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Abstract 14 

 15 

Disentangling the role of epidemiological factors in plant pathogen emergences is a 16 

prerequisite to identify the most likely future invaders. An example of emergence was 17 

recently observed in France: in 10 years, “classic” (CL) strains of Watermelon mosaic virus 18 

(WMV) were displaced at a regional scale by newly introduced “emerging” (EM) strains. 19 

Here we analyse a 3 years dataset describing the co-dynamics of CL and EM strains at field 20 

scale using state-space models estimating jointly (i) probabilities of primary and secondary 21 

infection and (ii) probabilities of over-infecting with a CL [EM] strain a plant already infected 22 

with an EM [CL] strain. Results especially indicate that it is more than 3 times less probable 23 

for a CL strain to over-infect an EM infected plant than for an EM strain to over-infect a CL 24 

infected plant. To investigate if these asymmetric interactions can explain the CL/EM shift 25 

observed at regional scale, an exploratory model describing WMV epidemiology over several 26 

years in a landscape composed of a reservoir and a cultivated compartment is introduced. In 27 

most simulations a shift is observed and both strains do coexist in the landscape, reaching an 28 

equilibrium that depends on the probabilities of over-infection. 29 

 30 

 31 

Key words: Biological invasion, Epidemiology, Landscape, State-space model, Watermelon 32 

mosaic virus. 33 

34 
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1. Introduction 35 

 36 

Emergences of plant diseases often have detrimental consequences for food production 37 

and food security (Strange and Scott, 2005). Alone, plant virus emergences represent 47% of 38 

the cases of emerging plant infectious disease (Anderson et al., 2004) and are reported to be 39 

increasingly frequent (Jones 2009; Rojas and Gilbertson, 2008; Varma and Malathi, 2003). 40 

Factors driving the emergence of plant viruses are numerous. Anderson et al. (2004) reveal 41 

that, for viruses, pathogen introduction (mainly mediated by anthropogenic activities) and 42 

change in vector populations were the major factors of emergence. Many other factors 43 

including the intrinsic high capacity of viruses to evolve, changes in agricultural practices and 44 

altered pathosystem biology have been documented (Anderson et al., 2004; Elena et al., 2009; 45 

Jones, 2009; Rojas and Gilbertson, 2008; Woolhouse et al., 2005). A complete pathogen 46 

emergence is a 3-step process (Woolhouse et al., 2005): (i) the exposure of a new host species 47 

to a pathogen, (ii) the ability of the pathogen to infect an individual of this new host species 48 

(i.e. the pathogen and the host must be compatible) and (iii) the subsequent spread of the 49 

pathogen in its new host population. However, the term “emergence” often encompasses 50 

several phenomena: (i) newly recognised or newly evolved viruses that cause damaging 51 

epidemics, (ii) viruses that increase their geographical distribution and (iii) viruses that 52 

change their pathogenicity (host range, virulence) (Jones, 2009; Pulliam, 2008). The need to 53 

find new ways to restrict virus emergence requires additional insight into the ecological and 54 

evolutionary factors involved in these events (Jones 2009; Pulliam, 2008). Identifying these 55 

factors and understanding their relative roles (Anderson et al., 2004; Holmes and Drummond, 56 

2007) is needed to predict which pathogens are most likely to become successful invaders in a 57 

given environment.  58 
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In France, Watermelon mosaic virus (WMV, genus Potyvirus) is currently undergoing 59 

a change in populations revealing a rapid replacement of local strains by “invasive”, recently 60 

introduced ones. WMV has a worldwide distribution, mostly in temperate and Mediterranean 61 

regions (Lecoq and Desbiez, 2008). It infects more than 170 crops and weed species, causes 62 

agronomic problems mostly in cucurbits and, like other potyviruses, it is non-persistently 63 

transmitted by at least 35 aphid species (Lecoq and Desbiez, 2008). At the world level, three 64 

molecular groups of WMV have been defined (Desbiez et al., 2007), one of which is 65 

widespread in France. WMV, severe in melon, only induced very mild symptoms on zucchini 66 

squash until the end of the 90’s. However, severe symptoms in zucchini squash leaves and 67 

fruits have been observed since 1999 in South-eastern (SE) France. Their appearance 68 

correlates with the introduction of new, “emerging” (EM) isolates distant at the molecular 69 

level from the “classic” (CL) isolates that have been present for more than 30 years. A survey 70 

performed between 2004 and 2007 at the regional scale showed that EM isolates did not 71 

spread over long distances, but rapidly displaced the pre-existing CL isolates in all sites where 72 

both groups occurred (Desbiez et al., 2009). This case constitutes a well documented example 73 

of viral emergence; not of the complete 3-step emergence processes, but rather a case of 74 

appearance in a new geographic region of a new strain of a pathogen. Indeed, before their 75 

introduction in France through a yet unknown route, EM WMV strains had already been 76 

reported to infect cucurbit crops in Eastern Asia. Moreover, as CL strains were pre-existing in 77 

France, investigating this case more deeply should provide interesting information on the 78 

factor involved in the “paradox of invasion” that is why an emerging viral species can 79 

displace a native viral species that should a priori be better adapted to the local conditions 80 

(Sax and Brown, 2000). 81 

In addition to the regional survey, a field scale study of WMV epidemiology was 82 

performed from 2002 to 2004 in an experimental plot located in SE France. These data, 83 
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acquired in natural conditions, provided detailed spatio-temporal maps of the respective 84 

dynamics of CL and EM strains of WMV. In this paper, we will first examine the data 85 

collected at the field scale using models specifically built in order to elucidate the processes 86 

involved in CL strain displacement but hidden from direct observation. In a second step, using 87 

an exploratory model, we will investigate whether the processes identified at the field scale 88 

can explain the emergence of EM strains at the landscape scale where the whole annual cycle 89 

of WMV occurs.  90 

 91 

2. Data description 92 

 93 

A plot of 160 zucchini squash F1 Diamant consisting of 8 rows of 20 plants was planted each 94 

year from 2002 to 2004 at Montfavet, France. Each plant was surveyed weekly for virus 95 

infection until 100% of the plants became infected (week 3 in 2002 and 2004, week 4 in 96 

2003) and a last survey done 4 or 5 weeks later (week 7 in 2002, week 8 in 2003 and 2004). 97 

Plants were classified into 4 compartments, (i) H (healthy), (ii) CL (infected by a classic 98 

strain), (iii) EM (infected by an emerging strain) and (iv) D (doubly infected by both a classic 99 

and an emerging strain), as follows: a young leaf was collected at each sampling date from 100 

each plant and tested by DAS-ELISA for WMV infection. If the sample is negative, the plant 101 

is classified H. For each positive sample, total RNA was extracted using TRI-Reagent 102 

(Molecular Research Center, Inc., Cincinnati, OH) and submitted to one-strep RT-PCR 103 

according to the protocol used in the laboratory using primers WMV-5’ (5’-104 

GGCTTCTGAGCAAAGATG-3’) and WMV-3’ (5’-CCCAYCAACTGTYGGAAG-3’) 105 

(Desbiez et al., 2007). PCR samples were sent to Cogenics (Grenoble, France) for direct 106 

sequencing with primer WMV-5’. Sequences were aligned with ClustalW included in 107 

DAMBE (Xia, 2000), adding reference sequences belonging to the main molecular groups 108 
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defined for WMV (Desbiez et al., 2007, 2009). Neighbour-joining and maximum-parsimony 109 

trees were built with MEGA 3.1 (Kumar et al., 2004) and bootstrap analysis performed to 110 

assess the robustness of the trees. According to the sequence data, the plant is classified as 111 

CL, EM or D. 112 

Moreover, an epidemiological survey (Desbiez et al., 2009) was performed from 2004 to 2008 113 

in the 3 neighbouring “départments” (administrative subdivision, 4-6000 km² each) Gard, 114 

Vaucluse and Bouches du Rhône in SE France where EM strains were first detected. Samples 115 

of cucurbit crops, received from farmers, farm advisers and seed companies, were tested as 116 

described above.  117 

 118 

3. Models description 119 

3.1. A model for the co-dynamics of viral strains at field scale 120 

 121 

This section describes the model skeleton and underlying assumptions. The whole set of 122 

equations and additional mathematical details are provided in appendix A and B. In the 123 

model, N(i,t)=[NH(i,t), NCL(i,t), NEM(i,t), ND(i,t)] is the number of plants in each 124 

compartments for a given year i and date t of observation. The model describes the dynamic 125 

of N(i,t) at a time interval Δt = 1 week. Initially, all plants are healthy: N(i,0)=[Ntot,0, 0, 0] 126 

(Ntot=160). Plants can be infected through 8 categories of events resulting from the 127 

combination of 2 virus strains (CL and EM), 2 plant categories (when infected by a given 128 

virus strain a plant is either healthy or already infected by the other strain) and 2 infection 129 

processes (primary and secondary infection) (Fig. 1). Primary infection corresponds to the 130 

infection of a plant by aphids having acquired the virus from sources outside the considered 131 

field whereas sources are within this field in the case of secondary infection. 132 

 133 
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3.1.1. Probabilities of infection of an H plant from t-1 to t 134 

An H plant at time t-1 can become CL, EM or D or remain H at time t depending on the 135 

probabilities of 4 events (Fig. 1a): (i,ii) 
, ( | )PI

i tp CL H  [resp. 
, ( | )PI

i tp EM H ], probability that 136 

“an H plant is infected by primary infection with a CL [resp. EM] strain during Δt” and (iii,iv) 137 

, ( | )SI
i tp CL H  [resp. 

, ( | )SI
i tp EM H ], probability that “an H plant is infected by secondary 138 

infection of a CL [resp. EM] strain during Δt”. 139 

Regarding primary infection, 
, ( | )PI

i tp CL H  is modelled as 
, , ,logit ( | )PI

i t i CL i tp CL H � �� � � �� 	  140 

where (i) the parameter αi,CL is, in the logit scale, the probability that an H plant is infected by 141 

primary infection with a CL strain during Δt in year i if no variation between weeks exists and 142 

(ii) γi,t is a set of random effects mutually independent and identically normally distributed 143 

with unknown variance σ2
 accounting for the variability between weeks of the primary 144 

infection process. 
, ( | )PI

i tp EM H  is defined similarly (appendix A – equation A2). 145 

Regarding secondary infection, deriving 
, ( | )SI

i tp CL H  required to consider the probability 146 

( | )i CLq SI H  of the elementary event “a plant infected in the field with a CL strain in year i 147 

infects an H plant by secondary infection during Δt”. For a given year i, ( | )i CLq SI H  was 148 

assumed constant and modelled as a pure fixed effect βi,CL as 
 � ,logit ( | )i CL i CLq SI H �� . 149 

Assuming that secondary infection does not depend on the distance between sources of CL 150 

strains and H plants, it comes that 
 �
,

( , 1) (1 ) ( , 1)
( | ) 1 1 ( | ) CL D

i t

N i t N i tSI
i CLp CL H q SI H 
� � � �� � �  where 151 

(i) ( , 1) (1 ) ( , 1)CL DN i t N i t
� � � �  is the number of potential sources of CL strains in the field at 152 

time t-1 and (ii) 
 is a parameter describing the mean proportion of EM strains in D plants (1-153 


 is the proportion of CL strains). This equation means that an H plant at time t-1 become CL 154 

at t by secondary infection if at least one of the plants infected in the field with a CL strain at 155 
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date t-1 (either CL or D plants) was a source for this strain. Details on its derivation are 156 

provided in appendix B and in appendix A (equations A4, A6) for 
, ( | )SI

i tp EM H . 157 

Finally, assuming that during Δt primary and secondary infection events occur independently, 158 

� �, , 1 , 1 , 1 , 1( | ), ( | ), ( | ), ( | )Μ
i t i t t t i t t t i t t t i t t tp p H H p CL H p EM H p D H� � � �� , the vector of probabilities 159 

that, in year i, a plant is H [resp. CL, EM and D] at time t given that this plant was H at time t-160 

1 is obtained (Appendix A - equations A7 to A10). No interaction is considered between 161 

infection events when they occurred during the same time step. But, as detailed now, such 162 

interactions are modelled when these events occurred sequentially during 2 different weeks. 163 

 164 

3.1.2. Probabilities of infection of a singly infected plant from t-1 to t 165 

A CL plant at time t-1 can become D or remain CL at time t depending on the probabilities of 166 

2 events (Fig. 1b): (i) 
, ( | )PI

i tp D CL , probability that “a CL plant is infected by primary 167 

infection with a EM strain during Δt” and (ii) 
, ( | )SI

i tp D CL , probability that “a CL plant is 168 

infected by secondary infection of an EM strain during Δt”. As previously, deriving this 169 

probability required to consider the probability ( | )i EMq SI CL  of “a plant infected in the field 170 

with an EM strain is source of infection of an CL plant during Δt”. 171 

, ( | )PI
i tp D CL  and ( | )i EMq SI CL  are modelled with a parameter, γCL, defined as the odd ratio 172 

between the probability of infecting an H plant with a EM strain and the probability of 173 

infecting an CL plant with a EM strain. Values of γCL >1 indicate that over-infecting an EM 174 

plant with a CL strain is less likely than infecting an H plant with a CL strain. The higher γCL, 175 

the less likely this event is. Values of γCL <1 indicate that over-infecting is more likely. No 176 

difference arises when γCL =1. For interpretation, odds ratios approximate relative risks for 177 

rare events (p<0.1). γCL applies indifferently whatever the infection process leading to over-178 
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infection (primary or secondary infection) and does not depends on the year and on the time 179 

lag between the first and the second infection events. 180 

Finally assuming independence between primary and secondary infection leads to a simple 181 

expression of 
, 1( | )i t t tp D CL � , the probability that, in year i, a plant becomes doubly infected 182 

(D) at time t given that this plant was CL at time t-1. All the equations necessary to derive 183 

, 1( | )i t t tp D CL �  as well as their analogues for the over-infection of an EM plant with a CL 184 

strain (Fig. 1c) are presented in Appendix A (equations A11 to A18). 185 

 186 

3.1.3. Dynamics of N(i,t) during an epidemic 187 

The dynamic of N(i,t) from t=0 to tend is modelled as a sequential 3 step stochastic process. 188 

During year i from t-1 to t, (i) the number of H plants remaining H or becoming CL, EM or D 189 

is the result of the multinomial process � �,~ ( , 1), M
H i tMultinomial N i t p� , (ii) the number of 190 

CL plants becoming D is the result of the binomial process 191 

� � � �� �, 1~ , 1 ,  |CL i t t tBinomial N i t p D CL ��  and (iii) the number of EM plants becoming D is the 192 

result of the binomial process � � � �� �, 1~ , 1 ,  |EM i t t tBinomial N i t p D EM �� . Lastly, the number 193 

of plants in each compartment is updated from date t-1 to t (Appendix A – equation A22). 194 

These stochastic processes assume that: (i) all plants in a given compartment at t-1 have the 195 

same probability to be in another compartment at time t, (ii) changes between compartments 196 

are independent from one plant to another.  197 

 198 

3.1.4. Model inferences 199 

 200 

The vector of model parameters is θ=[αCL,i, αEM,i, βCL,i, βEM,i, γEM, γCL, 
, σ]i=1..3. Statistical 201 

inferences were performed via Bayesian Monte Carlo Markov Chain (MCMC) methods 202 
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(Gelman et al. 2004) with OpenBUGS
©

 3.0.3 using uninformative prior probability density 203 

functions for θ. Consistency between the model and the data was checked using a χ2
 204 

discrepancy test (Gelman et al. 2004) as well as linear regression of predicted versus observed 205 

values of NCL(.,.), NEM(.,.) and ND(.,.). Finally, to investigate more precisely the role of over-206 

infection parameters (γEM and γCL), three models were compared using Bayes Factor (Kass and 207 

Raftery, 1995): (i) model M0, the model described above, (ii) model M1 where γEM=γCL (i.e. 208 

the probability of over-infection does not depend on the first strain inoculated) and (iii) model 209 

M2 where γEM=γCL=1 (i.e. the probability of over-infection are equal to the probability of 210 

infecting an H plant). Further details on model inferences are provided in appendix C. 211 

 212 

3.2. A model of viral epidemiology at landscape scale. 213 

 214 

3.2.1. Model description  215 

 216 

A model of WMV epidemiology over several years in a landscape is described. It simulates 217 

pEM(i){i=0..yend}, the proportion of EM strains during yend years found in an idealized landscape 218 

made of 2 compartments.  219 

The reservoir compartment, available all year long, includes potential wild reservoir hosts of 220 

WMV. It is characterized by pEM(i), the proportion of EM strains among the reservoir hosts 221 

infected by WMV in year i (1- pEM(i) is the proportion of CL strains). 222 

The cultivated compartment, available during Tmax weeks a year, is composed of Nfield fields 223 

similar to our experimental plots (with Ntot plants). Using the field model, the dynamics of 224 

N(i,f,t|Ωi)=[NH(i,f,t), NCL(i,f,t), NEM(i,f,t), ND(i,f,t)] are simulated, N(i,f,t|Ωi) being the number 225 

of H, CL, EM and D plants during year i (1 ≤ i ≤ yend), in the field f (1 ≤ f ≤ Nfield) at date t (1 ≤ 226 

t ≤ Tmax) simulated for a given model parameter Ωi. Ωi=[ps
i(PICL|H), ps

i(PIEM|H), qs
i(SPCL|H), 227 
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qs
i(SPEM|H), γs

EM, γs
CL, 
S

] (the upper script S is added to the notation defined in the “field 228 

scale” model to indicate that these parameters are those of the “landscape scale” model) is 229 

defined as follow: 230 

(i) For the sake of simplicity, the probabilities of primary infection rates of CL [resp. EM] 231 

strains ps
i(PICL|H) [resp. ps

i(PIEM|H)] depend only on the year i and not on weeks. Primary 232 

infection events are inoculations to cultivated plants of viruses originating from the reservoir 233 

compartment (no between fields infections are considered). If ps
 denotes the probability of 234 

having a primary infection event, and given that the relative proportion of EM strains in the 235 

reservoir compartment in the previous winter is pEM(i-1), it is assumed that 236 

ps
i(PIEM|H)=pS.pEM(i-1) and ps

i(PICL|H)= pS.(1-pEM(i-1)): the probability of primary infection 237 

by a given strain is proportional to the frequency of this strain in the reservoir compartment 238 

during the previous winter (i.e. there is an annual “reset” of WMV populations in the 239 

reservoir compartment). 240 

(ii) The probabilities of secondary infection, qs
i(SPCL|H) and qs

i(SPEM|H), are equal to qS
. 241 

(iii) The probabilities of over-infection are assessed as previously assuming that γs
EM= γs

CL.δ 242 

where δ >0.  243 

 244 

Initially (i=1, t=1), only CL strains are in the reservoir hosts (pEM(i=0)=0). Thus only CL 245 

strains can be introduced in the cultivated compartment through primary infection events. 246 

However during the first year a single plant infected with an EM strain is introduced at time 247 

tintro in Nintro out of Nfield. In these field(s), EM strains can only spread by secondary infection 248 

during this first year (i.e. between-fields events of primary infection are not modelled). 249 

 250 

The dynamic of pEM(i) is simulated by iterating 2 steps for i in 1..yend: 251 
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(i) Step 1. Given the values of pS, qS
, γs

CL, 
S
, δ and pEM(i-1), the dynamics of N(i,f,t|Ωi) are 252 

assessed. If i=1, a single plant infected with an EM strain is introduced at time tintro in Nintro 253 

out of Nfield. 254 

 255 

(ii) Step 2. pEM(i) is the ratio between SEM(i) and STot(i), respectively defined as: 256 

� �
max

1 1

( ) ( , , ) ( , , ) .
field TN

S
EM EM D

f t

S i N i f t N i f t dt

� �

� �� �  257 

� �dttfiNtfiNtfiNiS
fieldN

f

T

t
DEMCLTot .),,(),,(),,()(

1 1

max

� �
� �

���  258 

 259 

As such, pEM(i) is proportional to the cumulated dynamic of EM plants with respect to the 260 

cumulated dynamic of CL, EM and D infected plants over all the fields of the landscape. D 261 

plants are supposed to be source of EM strains proportionally to 
S
.  262 

 263 

3.2.2. Landscape model analysis 264 

 265 

Analyses were focused on the effect of γs
EM and γs

CL. First, the effect of δ (δ= γS
EM/ γS

CL) on 266 

the temporal dynamics of pEM(i) for i {1.. yend} was studied. γs
CL was set to 2.95 and pEM(i) 267 

was assessed for values of δ ranging from 1 (γs
EM= γs

CL) to 40 (γs
EM= 40. γs

CL). Secondly, the 268 

final state reached after 40 years by pEM(yend) was studied in a (γs
EM, γs

CL) plane with 1≤ γs
EM ≤ 269 

γs
CL ≤ 1000. In practise, a log-regular grid with 900 points in this (γs

EM, γs
CL) plane was 270 

considered. Three final states were possible: (i) EM strains replaced CL strains (it exists i 271 

{2.. yend} such that pEM(j≥i)=1), (ii) EM strains disappeared following their introduction (it 272 

exists i {2.. yend} such that pEM((j≥i)=0), and (iii) EM and CL continued to coexist at yend (for 273 
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all i {2.. yend}, 0<pEM(i)<1). For each points of the grid in the plane (γs
EM, γs

CL), the 274 

probabilities of the 3 possible final states were estimated by their proportions using 1000 275 

independent replicates. In all simulations, primary and secondary infection probabilities were 276 

set to their overall mean from data analysis (pS
=0.11, qS

=0.035) as well as 
S
 set to 0.56. Nfield 277 

was set to 25, tintro and Nintro to 1, Tmax to 10 weeks and yend to 40. 278 

 279 

4. Results 280 

4.1. Epidemiology of CL and EM strains of WMV at the field scale 281 

4.1.1. Experimental results at the field scale 282 

The set of spatio-temporal maps of the disease dynamics observed are presented in online 283 

supplementary material (Fig. S1). During the 3 years, CL and EM strains were always first 284 

detected in the same plot as early as the second week after planting. Only one, EM1, of the 285 

four subgroups of EM strains observed in SE France (Desbiez et al., 2009), was found 286 

repeatedly in the experimental plot (data not shown). Complete infection of the plot was 287 

observed after 3 or 4 weeks and, at week 7 or 8, the number of D plants was close to 100%, 288 

indicating that cross protection between CL and EM strains is not fully efficient (Fig. S1). 289 

 290 

4.1.2. Goodness of fit of the model 291 

 292 

The baseline model (M0) was consistent with the data. A good fit between observed and 293 

predicted values of the numbers of CL, EM and D plants (NCL(i,t), NEM(i,t), ND(i,t) 294 

respectively) was observed for the 3 years (Fig. 2). The overall r2
 value between observed and 295 

predicted values of NCL(i,t), NEM(i,t), ND(i,t) was 0.98 and 95 % of observed values were 296 

included in a 90% credibility interval (n=74). Moreover, the Bayesian p-value of the χ2
 297 

discrepancy did not reveal any significant inconsistency between the model and the data: the 298 
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p-values were 0.87, 0.69 and 0.9 for NCL, NEM and ND respectively. The statistical summary of 299 

the parameters of the model M0 are provided in Table 1.  300 

 301 

4.1.3. Mean annual probabilities of primary infection 302 

 303 

Mean probabilities refer here to the probability of primary infection of an H plant averaged 304 

over the duration of the epidemic. Their values ranged from 0.05 to 0.31 depending on the 305 

year and the strain (Fig. 3). The overall mean was 0.11. From 2002 to 2004, the primary 306 

infection rate by EM strains was significantly higher than the one of CL strains in 2003 and 307 

2004 (Bayesian p-value of 0.047 and 0 respectively) but not significantly different in 2002 308 

(Bayesian p-value of 0.66). Finally, the hypotheses of a decrease or an increase through years 309 

of the mean probabilities of primary infection for CL and EM strains were tested. No 310 

significant trend was detected in mean probabilities of primary infection by a CL strain but 311 

the mean probability of primary infection by an EM strain was significantly higher in 2004 312 

than in 2002 or 2003 (Bayesian p-value of 0.01 and 0.02 respectively). 313 

 314 

4.1.4. Annual probabilities of secondary infection 315 

 316 

The probabilities that a plant infected with a CL or an EM strain was a source of infection for 317 

an H plant during a week ranged from 0.002 to 0.07 depending on the year and the strain 318 

(Table 1). The overall mean was 0.036. The mean probabilities of secondary infection did not 319 

exhibit any clear annual trend. For a given year, the mean probabilities of secondary infection 320 

of a CL strain were significantly higher than the one of an EM strain in 2003 and 2004 321 

(Bayesian p-values of 1 and 0.99 in 2003 and 2004 respectively) but not in 2002 (Bayesian p-322 

values 0.89). The role of D plants in secondary infection events as sources of CL and EM 323 
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strains was modelled by the parameter 
 which is the mean frequency of EM strains in these 324 

plants (see appendix B for details). The mean value of 
 was estimated as 0.56 with a 90% 325 

Bayesian posterior credibility interval ranging from 0.34 to 0.79. Accordingly, within plant 326 

competition between CL and EM strains in D plants did not significantly favour the spread of 327 

one or another strain. 328 

 329 

4.1.5. Odd ratios of over-infection 330 

 331 

The mean value of the odd ratio for over-infecting an EM plant (γEM) and a CL plant (γCL) 332 

were respectively 8.92 and 2.95 (Table 1). Accordingly, over-infecting a CL plant with an EM 333 

strain is about 3 times less probable than infecting an H plant but over-infecting an EM plant 334 

with a CL strain is about 9 times less probable than infecting an H plant. Overall, it is 3 times 335 

less probable for a CL strain to infect an EM plant than for an EM strain to infect a CL plant. 336 

Moreover, when considering the 95% Bayesian posterior credibility interval and Bayesian p-337 

values, it appears that γEM and γCL are significantly greater than one. Thus over-infecting a 338 

previously infected plant is significantly less probable than infecting a healthy plant. γEM is 339 

also significantly greater than γCL. The comparison of model M0 (baseline model with γEM ≠ 340 

γCL i.e. the probability of over-infection depends on the first strain inoculated), M1 (model 341 

with γEM = γCL i.e. the probability of over-infecting does not depend on the first strain 342 

inoculated) and M2 (model with γEM = γCL = 1 i.e. the probability of over-infection are equal to 343 

the probability of infecting an H plant) leads to the same conclusion with Bayes factors of 344 

respectively 4 for 2.ln(BF1,0) (support for M0) and 157 for 2.ln(BF2,0) (strong evidence for 345 

M0). 346 

Back to the meaning of odd ratios, and taking the probabilities of secondary infection in 2003 347 

as example, the value of the odd ratios for over-infection imply that, although the mean 348 
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probability of secondary infection of CL strains on a healthy plant was higher than the one of 349 

EM strains ( 2 ( | ) 0.033CLq SI H �  and 2 ( | ) 0.011EMq SI H � ), this is no longer the case when 350 

considering the infection by secondary spread of a previously infected plant 351 

( 2 ( | ) 0.0038CLq SI EM �  and 2 ( | ) 0.0037EMq SI CL �  according to equations A12 and A16 of 352 

Appendix A). 353 

 354 

4.2. Landscape scale model 355 

 356 

The landscape model simulates the dynamic of the proportion of EM strains in a landscape 357 

during 40 years (pEM(i) with i {1..40}) following the accidental introduction of a single 358 

cucurbit seedling (Nintro=1 out of Nfield=25 fields with 160 plants) infected with an EM strain. 359 

The effect of the parameter, δ= γS
EM/ γS

CL, measuring how many times it is less likely for a 360 

CL strain to infect an EM plant than for an EM strain to infect a CL plant, on the dynamic of 361 

the proportion of EM strains in a landscape was particularly investigated. A value of δ > 1 362 

indicates that it is δ times more probable for an EM strain to infect a CL plant than for a CL 363 

strain to infect an EM plant. Inversely, a value of δ < 1 indicates that it is 1/δ times more 364 

probable for a CL strain to infect an EM plant than for an EM strain to infect a CL plant. In 365 

Fig. 4a, the odd ratio for over-infecting an CL plant, γs
CL, was set to its reference value 2.95 366 

and the dynamic of the proportion of EM strains in the landscape was plotted for 4 values of δ 367 

(corresponding to 4 values of the odd ratio for over-infecting an CL plant, γS
EM) [δ=1 368 

(γS
EM=2.95), δ=3 (γS

EM≈8.8), δ=10 (γS
EM≈29) and δ=40 (γS

EM=118)]. For most simulations, the 369 

proportion of EM strains in the landscape rapidly increased during the first 15 years and then 370 

reached a noisy steady state where both CL and EM strains of WMV coexisted in the 371 

landscape. In simulations where δ ranged between 0.001 and 1000, coexistence between EM 372 
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and CL strains almost always occurred for 0.05≤δ≤10 (Fig. 5a). When coexistence occurred, 373 

the level of the steady state between CL and EM strains mostly depended on δ (Fig. 5b). For 374 

δ=1, the proportion reached by EM strains in the landscape, 0.57, was close to their 375 

proportion in D plants, 
S
. However, this correspondence was not observed for higher values 376 

of 
S
 (not illustrated). 377 

Coexistence of EM and CL strains was not always observed. The probability that EM strains 378 

disappeared following their introduction is higher than 0.25 for values of δ ≤0.05 and even 379 

higher than 0.5 for values of δ ≤0.01 (Fig. 5c). Similarly, EM strains could replace CL strains 380 

(Fig. 5d). However this event was infrequent in the range of the plane (γs
EM, γs

CL) explored 381 

and only occurred with probabilities higher than 0.5 for values of δ≥50. Finally, for a given 382 

value of δ (e.g. γs
EM =100.γs

CL - δ =100) it was somewhat more likely for EM strains to replace 383 

CL strains than for EM strains to go extinct in the inverse case (γs
CL =100.γs

EM - δ =0.01). This 384 

asymmetry resulted from a trade-off between the endemic and native origins of CL and EM 385 

strains respectively and their relative fitness in competition in doubly infected plant. 386 

 387 

5. Discussion 388 

 389 

The shift between CL and EM strains of WMV observed in France since 2000 is a 390 

striking example of the invasion paradox, locally adapted strains being rapidly displaced by 391 

invading ones originating possibly from Asia (Desbiez et al., 2009). A similar observation 392 

was recently reported by Gómez et al. (2009) in Spain where, after their recent introduction, 393 

new isolates of Pepino mosaic virus (PepMV-CH2) have spread in a few years in an epidemic 394 

fashion into a niche previously occupied by PepMV-EU isolates. As a first step in this study, 395 

we developed stochastic models to disentangle the field co-dynamics of CL and EM strains 396 

with regard to several epidemiological mechanisms (primary and secondary infection and a 397 
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wide range of host-virus interactions in co-infected host). These models also explicitly deal 398 

with the uncertainty in the observation process. They are examples of state-space model, a 399 

class of model now widely used in various fields of ecology (e.g. Clark, 2005; Cressie et al., 400 

2009; Soubeyrand et al., 2009) notably due to its propensity to reconcile the point of view of 401 

statisticians and mechanism based modellers. 402 

The main originality of the model was to define probabilities of over-infection that can 403 

handle the different kinds of plant-virus interaction arising in mixed infections. A virus may 404 

stimulate the replication and/or the movement of another virus (Atabekov and Dorokhov, 405 

1984) (Karyieja et al., 2000). A plant resistant to a virus can even become infected with the 406 

help of another virus (Dodds and Hamilton, 1972) (Wang et al., 2004) or another strain of the 407 

same virus (Gomez et al., 2009). Diverse mechanisms are involved in these synergistic 408 

interactions, including efficient inhibition of posttranscriptional gene silencing by at least one 409 

of the viruses (for a review see Latham and Wilson, 2008; Cuellar et al., 2009). However, one 410 

virus can also prevent the infection of a second, a phenomenon known as cross-protection 411 

(Fraser, 1998) and used to control some major virus diseases (Lecoq, 1998). To our 412 

knowledge, very few papers deal with the mathematical modelling of interactions between 413 

plant viruses (Zhang et al., 2000; Zhang and Holt, 2001). Only Zhang and Holt (2001) 414 

modelled the effect of cross protection on plant-virus epidemiology assuming that infection 415 

by the protective virus precludes completely infection by the severe one, but not vice-versa. 416 

More generally for plant pathogens, many model-based studies used the concept of the basic 417 

reproduction number (R0) to analyse disease invasion and persistence from the microscopic to 418 

the regional scale. However, most of these studies rely on the assumption that the invading 419 

pathogen is not competing with resident pathotypes (see Gilligan and van den Bosh (2008) for 420 

a review and references for exceptions to this trend).  421 
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In our case, inferences on the odd ratio for over-infecting an EM plant (γEM) and a CL 422 

plant (γCL) firstly reveal that over-infecting an already infected plant is less probable than 423 

infecting a healthy plant but nevertheless occurs as revealed by both experimental and field 424 

observations. Normally, over-infection between strains of the same potyvirus is supposed to 425 

be suppressed by the mechanisms of cross-protection, possibly related to RNA silencing 426 

(Ratcliff et al., 1999); cross-protection was once considered as a taxonomic criterion for 427 

species/strain demarcation (Ward and Shukla, 1991). The efficiency of cross-protection 428 

among potyviruses depends on the molecular relatedness between strains, highly divergent 429 

isolates being poorly cross-protective (Nakazono-Nagaoka et al., 2009; Valkonen et al., 2002; 430 

Wang et al., 1991; You et al., 2005). CL and EM isolates have 4 to 6% divergence in their 431 

coat protein (CP) nucleotide sequence (Desbiez et al., 2009). At this level of divergence, 432 

cross-protection between potyvirus isolates is usually effective (Nakazono-Nagaoka et al., 433 

2009; Lecoq, 1998). However some exceptions were already observed and the relation 434 

between CP sequence relatedness and protection efficiency has been questioned (Valkonen et 435 

al., 2002).  436 

Inferences on the odd ratio for over-infecting an EM plant (γEM) and a CL plant (γCL) 437 

also indicate that it is 3 times less probable for a CL strain to infect an EM plant than for an 438 

EM strain to infect a CL plant. Examples of such asymmetrical efficiency are quite rare in the 439 

literature (e.g. between strains of Sugarcane mosaic virus (Krstic, 1995), Potato virus A 440 

(Valkonen et al., 2002), Cucumber mosaic virus (Tian et al., 2009) or between Oilseed rape 441 

mosaic virus and Tobacco mild green mosaic virus (Aguilar et al., 2000)). This asymmetry 442 

might be related to a more efficient accumulation, migration and/or silencing suppression in 443 

EM strains, thus overcoming the cross-protection mechanisms. Whereas strains of some 444 

potyviruses rarely infect the same cell (Dietrich and Maiss 2003; Takahashi et al., 2007), the 445 

high frequency of natural recombinants in WMV (Desbiez and Lecoq, 2008) suggests that cell 446 
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co-infection is frequent in this virus; the asymmetry between EM and CL strains might 447 

happen at this level. These hypotheses remain to be investigated. Asymmetrical interactions 448 

have also been recently revealed in animal pathology. Wolfe et al. (2007) showed that mice 449 

previously infected with Bordetella pertussis were not protected against a later infection with 450 

B. parapertussis (the main agents of whooping cough), while primary infection with B. 451 

parapertussis conferred cross-protection. Much attention has been given to the mathematical 452 

modelling of cross-protection in animal pathology and especially virology as it is a key factor 453 

of vaccination success (e.g. human influenza A (Ferguson et al., 2003)). However, with a few 454 

exception (Restif et al., 2008 and references therein), asymmetric cross-immunity has also 455 

been overlooked in most mathematical models. 456 

The model goodness of fit was satisfactory. However, improvements in several ways 457 

are possible by taking advantage of the flexibility of the state-space models. Modelling the 458 

spatiotemporal dynamics of CL and EM strains on a daily time step is particularly appealing. 459 

Such space-time data analysis often improves our understanding of the mechanisms 460 

governing both animal and plant epidemics (e.g. Keeling et al., 2001; Otten et al., 2003; 461 

Soubeyrand et al., 2009). Here it will provide inferences about the distance of dispersion of 462 

secondary infection events for example, a process seldom estimated in natura for non-463 

persistently transmitted viruses. Bayesian inferences on spatiotemporal process are of special 464 

interest as they account coherently for parameter variability (Cressie et al., 2009). If classical 465 

Bayesian inferences are difficult to handle, statistical methods like approximate Bayesian 466 

calculations (Beaumont et al., 2002) could be an alternative. 467 

 468 

The second part of this work investigated the consequences, at the landscape scale, of 469 

the asymmetrical probabilities of over-infection revealed at the field scale during the course of 470 

the annual epidemiological cycle. An explanatory model is proposed in order to fit the scales 471 
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at which hosts and aphid-borne viruses naturally interact. Simulations addressed the case of 472 

an accidental introduction of a cucurbit seedling infected with an EM strain. The results 473 

indicated that δ, the parameter measuring how many times it is less likely for a CL strain to 474 

infect an EM plant than for an EM strain to infect a CL plant, deeply impacted the equilibrium 475 

between CL and EM strains in the landscape throughout the following mechanism. Assuming 476 

for example δ > 1 implies that plants remained solely EM infected longer than solely CL 477 

infected. In other words, the higher δ is, the longer is the lag time necessary for a EM infected 478 

plant to become D infected relatively to the lag time necessary for a CL plant to become D. In 479 

turn, this tends to increase the cumulated dynamics of plants solely infected with EM strains 480 

in the fields of the landscape and thus the proportion of reservoir hosts infected with EM 481 

strains. A consequence of this mechanism is that, for some value of δ, CL strains mostly 482 

persist in the environment in D plants. The persistence of viral isolates in mixed infected 483 

plants was proposed by Gómez et al. (2009) to explain PepMV-EU isolates persistence in 484 

Spain after PepMV-CH2 spread. 485 

In the simulation with the parameters closest to the field observation (Fig. 4a, δ=3 - 486 

black curve), CL and EM strains almost always coexist in the landscape at a ratio of about 487 

3:7. Although this is not a formal validation, these figures should be compared to the data of 488 

the epidemiological survey in the Gard and Bouches du Rhône regions where the proportion 489 

of EM strains seems to reach an equilibrium near 70-80% (Fig. 4b) in less than 10 years after 490 

their introduction. In Vaucluse, the situation is different as the proportion of CL strains 491 

decreased steadily and reached only 1% in 2008. Although it is tempting to bring nearer these 492 

data, the epidemiological situation of WMV is much more complex than the simulation 493 

scenario with in particular 4 subgroups of EM isolates probably originating from as many 494 

introduction events. Only one subgroup of isolates was detected in the field data (EM1). The 495 

value of δ derived thus characterizes the interactions between CL and EM1 strain in D plants. 496 
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The landscape model describes a disease with discontinuous crop-host availability 497 

typical of the annual crops in temperate climates. During the crop-free season, viruses and 498 

vectors are hosted by “reservoirs”, wild hosts playing then a major role. Up to date, viruses in 499 

the wild compartment have received little attention. Consequently, in the model, the reservoir 500 

compartment is simply seen as a mirror reflecting, from year n to year n+1, the proportion of 501 

EM strain according to its evolution in the sole cultivated compartment. Despite this 502 

simplification, one should notice that the trend detected in the mean probability of primary 503 

infection by CL and EM strains (Fig. 3) corroborates this hypothesis. Nevertheless, further 504 

research on virus-plant pathosystems at the interface between cultivated and natural 505 

vegetation is needed (Jones, 2009). Firstly, this need arises from the importance of studying 506 

epidemics at the scale where they naturally occur as well as the need to match this scale with 507 

the one at which control strategy must be deployed (Dybiec et al. 2004; Gilligan 2008). In this 508 

regard, the recent focus on the landscape epidemiology of plant disease (Plantegenest et al. 509 

2007) is a promising field of research. A global sensitivity analysis of the landscape model 510 

aiming to rank the relative role of model parameters on the probabilities of extinction and 511 

coexistence as well as on the proportion of EM strains at equilibrium could help to point out 512 

the major processes that should be studied in priority at the landscape scale. Secondly this 513 

need arises because alternation between hosts in a heterogeneous landscape tends to select for 514 

generalist viruses which in turn are more likely to jump over the species boundary (Elena et 515 

al., 2009), and are thus more likely to successfully emerge. 516 

 517 
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Table 1. Statistical summary of the inference on parameters of model M0. Main statistics 715 

(mean, q-5%: percentile 5%, q-25%: quartile 25%, median, q-75%: quartile 75%, q-95: 716 

percentile 95%) of the marginal posterior distribution are derived from a MCMC sample of 717 

size 10
5
. For the secondary infection process, the values provided for the β’s parameters 718 

(transformed in the logit
-1

 scale), estimate directly the probability that a plant infected with a 719 

CL or an EM strain is the source of infection of an H plant by secondary infection during a Δt 720 

time step (qi(SICL|H) and qi(SIEM|H) with 1≤i≤3). 721 

 722 

 723 

Process Parameter mean  q-5% q-25% median q-75% q-95% 

Primary 

infection 

α1,CL -3.49 -7.20 -4.90 -3.41 -2.09 -0.10 

α2,CL -4.85 -7.99 -6.32 -4.99 -3.58 -0.79 

α3,CL -4.54 -7.59 -5.56 -4.40 -3.47 -1.87 

α1,EM -3.69 -7.32 -5.04 -3.62 -2.34 -0.51 

α2,EM -4.36 -7.52 -5.82 -4.50 -3.06 -0.27 

α3,EM -2.36 -5.40 -3.35 -2.25 -1.32 0.33 

σ 3.28 1.80 2.41 3.01 3.84 5.64 

Secondary 

infection 

logit
-1

(β1,CL) 0.050 0.031 0.046 0.051 0.057 0.064 

logit
-1

(β2,CL) 0.033 0.025 0.030 0.033 0.037 0.042 

logit
-1

(β3,CL) 0.071 0.039 0.054 0.067 0.084 0.119 

logit
-1

(β1,EM) 0.039 0.022 0.034 0.040 0.044 0.051 

logit
-1

(β2,EM) 0.011 0.007 0.009 0.011 0.013 0.015 

logit
-1

(β3,EM) 0.009 10
-8

 10
-5

 0.001 0.013 0.042 


 0.56 0.34 0.46 0.56 0.66 0.79 

Over 

Infection 

γCL 2.95 2.08 2.54 2.90 3.31 3.98 

γEM 8.92 6.09 7.51 8.70 10.09 12.54 

 724 

725 



Acc
ep

te
d m

an
usc

rip
t 

 33 

Figure legends 726 

Fig. 1. Possible transitions from time t-1 to time t in year i between the 4 plant compartments 727 

(H: healthy, CL: infected by a classic strain, EM: infected by an emerging strain and D: 728 

infected by both a CL and an EM strain). a) The possible transitions of an H plant depend on 729 

the probabilities of 4 events: (i,ii) 
, ( | )PI

i tp CL H  [resp. 
, ( | )PI

i tp EM H ], probability that “an H 730 

plant is infected by primary infection with a CL [resp. EM] strain during Δt” and (iii,iv) 731 

, ( | )SI
i tp CL H  [resp. 

, ( | )SI
i tp EM H ], probability that “an H plant is infected by secondary 732 

infection of a CL [resp. EM] strain during Δt”. b,c) The possible transitions of a CL [resp. 733 

EM] plant depend on the probabilities of 2 events: (i) 
, ( | )PI

i tp D CL  [resp. 
, ( | )PI

i tp D EM ], 734 

probability that “a CL [resp. EM] plant is infected by primary infection with a EM [resp. CL] 735 

strain during Δt” and (ii) 
, ( | )SI

i tp D CL  [resp. 
, ( | )SI

i tp D EM ] probability that “a CL [resp. EM] 736 

plant is infected by secondary infection of an EM [resp. CL] strain during Δt”.  737 

 738 

Fig. 2. Observed and predicted temporal dynamics of WMV epidemics in cucurbit plots from 739 

2002 to 2004. The field contained 160 curcurbit plants. Blue, red and green dots indicate the 740 

observation of the number of plants infected with a classical strain (CL), infected with an 741 

emerging strain (EM) and infected with both strains (D) respectively. Lines indicate the mean 742 

number of CL, EM and D plants respectively as predicted by the model. For each prediction, 743 

the extent of a 90% posterior confidence interval is indicated. 744 

 745 

Fig. 3. Mean annual probabilities of primary infection by CL and EM strains from 2002 to 746 

2004. Boxes indicate the lower (25%) and upper (75%) quartiles, and symbols indicate the 747 

mean values (stars for CL strain, dots for EM strain). Dotted lines extending from each end of 748 

the box show the extent of the 90% posterior confidence interval. 749 
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 750 

Fig. 4. Simulated and observed dynamics of the proportion of EM strains of WMV following 751 

its introduction in a landscape. a) Dynamics of the proportion of EM strains of WMV during 752 

the 40 first years (pEM(i) with i {1..40}) after their introduction in a landscape composed of 753 

25 fields, each field having 160 cucurbit plants. The introduction consists in putting, at the 754 

onset (i=1, tintro =1) and in 1 field, a single plant infected with an EM strain. The dynamics of 755 

pEM(i) is indicated for 4 values of δ, the ratio between γS
EM and γS

CL (δ=1 in red, δ=3 in black, 756 

δ=10 in green and δ=40 in blue). δ measures how many times it is less likely for a CL strain to 757 

infect an EM plant than for an EM strain to infect a CL plant. For each value of δ, a sample of 758 

20 independent realizations of the model are plotted (dotted lines), and the mean of pEM(i) 759 

indicated in solid line (the mean is assessed with the 1000 simulation realized). Others model 760 

parameters were set to the values detailed in the model description section. b) Annual 761 

dynamics of the proportion of EM strains detected in the sample collected during an 762 

epidemiological survey performed from 2004 to 2008 in the 3 neighbouring regions where 763 

EM strains were first detected in France. 764 

 765 

Fig. 5. Effect of γs
EM, γs

CL and their ratio δ on the final state of the landscape model 40 years 766 

after the introduction in 1 field out of 25 a single plant infected with an EM strain of WMV. 767 

γs
EM [resp. γs

CL] measures how many times over-infecting an EM [resp. CL] plant with a CL 768 

[resp. EM] strain is less likely than infecting an H plant with a CL [resp. EM] strain. Their 769 

ratio δ= γs
EM / γs

CL is then the differential ability for over-infection between EM and CL 770 

strains. a) Probabilities that EM and CL still coexist in the landscape 40 years after the initial 771 

introduction as a function of γs
EM and γs

CL. b) When EM and CL strains coexist at yend=40, the 772 

mean value of pEM(yend) is plotted as a function of γs
EM and γs

CL. c) Probabilities that EM 773 

strains disappeared in the landscape as a function of γs
EM and γs

CL. d) Probabilities that EM 774 
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strains replaced CL strains in the landscape as a function of γs
EM and γs

CL. For all graphs, 775 

model parameters other than γs
EM and γs

CL were set to the values detailed in the model 776 

description section. Probabilities were estimated based on 1000 independent realizations of 777 

the model. In graphs a) and b), the black dot is positioned at the value of γs
EM and γs

CL 778 

estimated from the field data set (γs
EM = 9.19 and γs

CL = 2.89). 779 

780 
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Appendix A. The model describing the co-dynamics of viral strains at field scale 781 

 782 

In the model, plants were classified into 4 compartments: (i) H (healthy), (ii) CL (infected by 783 

a classic strain), (iii) EM (infected by an emerging strain) and (iv) D (doubly infected by both 784 

a CL and an EM strain). For a given year i and date t of observation, N(i,t)=[NH(i,t), NCL(i,t), 785 

NEM(i,t), ND(i,t)] is the vector of the number of plants in each compartment. The model 786 

describes the dynamic of N(i,t) at a Δt time interval equal to 1 week given that initially all 787 

plants are healthy: N(i,0)=[Ntot,0, 0, 0] (Ntot=160). 788 

 789 

Probabilities of infection of an H plant from t-1 to t 790 

From time t-1 to time t, an H plant can remain H or become CL, EM or D with 791 

probabilities � �, , 1 , 1 , 1 , 1( | ), ( | ), ( | ), ( | )Μ
i t i t t t i t t t i t t t i t t tp p H H p CL H p EM H p D H� � � �� . These 792 

transitions between compartments depend on the probabilities of 4 events (Fig. 1a).  793 

, ( | )PI
i tp CL H  [resp. 

, ( | )PI
i tp EM H ], are the probabilities that “an H plant is infected by primary 794 

infection with a CL [resp. EM] strain during Δt”. They are modelled as:  795 

, , ,logit ( | ) ( 1)PI
i t i CL i tp CL H A� �� � � �� 	   796 

, , ,logit ( | ) ( 2)PI
i t i EM i tp EM H A� �� � � �� 	  797 

where (i) αi,CL [resp. αi,EM] is, in the logit scale, a parameter describing the probability that an 798 

H plant is infected by primary infection with a CL [resp. EM] strain during Δt in year i if no 799 

variation between weeks exists and (ii) γi,t is a set of random effects mutually independent and 800 

identically normally distributed with unknown variance σ2
. 801 

, ( | )SI
i tp CL H  [resp. 

, ( | )SI
i tp EM H ] are probabilities that “an H plant is infected by secondary 802 

infection of a CL [resp. EM] strain during Δt”. They depend on the probabilities ( | )i CLq SI H  803 
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[resp. ( | )i EMq SI H ] that “a plant infected in the field with a CL [resp. EM] strain in year i 804 

infects an H plant by secondary infection during Δt”. In the model, it is assumed that  805 


 � ,logit ( | ) ( 3)i CL i CLq SI H A��  806 


 � ,logit ( | ) ( 4)i EM i EMq SI H A��  807 

where βi,CL [resp. βi,EM] is, in the logit scale, a parameter modelling the probability that a plant 808 

infected with a CL [resp. EM] strain is a source of infection for an H plant by secondary 809 

spread during Δt in year i. 810 

Following the calculations detailed in appendix B, it comes that  811 


 �
,

( , 1) (1 ) ( , 1)
( | ) 1 1 ( | ) ( 5)CL D

i t

N i t N i tSI
i CLp CL H q SI H A
� � � �� � �   812 


 �
,

( , 1) ( , 1)
( | ) 1 1 ( | ) ( 6)EM D

i t

N i t N i tSI
i EMp EM H q SI H A
� � �� � �  813 

where 
 is a parameter modelling the mean proportion of EM strains in D plants (1-
 is the 814 

proportion of CL strains). 815 

 816 

Finally, assuming that during Δt primary and secondary infection events occur independently, 817 

the probability that, in year i, a plant is H [resp. CL, EM and D] at time t given that this plant 818 

was H at time t-1 can be derived: 819 

, ,

, ,

, 1( | ) 1 ( | ) 1 ( | )

1 ( | ) 1 ( | ) ( 7)

i t i t

i t i t

PI SI
i t t t

PI SI

p H H p CL H p CL H

p EM H p EM H A

�
� � � �� � � �� 	 � 	

� � � �� � � �� 	 � 	

 820 

� � � � �
, , , ,

, , , ,

, 1( | ) 1 ( | ) 1 ( | ) ( | ) ( | )

( | ) 1 ( | ) 1 ( | ) ( | ) ( 8)

i t i t i t i t

i t i t i t i t

PI SI PI SI
i t t t

PI SI PI SI

p CL H p EM H p EM H p CL H p CL H

p CL H p CL H p CL H p CL H A

�
� � � � �� � � � � �� 	 � 	 �

� � � � � �
 821 

� � � � �
, , , ,

, , , ,

, 1( | ) 1 ( | ) 1 ( | ) ( | ) ( | )

( | ) 1 ( | ) 1 ( | ) ( | ) ( 9)

i t i t i t i t

i t i t i t i t

PI SI PI SI
i t t t

PI SI PI SI

p EM H p CL H p CL H p EM H p EM H

p EM H p EM H p EM H p EM H A

�
� � � � �� � � � � �� 	 � 	 �

� � � � � �
 822 

, 1 , 1 , 1 , 1( | ) 1 ( | ) ( | ) ( | ) ( 10)i t t t i t t t i t t t i t t tp D H p H H p CL H p EM H A� � � �� � � �  823 
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 824 

Probabilities of over-infection of a singly infected plant from t-1 to t 825 

From time t-1 to time t, a CL plant can remain CL or become D with probability 826 

, 1( | )i t t tp D CL �  that depends on the probabilities of 2 events (Fig. 1b): (i) 
, ( | )PI

i tp D CL , the 827 

probability that “a CL plant is infected by primary infection with a EM strain during Δt” and 828 

(ii) 
, ( | )SI

i tp D CL , the probability that “a CL plant is infected by secondary infection of an EM 829 

strain during Δt”. As previously, deriving the latter probability required to introduce the 830 

probability ( | )i EMq SI CL  that “a given plant infected in the field with an EM strain is the 831 

source of infection of a CL plant by secondary infection during Δt”. 832 

Defining the parameter γCL as the odd ratio between the probability of infecting an H plant 833 

with a EM strain and the probability of infecting an CL plant with a EM strain implies that 834 

,

,

,

( | )
( | ) ( 11)

( | )

i t

i t

i t

PI
PI

PI
CL

odds p EM H
p D CL A

odds p EM H �

� �
� 	�

� � �� 	
 835 


 �

 �

( | )
( | ) ( 12)

( | )

i EM
i EM

i EM CL

odds q SI H
q SI CL A

odds q SI H �
�

�
 836 

As previously (Appendix B), it comes that 837 


 �
,

( , 1) ( , 1)
( | ) 1 1 ( | ) ( 13)EM D

i t

N i t N i tSI
i EMp D CL q SI CL A
� � �� � �  838 

Finally, assuming independence between primary and secondary infections, leads to 839 

, ,, 1( | ) 1 1 ( | ) 1 ( | ) ( 14)
i t i t

PI SI
i t t tp D CL p D CL p D CL A�

� � � �� � � � �� 	 � 	  840 

 841 

Similarly, an EM plant at time t-1 can remain EM or become D at time t (Fig. 1c) with 842 

probability
, 1( | )i t t tp D EM � . The same developments as previously lead successively to 843 

,

,

,

( | )
( | ) ( 15)

( | )

i t

i t

i t

PI
PI

PI
EM

odds p CL H
p D EM A

odds p CL H �

� �
� 	�

� � �� 	
 844 
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 �

 �

( | )
( | ) ( 16)

( | )

i CL
i CL

i CL EM

odds q SI H
q SI EM A

odds q SI H �
�

�
 845 


 �
,

( , 1) (1 ) ( , 1)
( | ) 1 1 ( | ) ( 17)CL D

i t

N i t N i tSI
i CLp D EM q SI EM A
� � � �� � �  846 

And 847 

, ,, 1( | ) 1 1 ( | ) 1 ( | ) ( 18)
i t i t

PI SI
i t t tp D EM p D EM p D EM A�

� � � �� � � � �� 	 � 	  848 

 849 

Dynamics of N(i,t) during an epidemic 850 

The dynamic of N(i,t) from t=0 to tend is modelled as a sequential 3 step stochastic processes: 851 

(i) ΔH(i,t)=[ΔHH(i,t), ΔHCL(i,t), ΔHEM(i,t), ΔHD(i,t)], the vector of the number of H 852 

plants in year i at date t-1 remaining H at date t or becoming respectively CL, EM or D at date 853 

t, is drawn from a multinomial distribution:  854 

� �,( , ) ~ ( , 1), ( 19)Μ
H i tH i t Multinomial N i t p A� �  855 

 (ii) ΔCL(i,t), the number of CL plants in year i at date t-1 becoming D at date t is the 856 

result of a binomial process: 857 

� � � � � �� �, 1, ~ , 1 ,  | ( 20)CL i t t tCL i t Binomial N i t p D CL A�� �  858 

 (iii) ΔEM(i,t), the number of EM plants in year i at date t-1 becoming D at date t is the 859 

result of a binomial process: 860 

� � � � � �� �, 1, ~ , 1 ,  | ( 21)EM i t t tEM i t Binomial N i t p D EM A�� �  861 

Then N(i,t) is updated from time t-1 to time t, 862 

( , 1) ( , ) ( , ) ( , )

( , 1) ( , ) ( , )
( , ) ( 22)

( , 1) ( , ) ( , )

( , 1) ( , ) ( , ) ( , )

H CL EM D

CL CL

EM EM

D D

N i t H i t H i t H i t
N i t H i t CL i t

N i t A
N i t H i t EM i t

N i t H i t CL i t EM i t

� �� �� ��� �
� �� � � ��� ��
� �� � � ��
� �

� � � �� ��� �

 863 

 864 

865 
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Appendix B: derivation of the probabilities of secondary infection 866 

Suppose that each infected plant sends on another plant (through aphid population dynamics) 867 

a Poisson number of viral particules with mean � independent of the strain of the viral 868 

particules. Suppose also that the frequency of viral particles of EM strain is 
 in doubly 869 

infected plants. Thus a plant infected by the two viral strain sends a Poisson number of viral 870 

particles of EM strain with mean 
.� and a Poisson number of particles of CL strain with 871 

mean (1 − 
).�. 872 

A given plant then receives a Poisson number of viral particles of EM strain with mean 873 

( ).EM DN N
 �� � �  where NEM is the number of plants infected with EM strain only at the 874 

preceding date and ND the number of plants doubly infected at the same date. 875 

Let p(EM,H) be the probability that a viral particle of EM strain is transmitted to an healthy 876 

plant at a given date. 877 

Suppose that this healthy plant receives n particles of strain EM, and that each particle can be 878 

transmitted independently from another particle. The probability that this plant is not infected 879 

by these particles is [1 − p(EM,H)]
n
. 880 

A healthy plant receiving a Poisson number of viral particles of EM strain with mean 881 

( ).EM DN N
 �� � �  remains uninfected by an EM strain with probability 882 

 


 �

0

(1 ( , ))
(1 ( , )) exp( )

!

exp( ( , ). )

exp ( , ).( . ).

n
n n

n

EM D

p EM HE p EM H
n

p EM H
p EM H N N
 �

�

�

�� �� � � ��� 	

� � �

� � �

�
 883 

 884 

Similarly, an healthy plant is infected by a given EM plant (so that NEM = 1 and ND = 0 in the 885 

preceding formula) with probability 886 

 ( | ) 1 exp( ( , ). )EMq SI H p EM H �� � �  887 
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Thus a healthy plant receiving a Poisson number of viral particles of EM strain with mean 888 

( ).EM DN N
 �� � �  remains uninfected by an EM strain with probability 889 

 
 � 
 �exp ( , ).( . ) 1 ( | ) EM DN N
EM D EMp EM H N N q SI H 

 � �� � � �  890 

and becomes EM infected with probability 891 


 �1 1 ( | ) EM DN N
EMq SI H 
�� �  892 

893 
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Appendix C: Model inferences 894 

Link between the observed data and the model 895 

During the first weeks until 100% of the plants became infected by WMV (week 3 in 2002 896 

and 2004, and week 4 in 2003), maps of the epidemics were established at a weekly interval. 897 

This is precisely the Δt time step adopted in the model. Thus, assuming that the DAS-ELISA 898 

and RT-PCR tests used to detect viruses have high levels of sensitivity and specificity, both 899 

ΔH(i,t), ΔCL(i,t) and ΔEM(i,t) are directly observed. After this period of weekly data 900 

collection, a last map of the epidemic is observed 4 weeks later (week 7 in 2002, week 8 in 901 

2003 and 2004 denoted thereafter tend). Here, only N(i,tend) is observed. Given that no map 902 

was observed in week tend -1 it is impossible to derive ΔH(i,tend), ΔCL(i,tend) and ΔEM(i,tend). 903 

However, N(i,tend) can be related to the model output N(i,tend-1) by noting that  904 

( )

( )
( , ) ~ ,

( )

( )

end

end

end

end

i t

i t
end tot

i t

i t

p H

p CL
N i t Multinomial N

p EM

p D

� �� �
� �� �
� �� �
� �� �
� �� �
� �� �

� �� �

 905 

where the probabilities of being respectively H, CL, EM and D at tend during year i can be 906 

derived using classical conditional probability rules given for example that to be H at time t a 907 

plant must be H at time t-1 and not be infected from times t-1 to t: 908 

� �1 1( ) . ( | )i tend i tend i tend tendp H p H p H H� ��  909 

And, because 1

( , 1)
( )

end

H end
t

tot

N i tp H
N�

�
� , it comes 910 

1

( , 1)
( ) ( | )

end end end

H end
i t i t t

tot

N i tp H p H H
N �

�
� �  911 

Similarly, it results that 912 

1 1

( , 1) ( , 1)
( ) 1 ( | ) ( | )

end end end end end

CL end H end
i t i t t i t t

tot tot

N i t N i tp CL p D CL p CL H
N N� �

� �� �� � � � �� 	  913 
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1 1

( , 1) ( , 1)
( ) 1 ( | ) ( | )

end end end end end

EM end H end
i t i t t i t t

tot tot

N i t N i tp EM p D EM p EM H
N N� �

� �� �� � � � �� 	  914 

� � � �( ) 1  ( )i tend i tend i tend i tendp D p H p CL p EM� � � �  915 

 916 

These equations defined a Markov chain linking dates t—1 to t. The likelihood at tend, given 917 

the last observation realized in the field, is obtained by numerical integration of all the 918 

possible states of N(i,tend-1) by simulation of this Markov chain. 919 

 920 

Bayesian statistical inferences 921 

Statistical inferences were performed via Bayesian Monte Carlo Markov Chain (MCMC) 922 

methods (Gelman et al. 2004) with OpenBUGS
©

 3.0.3 (Bayesian inference Using Gibbs 923 

Sampling) software (available from http://www.mrc-bsu.cam.ac.uk/bugs/) (Thomas et al. 924 

2006). 925 

The vector of model parameters is θ=[ αCL,i, αEM,i, βCL,i, βEM,i, γEM, γCL, 
, σ]i=1..3. To reflect our 926 

initial lack of knowledge we used uninformative prior probability density function (PDF) for 927 

θ. Log-uniform[10
-3

,10
3
] probability distributions were assigned to γCL and γEM. 928 

Normal(0,100) probability distributions were assigned to α’s and β’s parameters, a Beta(1,1) 929 

probability distribution assigned to 
 and a half positive Normal(0,100)I(0,+∞) assigned to σ.  930 

To check for convergence of the MCMC chain to its ergodic target distribution, we ran 3 931 

chains and used the Gelman-Rubin diagnostics implemented in OpenBUGS
©

 3.0.3 (Brooks 932 

and Gelman 1998). Marginal posterior PDFs were summarised by statistics computed from 933 

the MCMC samples: mean, median, 2.5
th

 and 97.5
th

 percentile defining the 95% Bayesian 934 

posterior credibility interval. From the joint posterior distribution of model parameter, derived 935 

quantities such as the mean probability that an H plant is infected by primary or secondary 936 

infection are easy to obtain in OpenBUGS. 937 
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To check for consistency between the model and the data, the χ2
 discrepancy test proposed by 938 

Gelman (2004, p 175) was used (see also Rivot et al. (2008) for details on its practical 939 

implementation). χ2
 discrepancy statistics were computed for the observation of NCL(i,t), 940 

NEM(i,t), ND(i,t) summed over the available observation units i and t. Extreme Bayesian p 941 

values (<0.05 or > 0.95) reveal inconsistencies between model predictions and the actual data. 942 

Simple predicted versus observed values of these variables were also regressed and the 943 

coefficient of determination (r2
), which provides a measure of the proportion of the total 944 

variance explained by the model, was estimated. 945 

In order to investigate more precisely the role of the process of over-infection, a model 946 

comparison approach was used. Let’s denote M0 the previous model parameterisation. Two 947 

alternative formulations of M0 were fitted to the dataset. In the model M1, it is assumed that 948 

γEM=γCL (i.e. the probability of over-infecting an already infected plant differs from the 949 

probability of infecting an H plant but does not depend on the strain (CL or EM) first 950 

inoculated). In the model M2, it is assumed that γEM=γCL=1 (i.e. the probability of over-951 

infecting an already infected plant is the same as the probability of infecting an H plant). 952 

Models M1, M2 and M0 were compared using Bayes factors. The Bayes factor of 2 alternative 953 

models M0 and M1, BF1,0, is defined as the ratio of the marginal likelihood of the data under 954 

model M1, [y|M1], to that obtained under model M0, [y|M0]. It is a measure of the relative 955 

credibility of M1 compared with M0 for given dataset. In practise, [y|Mi] can be approximated 956 

as the harmonic mean of the likelihood function (Kass and Raftery, 1995). These 957 

approximations of Bayes factor are accurate enough to be interpreted in a logarithm scale 958 

according to guidelines provided by Kass and Raftery (1995). 959 

 960 
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