be divided into subgroups such that the means of the subgroups would differ

significantly from each other, we applied the following procedure. We defined

two subsets:

SU = {ri : ∀t∈T ri(t) > m(t)− s

4

∧ ∃t∈T ri(t) > m(t) +
s

4

}

and

SL = {ri : ∀t∈T ri(t) < m(t) +
s

4

∧ ∃t∈T ri(t) < m(t)− s

4

}
.

In our case, there are 253 realisations in SU and 189 in SL. The means com-

puted from the realisations of each of these subsets are depicted by red lines

in Fig. 4. The means are close to the global mean on the whole considered

time interval and since the numbers of elements in the SU and SL subsets
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are rather small, i.e. approximately 1/4 and 1/5 of all the 1000 considered

realisations, this result does not indicate any significant split.

Further, a clustering algorithm was applied in order to determine whether

some subsets of realisations could be isolated and the computed means would

point to potential multimodality. To this aim, we utilised the Agnes algo-

rithm (implementation of an agglomerative hierarchical clustering method,

Kaufman and Rousseeuw (1990)) with the manhattan metric, i.e. the dis-

tance between two realisations ri and rj is defined as d(ri, rj) =
∑

t∈T |ri(t)−
rj(t)|, thus the realisations are treated as points in a |T |-dimensional space.

By applying this metric the characteristics of the realisations on the whole

considered time interval are taken into account, hence they are compared

in a “global” sense. The obtained dendrogram is presented in Fig. 5. The

agglomerative coefficient (AC), which measures the clustering structure of

the dataset, is 0.82. This indicates that the clustering algorithm did find

some rather clear structuring1. We isolated two groups of realisations that

stand out on the obtained dendrogram. They are marked in Fig. 5 by two

rectangles which enclose the dendrogram branches constituting these groups.

The two resulting subclusters are at almost the same height in the clustering

tree. The means of the stochastic realisations belonging to these two groups

at time point t = 150000s are 757 (left subcluster) and 794 (right subcluster).

Although the agglomerative coefficient indicates some clustering structure of

the realisations, the mean values are very close to each other and agree well

1AC is a dimensionless quantity, varying between 0 and 1 – AC close to 1 shows that

a very clear structure has been found, while value 0 implies that the data consists of only

one big cluster, see e.g. Kaufman and Rousseeuw (1990) for details.
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with the steady state value of the deterministic model (767).

Finally, as suggested in (Wilkinson, 2006), we investigated the empirical

probability mass function by drawing histograms of the realisations at some

time point in the considered time interval T . Figure 6 shows the histograms

overlaid with the normal distribution curve with mean and standard devia-

tion computed from all 1000 realisations at time point t = 150000s. In the

case of Fig. 6a, where the bin width is set to 20, the obtained results indicate

that the distribution is unimodal. Changing the bin size to 10 (Fig. 6b) does

not change the picture significantly.

Although due to the small particle numbers of some of the reagents the

stochastic modelling is more reasonable, the presented results do not reveal

any qualitative discrepancy in the dynamics of the two considered models

of the heat shock response. The range of behaviour the stochastic model is

likely to exhibit, which can be observed based on the performed 1000 sim-

ulations, confirms the dynamics of the continuous model. The performed

analysis of the stochastic realisations does not reveal any clear signs of mul-

tistationarity of the HSR mechanism. Although unimodality of a stationary

probability density function does not necessarily imply the uniqueness of the

stable steady state of the deterministic approximation (as well as bimodality

does not determine the existence of bistability, etc.), usually this is the case

and to this extent the stochastic results agree with the deterministic out-

comes indicating that there exists only one stable steady state. This shows

that the approximation of a discrete system with a continuous model is valid

and strengthens the trust in the deterministic description. Additionally, the

presented stochastic formulation, together with the performed analysis of its
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behaviour and comparison to the continuous description, let us gain more

insight into the dynamics of the HSR mechanism, especially in respect of the

number of steady states, which, as discussed previously, is important from

a biological point of view.

5. Conclusions and Further research

In this paper we presented a stochastic model associated with a previ-

ously described (Petre et al., 2009a) model of the heat shock response in

eukaryotic cells. The stochastic model was viewed as a Markov jump process

and the existence and uniqueness of the stationary distribution was shown.

Further, the model was compared to the deterministic description of heat

shock response (Petre et al., 2009a). The aim with the comparison was to

show that in this particular case the approximation of a discrete system with

a continuous model is reasonable. This is not true in general, especially when

the numbers of metabolites in the considered biochemical system are small.

The presented results indicate that the stochastic and deterministic models

provide a qualitatively consistent picture of the dynamics of the heat shock

response mechanism. Additionally, the development of the stochastic model

and the effort of performing 1000 stochastic simulations enabled gaining some

more information about the dynamics of the heat shock response. The out-

comes of the analysis of the stochastic realisations lead towards the conclu-

sion that the heat shock response mechanism is a rather monostable system.

Moreover, this is in agreement with the results of the analysis performed on

the deterministic model. All in all, the presented results strengthen the trust

in the deterministic description of the HSR mechanism in eukaryotic cells
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proposed in Petre et al. (2009a).

Although it was shown in Section 3 that the Markov jump process has

a unique stationary distribution, there is no certainty that it was reached

already in the considered time interval T = {130000s, . . . , 150000s}. It was

chosen based on the results of many stochastic simulations, which suggest

that the process stabilises relatively long before the time point t = 130000s.

Nevertheless, some assessment of the convergence to the stationary distribu-

tion in this case would be desired. One of possible approaches is to measure

the rate of convergence by the mixing time (Sinclair, 1992). For ergodic

Markov chains the rate is governed by the second largest eigenvalue in ab-

solute value λ2, in particular the spectral gap 1 − λ2 is both a necessary

and sufficient condition for rapid mixing, see Sinclair (1992) for details. The

problem of determining λ2 of the presented Markov chain underlying the

stochastic model of heat shock response is subject of further research.

The rate constant values for the presented stochastic model were ob-

tained from the corresponding values of the deterministic model presented

in Petre et al. (2009b), which in turn were fitted to available experimen-

tal data. As suggested in Wilkinson (2006), another way of deducing the

rate constant values for the stochastic model could utilise methods that are

based on Bayesian inference and take advantage of Markov Chain Monte

Carlo (MCMC) algorithms such as the Metropolis-Hastings algorithm or the

Gibbs Sampler. However, such methods demand high-quality, calibrated,

high-resolution time-course measurements for a reasonably large subset of

model metabolites (Wilkinson, 2006). Unfortunately, experimental data of

such quality are still seldom if ever available and make a challenge for exper-

26



Acc
ep

te
d m

an
usc

rip
t 

imental biology.
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Biomodelling Laboratory, Åbo Akademi University for invaluable discussions.

The authors were partially supported by Ministry of Science and Higher

Education (grant number N N518 426936).

References

Balch, W. E., Morimoto, R. I., Dillin, A., Kelly, J. W., 2008. Adapting

proteostasis for disease intervention. Science 319, 916–919.

27



Acc
ep

te
d m

an
usc

rip
t 

Chen, Y., Voegli, T., Liu, P., Noble, E., Currie, R., 2007. Heat shock para-

dox and a new role of heat shock proteins and their receptors as anti-

inflammation targets. Inflamm Allergy Drug Targets 6 (2), 91–100.

Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sand-

stede, B., Wang, X., 1997. AUTO 97, software for continuation and bifur-

cation problems in ordinary differential equations. Tech. rep., Concordia

University, Montreal, Canada.

Donati, Y., Slosman, D., Polla, B., 1990. Oxidative injury and the heat shock

response. Biochem Pharmacol 40, 2571–2577.

Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Sys-

tems: A Guide to XPPAUT for Researchers and Students. Vol. 14 of Soft-

ware, Environment and Tools. SIAM.

Gibson, M., Bruck, J., 1998. An efficient algorithm for generating trajectories

of stochastic gene regulation reactions. Tech. rep., California Institute of

Technology.

Gillespie, D. T., 1976. A general method for numerically simulating the

stochastic time evolution of coupled chemical reactions. Journal of Com-

putational Physics 22, 403–434.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M.,

Xu, L., Mendes, P., Kummer, U., 2006. Copasi – a COmplex PAthway

SImulator. Bioinformatics 22 (24), 3067–3074.

Jones, C. M., Henry, E. R., Hu, Y., Chan, C. K., Luck, S. D., Bhuyan, A.,

Roder, H., Hofrichter, J., Eaton, W. A., 1993. Fast events in protein folding

28



Acc
ep

te
d m

an
usc

rip
t 

initiated by nanosecond laser photolysis. Proc. Natl. Acad. Sci. USA 90,

1186064.

Kampinga, H. K., 1993. Thermotolerance in mammalian cells: protein de-

naturation and aggregation, and stress proteins. J. Cell Science 104, 11–17.

Karmakar, R., Bose, I., 2007. Posititve feedback, stochasticity and genetic

competence. Physical Biology 4, 29–37.

Kaufman, L., Rousseeuw, P. J., 1990. Finding Groups in Data: An Introduc-

tion to Cluster Analysis. John Wiley & Sons.

Lepock, J. R., Frey, H. E., Ritchie, K. P., 1993. Protein denaturation in

intact hepatocytes and isolated cellular organelles during heat shock. The

Journal of Cell Biology 122 (6), 1267–1276.

Lepock, J. R., Frey, H. E., Rodahl, A. M., Kruuv, J., 1988. Thermal analysis

of chl v79 cells using differential scanning calorimetry: Implications for

hyperthermic cell killing and the heat shock response. Journal of Cellular

Physiology 137 (1), 14–24.

Lindquist, S., Craig, E. A., 1988. The heat-shock proteins. Annual Review

of Genetics 22, 631–677.

Lipniacki, T., Hat, B., Faeder, J. R., Hlavacek, W. S., 2008. Stochastic effects

and bistability in T cell receptor signaling. Journal of Theoretical Biology

254 (1), 110–122.

Liu, B., DeFilippo, A. M., Li, Z., 2002. Overcomming immune toerance to

29



Acc
ep

te
d m

an
usc

rip
t 

cancer by heat shock protein vaccines. Molecular cancer therapeutics 1,

1147–1151.

Lukacs, K. V., Pardo, O. E., Colston, M., Geddes, D. M., Alton, E. W.,

2000. Heat shock proteins in cancer therapy. In: Habib (Ed.), Cancer Gene

Therapy: Past Achievements and Future Challenges. Kluwer, pp. 363–368.

McAdams, H. H., Arkin, A., 1999. It’s a noisy business! Genetic regulation

at the nanomolar scale. Trends in Genetics 15 (2), 65–69.

Morimoto, R., 2008. Proteotoxic stress and inducible chaperone networks in

neurodegenerative disease and aging. Genes Dev 22, 1427–1438.

Norris, J. R., 1998. Markov Chains. Cambridge Series in Statistical and Prob-

abilistic Mathematics. Cambridge University Press.

Pahle, J., 2009. Biochemical simulations: stochastic, approximate stochastic

and hybrid approaches. Briefings in Bioinformatics 10 (1), 53–64.

Parsell, D., Lindquist, S., 1993. The function of heat-shock proteins in stress

tolerance: degradation and reactivation of damaged proteins. Ann Rev

Genetics 27, 437–496.

Peper, A., Grimbergent, C., Spaan, J., Souren, J., van Wijk, R., 1997. A

mathematical model of the hsp70 regulation in the cell. Int. J. Hyperther-

mia 14, 97–124.

Petre, I., Mizera, A., Back, R.-J., 2009a. Computational heuristics for sim-

plifying a biological model. In: Ambos-Spies, K., Löwe, B., Merkle, W.
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2 hsf → hsf2 (R1)

hsf2 → 2 hsf (R2)

hsf + hsf2 → hsf3 (R3)

hsf3 → hsf + hsf2 (R4)

hsf3 + hse → hsf3 : hse (R5)

hsf3 : hse → hsf3 + hse (R6)

hsf3 : hse → hsf3 : hse + hsp (R7)

hsp + hsf → hsp : hsf (R8)

hsp : hsf → hsp + hsf (R9)

hsp + hsf2 → hsp : hsf + hsf (R10)

hsp + hsf3 → hsp : hsf +2 hsf (R11)

hsp + hsf3 : hse → hsp : hsf + hse +2 hsf (R12)

hsp → (R13)

prot → mfp (R14)

hsp + mfp → hsp : mfp (R15)

hsp : mfp → hsp + mfp (R16)

hsp : mfp → hsp + prot (R17)

Table 1: The simplified model for the eukaryotic heat shock response
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 1 0 0 0 0 0 1 0 0 0 0 0

−2 2 −1 1 0 0 0 −1 1 1 2 2 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 1 −1 −1 1 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 −1 1 −1 −1 −1 −1 0 −1 1 1

0 0 0 0 0 0 0 1 −1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 2: The stoichiometry matrix of the heat shock response model. The

columns correspond to reactions (R1)–(R17) and the rows to metabolites in

the order: hse, hsf, hsf2, hsf3, hsf3 : hse, hsp, hsp : hsf, hsp : mfp, mfp, prot.
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Param. Reaction Value Unit Metabolite Init. no.

k+
1 (R1) 6.98 V

#·s hsf 0

k−1 (R2) 0.19 s−1 hsf2 0

k+
2 (R3) 1.07 V

#·s hsf3 0

k−2 (R4) 10−9 s−1 hse 29

k+
3 (R5) 0.17 V

#·s hsf3 : hse 2

k−3 (R6) 1.21 · 10−6 s−1 hsp 766

k4 (R7) 8.3 · 10−3 s−1 hsp : hsf 1403

k+
5 (R8) 9.74 V

#·s mfp 517

k−5 (R9) 3.56 s−1 hsp : mfp 71

k6 (R10) 2.33 V
#·s prot 1.15 · 108

k7 (R11) 4.31 · 10−5 V
#·s

k8 (R12) 2.73 · 10−7 V
#·s

k9 (R13) 3.2 · 10−5 s−1

k10 (R14) ϕ(42) = 7.77 · 10−5 s−1

k+
11 (R15) 3.32 · 10−3 V

#·s

k−11 (R16) 4.44 s−1

k12 (R17) 13.94 s−1

Table 3: The numerical values of the parameters and the initial numbers of

molecules in the stochastic model. The numerical quantities are obtained by

adopting the corresponding values in Petre et al. (2009a): the initial numbers

of molecules are truncated to natural numbers, the value of the rate constant

k+
1 is twice the value of the corresponding deterministic rate constant. #

denotes the number of molecules, V is the cell volume and s - second.
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(c) mfp (d) hsp : hsf

(e) hsp : mfp

Figure 1: Results of 1000 independent discrete stochastic simulation runs.

The trajectories of individual realisations are plotted with blue and green

points (each run with separate shade). The red points show the average

taken over all runs and the yellow line is the outcome of the continuous

deterministic simulation.
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(a) hsf3 : hse (b) hsp

(c) mfp (d) hsp : hsf

(e) hsp : mfp

Figure 2: The mean taken over the outcome of 1000 independent stochastic

simulations of the system (red points) and the mean +/− standard deviation

(upper/lower brown points).
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(d) hsp : hsf
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(e) hsp : mfp

Figure 3: The ratios of the standard deviation to the sample mean at each

considered time point.
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Figure 4: The median of the 1000 realisations on the time interval T =

{130000s, . . . , 150000s} (middle black line). The upper and lower black lines

are the median ±1/4 of the range of dynamics the model exhibits in the 1000

realisations on the considered time interval. The mean of all the realisations,

of the subset SU and SL plotted with brown, upper red and lower red lines,

respectively.

39



Acc
ep

te
d m

an
usc

rip
t 
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Distance

Figure 5: The clustering tree (dendrogram) obtained with the agnes cluster-

ing algorithm with the average method and the manhattan metric applied

to the 1000 stochastic realisations considered on the time interval 130000

– 150000 seconds. The leaves of the clustering tree are the original realisa-

tions. Two branches come together at the distance between the two clusters

being merged. The agglomerative coefficient equals 0.82. The rectangles

distinguish two subclusters discussed in Section 4.
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(b)

Figure 6: Histograms overlaid with the normal distribution curve with mean

and standard deviation computed at time point t = 150000s from all 1000

realisations: (a) bin width set to 20, (b) bin width set to 10.
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