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Bifurcations and Chaos in the MAPK Signaling Cascade

Martin Zumsandea,∗, Thilo Grossa

aMax Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.

Abstract

The mitogen-activated protein kinase (MAPK) cascade is an important signaling cascade in eukaryotes. We use the
approach of generalized modeling to analyze the dynamics of the MAPK cascade and identify key mechanisms of
instability. Furthermore, we report sustained multi-mode oscillations and potentially chaotic behavior caused by a
sequestration-based feedback mechanism. Finally, we investigate the interplay between sequestration and external
feedback loops. Our analysis thereby confirms, extends and generalizes previous results obtained by conventional
modeling and points out the diversity of dynamics that sequestration can bring about.

Keywords: Modelling, Signalling networks, Phosphorylation, Bistability

1. Introduction

The mitogen-activated protein kinase (MAPK) path-
way is involved in the regulation of numerous cell func-
tions, among them proliferation, apoptosis, differentia-
tion and cell motility (Seger and Krebs, 1995; Chang
and Karin, 2001; Johnson and Lapadat, 2002). More-
over, in many types of cancer, dysfunctions in the
MAPK pathway have been detected (Downward, 2003;
Roberts and Der, 2007). Therefore, a heightened un-
derstanding of the pathway may potentially lead to the
discovery of new drug targets for cancer treatment.
While there are several variants of MAPK cascades

depending on organism and signal type, the topologi-
cal motif shown in Fig. 1 is conserved in MAPK path-
ways throughout all eukaryotic cells (Seger and Krebs,
1995). In the figure, we show a prominent example
of a MAPK cascade, the growth-factor induced Ras-
Raf-MEK-ERK cascade. When a cell is exposed to
certain growth factors, a series of intermediate reac-
tions is triggered that ultimately lead to the activation
of the enzyme Ras, which itself phosphorylates Raf,
a protein also called MAPKKK (MAP-Kinase-Kinase-
Kinase). In its activated state, Raf can phosphorylate
the protein MEK (MAPKK) at two different sites. The
double-phosphorylatedMEK can then act as an enzyme
in the double phosphorylation of ERK (MAPK), which
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activates several transcription factors and downstream
kinases in its phosphorylated state. Metabolic Control
Analysis (MCA) suggests that these reactions down-
stream from Ras, the actual cascade, are most important
for the dynamics (Hornberg et al., 2005).
The first mathematical model of the MAPK cascade

was formulated by Huang and Ferrell (Huang and Fer-
rell, 1996), showing that the system can act as an ultra-
sensitive switch. Later, it was found that adding ex-
plicite negative feedback leads to oscillations (Kholo-
denko, 2000) and that the combination of double phos-
phorylation and enzyme sequestration introduces an im-
plicit feedback leading to bistability (Markevich et al.,
2004) and oscillations (Qiao et al., 2007). Most inves-
tigations adopted the ranges of model parameters (con-
centrations and rate constants) from (Huang and Fer-
rell, 1996), based on measurements in Xenopus oocyte
extracts. However, little is known about the possible pa-
rameter ranges in which eukaryotic cells can operate in
different species and at different developmental stages.
It has been argued before that the complicated struc-
ture of a three-layered double-phosphorylation cascade
could have evolved as a result of an optimization of the
response time to signals (Frey et al., 2008). However,
there may also be adaptive advantages for the realiza-
tion chosen by nature that are based on other dynamical
properties of the underlying models.
In this paper we apply the approach of generalized

modeling (Gross and Feudel, 2006; Steuer et al., 2006;
Gross et al., 2009) to the MAPK cascade. The main
advantage of this approach is that it avoids simulation,
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which is numerically demanding and can be unreliable
for some systems. While generalized models reveal
only certain types of information, this information is
gained very efficiently, allowing us to explore a large
parameter space.
Our analysis identifies the key parameters that govern

the stability of stationary states of the MAPK cascade.
We then analyze the transitions in which the stability
is lost. This reveals regions of oscillatory behavior and
provides evidence for bistability, generalizing previous
results. Then we apply the generalized analysis to iden-
tify a parameter region in which complex dynamics can
be observed. Finally, we investigate the effect of exter-
nal feedback mechanisms on the dynamics of the cas-
cade.

2. Formulation of the model

2.1. Generalized modeling

The example of the MAPK signaling pathway
presents a typical challenge: While the structure of
the underlying network of protein interactions is rel-
atively well known, the functioning of the system is
closely linked to its dynamics and therefore difficult
to observe in experiments. Conventional modeling ap-
proaches aiming at exploring the dynamics of the sys-
tem are forced to restrict every process to a specific rate
law. It is therefore often not clear whether the observed
dynamics represents robust behavior of the system or
arises only because of the specific choice of functional
forms. Moreover, the exploration of the long-term be-
havior of conventional models by direct simulation is
numerically inefficient. Computational restraints there-
fore impose strong limits on the size of the parameter
space that can be explored.
The approach of generalizedmodeling is based on the

insight that certain information can be extracted more
efficiently by considering the whole class of plausible
models (Gross and Feudel, 2006; Steuer et al., 2006;
Gross et al., 2009). Instead of parameterizing the spe-
cific rate laws in the model, we directly parameterize
the Jacobian matrix, governing the dynamics close to
all possible steady states in all models that are consis-
tent with the observed interaction network. Only subse-
quently is the class of models under consideration nar-
rowed down by fixing certain parameters of the gener-
alized model.
Before we focus specifically on the MAPK cascade,

let us introduce the approach of generalized modeling
as such. For this purpose consider a given network of
biochemical interactions regulating the concentrations

of a number of proteins. If the concentrations are suffi-
ciently high to neglect stochastic effects, the dynamics
of the system can be captured by a system of differential
equations of the form

d
dt
S(t) = N f (S), (1)

where S is a vector of protein concentrations, N is the
stoichiometric matrix and f is a flux vector depending
on the S i.
Assuming that a positive, but not necessarily stable,

steady state S∗ exists, this equation can be normalized
with respect to the steady state concentrations and writ-
ten in the form

d
dt
x = Λμ(x) (2)

with xi = S i/S ∗i , Λi j = Ni j f j(S∗)/S∗i and μi(x) =
fi(S)/fi(S∗).
The local dynamics close to the steady state S∗ is gov-

erned by the corresponding Jacobian matrix defined as
Ji j = ∂S i(t)/∂S j

∣∣∣
S∗ . Since Λ does not depend on x the

Jacobian of our system can be written as

J = Λθμx (3)

with

θ
μ j
xi =

∂μ j(x)
∂xi

∣∣∣∣∣∣
S∗
. (4)

The steady state under consideration is stable if all
eigenvalues of the Jacobian have negative real parts and
unstable if at least one eigenvalue has a positive real
part.
Changing the parameters can bring about a loss of

stability when it causes a single real eigenvalue or
a complex conjugate pair of eigenvalues to cross the
imaginary axis of the complex plane, acquiring a pos-
itive real part. The former case corresponds to a saddle-
node bifurcation in which the number of steady states
changes, while the latter corresponds to a Hopf bifurca-
tion in which a limit cycle emerges.
The entries of Λ and θμx constitute a complete param-

eterization for the entire range of possible Jacobians that
are consistent with the underlying topology of biochem-
ical interactions. Since we have not specified the right-
hand-side of the equations of motion, Eq. 2, we cannot
compute the steady states of the system with the cho-
sen degree of generality. Therefore, also the entries of
the Jacobian matrix, which depend on the steady state,
remain unknown. However, the quantities appearing in
the Jacobian are constants and can therefore be inter-
preted as unknown parameters with the same right as
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the parameters that are usually introduced in conven-
tional modeling.
In general, the generalized parameters can be re-

lated to parameters appearing in conventional models
(Van Voorn et al., 2008; Stiefs et al., 2009). Given a
steady state from a conventional model, it is straightfor-
ward to compute the corresponding generalized parame-
ters. Conversely, a single set of generalized parameters
can be translated to a family of conventional models,
exhibiting a corresponding steady state. While the dif-
ficulty of the latter depends on the functional forms that
are assumed in the conventional model, it is no major
obstacle in the models with mass action used in this pa-
per.
The parameters identified by the generalized model-

ing procedure have an intuitive biological interpretation:
The entries of Λ have the dimension of an inverse time
and represent characteristic time scales of the model.
They are therefore called scale parameters in general-
ized modeling. The entries of θμx are logarithmic deriva-
tives of the fluxes. The corresponding parameters are
called exponent parameters in the context of generalized
models and elasticities in the context of metabolic con-
trol theory (Fell, 1992). Note, for example that if one
of the processes in the model is linear fi ∼ S j the cor-
responding exponent parameter is θi j = 1, irrespective
of the constant of proportionality. More generally, for
any power-law relationship fi ∼ S jp the corresponding
parameter is the exponent θi j = p. Even for functions
that are not power laws, the exponent parameters can be
interpreted as a measure of the local nonlinearity.
In the steady state under consideration all fluxes in the

model have to balance N f (S∗) = 0, which constitutes a
constraint for the permissible values of scale parame-
ters. To satisfy this constraint and reduce the number of
free parameters it can be advantageous to use an alter-
native parameterization based on the flux modes of the
model (Steuer et al., 2007). In this parameterization the
scale parameters denote the strength of the independent
flux modes that are consistent with the stationarity con-
dition.
In summary, the generalizedmodel provides a param-

eterization of the Jacobian in all steady states that can
be found in a class of models defined by a given inter-
action topology. While the analysis of the Jacobian can
only reveal certain types of information it does so with a
high degree of robustness and numerical efficiency. Al-
though numerical simulation of conventional models is
useful to supplement insights gained from generalized
modeling, the generalized model allows us to explore
dynamics close to steady states without resorting to nu-
merical simulation. The analysis of the Jacobian matrix

benefits from the availability of highly efficient algo-
rithms for the computation of eigenvalues. Therefore,
in models of intermediate complexity, say less than 50
dynamical variables, several tens of billions parameter
sets can be explored in reasonable computational time
(Gross et al., 2009). By comparison, for the present
model already the analysis of just tens of millions of
parameter sets yields sound statistical results.

2.2. Model of the MAPK cascade
In our model of the MAPK cascade we use the fol-

lowing naming convention: The symbol S ij is used to
denote the concentrations of proteins and protein com-
plexes which appear as substrates in the model. The
superscript index i indicates the layer of the cascade in
which the specific protein is involved, while the sub-
script index j enumerates all proteins in the respective
layer. Note that, although we avoid the use of asterisks,
in the following all symbols S ij denote concentrations in
the steady state.
The concentrations of the additional free kinases and

phosphatases that do not appear as substrates them-
selves are labeled KiR and P

i
R, respectively. The to-

tal concentrations of the substrates, kinases and phos-
phatases in a given layer of the cascade are denoted S iT,
KiT and P

i
T. As these concentrations are conserved in the

context of the model, they constitute constant external
parameters. These naming conventions are illustrated
in Fig. 2.
In the following we consider three different models

describing subsystems of the MAPK cascade of differ-
ent complexity. The first of these models contains only
a double phosphorylation step as it occurs in the sec-
ond layer of the cascade whereas the first and third layer
are neglected. The second model contains the first and
the second layer of the cascade, but neglects the third.
Finally, the third model contains all three layers. The
scope of the different models is indicated by boxes in
Fig. 2. The kinase that catalyzes the phosphorylation in
the second layer is called K1R in the first model in order
to indicate that, in the scope of this model, it is not a
substrate by itself. In the two larger models it is called
S 01 as it appears as a substrate in the first layer.
For the dynamics of the cascade, enzyme sequestra-

tion is suspected to be of central importance (Blüthgen
et al., 2006; Legewie et al., 2007; Qiao et al., 2007).
Sequestration can affect the dynamics because an en-
zyme that is bound to a substrate cannot at the same time
participate in other reactions, including its own dephos-
phorylation. Without external feedback, sequestration
effects provide the only means by which the concentra-
tions on the lower layers of the cascade can affect the

3



Acc
ep

te
d m

an
usc

rip
t 

dynamics on the layers above. To capture the seques-
tration effects explicitly we follow (Qiao et al., 2007)
and break each phosphorylation step into two separate
processes, for example

S 00 + K
0
R
k0
�

k1
S 02

k2
→ S 01 + K

0
R, (5)

The first step represents the reversible binding of the ki-
nase K to the unphosphorylated substrate S 00, while the
second step represents the action of the kinase result-
ing in the release of the phosphorylated substrate S 01.
Other approaches such as Michaelis-Menten based en-
zyme kinetics can miss sequestration effects. Although
a sequestration-based approximation scheme has been
proposed recently (Ventura et al., 2008), the efficiency
of generalized modeling does not rely on the number of
reactions or variables being small. We therefore avoid
this approximation and represent the complexes explic-
itly in the model.
Assuming that the concentrations of proteins are suf-

ficiently high to be considered as continuous variables,
we capture the dynamics of the cascade by a system of
coupled ODEs. For the phosphorylation step in the top
layer of the cascade we obtain

d
dt
S 00 = − f1(S

0
0,K

0
R) + f2(S

0
2)

d
dt
S 02 = f1(S

0
0,K

0
R) − f2(S

0
2)

d
dt
S 01 = f3(S

0
2)

(6)

where f1, f2, and f3 are general functions, which are
not yet restricted to specific functional forms.
Starting from the set of differential equations, the Ja-

cobian of the generalized model is obtained by follow-
ing the steps outlined in the previous section. While
we omit this derivation here the resulting equations are
shown in the supplementary material. Also, the com-
plete derivation of the generalized model for the one-
layer model is shown for the purpose of illustration in
the appendix.
As the model explicitly describes the complexes

formed by enzymes with their substrates, it is reason-
able to assume that the remaining processes are gov-
erned by mass action. We therefore utilize the ability of
generalized models to deal with general functions only
when considering the effect of external feedbacks, while
the ability to explore large parameter spaces is used
throughout the whole study. With this choice our model
corresponds directly to the conventional models consid-
ered in (Huang and Ferrell, 1996; Qiao et al., 2007).

Note that even if it is assumed that the processes are lin-
ear, the system of equations is nonlinear as it includes
bilinear terms. Using mass conservation to express the
concentrations of certain proteins as a function of others
(see appendix) changes some of the bilinear terms into
explicit quadratic nonlinearities.

3. Investigation of the dynamics

3.1. Stability analysis of the single-layer model
Following Qiao et al. (2007), we started by investi-

gating the second layer of the cascade in isolation. This
comparably simple system is still analytically tractable
and has been investigated in earlier work (Markevich
et al., 2004; Ortega et al., 2006).
To identify the parameters that have a strong impact

on the stability of steady states we created a large en-
semble of 106 parameter sets where the parameters in
each set were generated as follows: We first drew the
concentrations of S 13, S

1
5 and K

1
R from a uniform dis-

tribution. These concentrations were then normalized
such that K1T = S 13 + S

1
5 + K

1
R = 1. Then, S 14, S

1
6

and P1R were drawn randomly and normalized such that
P1T = S

1
4 + S

1
6 +P

1
R = 1. To ensure that sequestration ef-

fects can have an impact on the dynamics we set the to-
tal concentration S 1T of the substrate to 10, so that there
is considerably more substrate than kinases and phos-
phatases. A fraction of the substrate is already bound
in the complexes S 13, S

1
5, S

1
4, and S

1
6. We distribute the

remainder r = S 1T − S
1
3 − S

1
5 − S

1
4 − S

1
6 by drawing ran-

dom concentrations for S 10, S
1
1, and S

1
2 and normalizing

so that S 10 + S
1
1 + S

1
2 = r. Finally we drew the strength

of all flux modes in the model randomly from a uniform
distribution.
In order to assess the impact of the individual pa-

rameters on stability we computed the stability of the
steady state in each sample parameter set. Stable steady
states were assigned the stability value 1 whereas unsta-
ble states were assigned the stability value 0. For each
parameter we then computed the Pearson correlation co-
efficient of the focal parameter with the stability value
across the whole ensemble.
For the single layer the correlation coefficients are

shown in Fig. 3A. The concentrations of the unbound
kinase K1R and phosphatase P

1
R show a correlation co-

efficient of 0.21 with stability. Consequently the sys-
tem is likely to be stable if these concentrations are high
and unstable if they are low. This shows that instability
occurs most likely if a large fraction of the kinase and
phosphatase is sequestered in complexes. Particularly,
the complexes S 13 and S

1
6, which are involved in the pro-

duction of the single-phosphorylated S 11 are negatively
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correlated with stability, showing that a high concentra-
tion of these complexes has a strong destabilizing effect.
By contrast, the complexes S 14 and S

1
5 which appear in

reactions decreasing S 11 are positively correlated with
stability.
More detailed insights in the effect of important pa-

rameters can be gained by plotting the fraction p of ran-
domly drawn steady states that are stable. For this pur-
pose we generated another ensemble of 107 parameter
sets as described above. Figure 4 shows p as a func-
tion of selected combinations of two parameter values.
In Fig. 4A, p is shown as a function of the free enzyme
concentrations K1R and P

1
R. The figure reveals that low

concentrations of either K1R and P
1
R promote instabil-

ity. This confirms that sequestration plays a role in the
destabilization of steady states. The dependence of p on
the parameters S 13 and S

1
6, which were found to have a

strongly destabilizing impact, is plotted in Fig. 4B. The
figure shows that the fraction of stable states changes
very sharply as a threshold is crossed. By comparison,
even if the stabilizing parameters S 14 and S

1
5 are very

low p only drops to 0.5 (Fig. 4C). The comparison con-
firms the lesser impact of the two stabilizing parame-
ters, already seen in the correlation analysis. This con-
clusion is further supported by the direct comparison of
the destabilizing parameter S 13 with the stabilizing pa-
rameter S 14 (Fig. 4D). In summary we conclude that the
main source of instability in the single-layer system lies
in high concentrations of the complexes S 13 and S

1
6.

3.2. Mechanisms of instability

To understand the mechanism leading to instability
in more detail we consider the eigenvectors of the sys-
tem’s Jacobian. In an unstable steady state the eigenvec-
tor corresponding to largest (positive) eigenvalue repre-
sents the direction of perturbation in the state space of
the system that grows most rapidly in time. Therefore,
the eigenvector also marks the direction in which the
system leaves the steady state after destabilization oc-
curs. We computed the typical direction of escape from
the unstable steady state by averaging over the eigen-
vectors of the largest eigenvalue in 106 unstable param-
eter sets generated randomly. The components of this
averaged direction of escape are shown symbolically in
Fig. 5. The figure illustrates that the instability causes
the proteins to shift into either one of the phosphoryla-
tion cycles, while depleting the other.
The nature of the instability described above can be

linked to the destabilizing effect of S 13 and S
1
6. If there

is a large concentration of S 13 (or, S
1
6) then the kinase

(phosphatase) is not available for the formation of the

complex S 15 (S
1
4). This implies the primary reaction in-

volving S 11 as a substrate is binding in the complex S
1
4

(S 15). This leads to accumulation in the left (right) phos-
phorylation loop and consequently increases S 13 (S

1
6)

further. Thus a positive feedback loop is formed that
causes the instability.

3.3. Relation to bistability
Unstable steady states are often located on a sepa-

ratrix that divides the basins of attraction of different
attractors. Also in the MAPK cascade previous works
have shown that a single layer of the cascade can sup-
port bistable dynamics (Markevich et al., 2004; Qiao
et al., 2007), in which the system can approach either
one of two stable steady states. To confirm that the un-
stable steady states observed in the generalized model
mark the separatrix between two stable steady states, we
simulated the dynamics of the conventional model used
in (Qiao et al., 2007) using a stiff numerical integrator
based on the modified extended backward differentia-
tion formula (MEBDF) (Hairer and Wanner, 1991). We
randomly selected 100 starting points corresponding to
unstable states computed in the generalized model. For
all of these points we found that multiple trajectories
starting close to the steady state eventually converged
to two different final states. An example time series is
shown in the supplementary material. This result sug-
gests that, in a class of reasonable conventional mod-
els of the second layer of the MAPK cascade, the long-
term dynamics is bistable whenever we find an unstable
steady state in the generalized model.

3.4. Stability in larger models
As a next step we considered the stability of two

larger subsystems of the cascade. We proceeded anal-
ogously to the investigation of the single-layer model
by first generating a large ensemble of randomly drawn
parameter sets and then correlating the stability of the
corresponding steady states with the parameter values.
In the investigation of the larger models, describing

two and three layers of the cascade, we slightly altered
our procedure for generating random parameter sets in
order to generate sets that are close to empirical obser-
vations, using data from Huang and Ferrell (1996). The
details of this procedure are explained in the appendix.
The results of a correlation analysis are shown in

Fig. 3B,C. Figure 3B shows the stability correlations in
our second model, which consists of the first and sec-
ond layer of the cascade. While there are now more
parameters than in model 1 (Fig. 3A), the additional pa-
rameters, describing the top layer of the cascade have
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a weaker impact on the stability of steady states, as ev-
idenced by the low values of the corresponding corre-
lation coefficients. Note furthermore that the pattern of
correlation coefficients in the second model is very sim-
ilar to that found in the first model. In particular, there
is a repeated motif of strong positive correlations in P1R,
S 14, and S

1
5 and strong negative correlations in S

1
3 and

S 16.
In the third model, consisting of all three layers of

the cascade, the pattern of correlations observed above
reappears twice. As shown in Fig. 3C, the correlation
coefficients corresponding to both the first and second
layer of the cascade are now quite small, indicating a
much reduced impact on the dynamics. Nevertheless the
pattern of correlations is still visible in the second layer.
More importantly, the pattern reappears in a stronger
form in the third layer. Thus, the correlation analysis
shows that the basic mechanism of instability, the posi-
tive feedback induced by sequestration of substrates into
the complexes S 3 and S 6, remains the same in all three
models.

3.5. Oscillatory instabilities
In the next step, we focused on the dynamics that

can be observed in the two and three layer systems af-
ter the stability of a steady state has be lost. For this
purpose we searched for the bifurcation points, mark-
ing a change in the stability of a steady state. Since
the probability of finding a bifurcation point by random
sampling is of measure zero, we generated a ensemble
of 107 random parameter sets as described above, but
selected only those parameter sets in which the real part
of the leading eigenvalue of the Jacobian in the steady
state was in the range [0,0.01], indicating proximity to
a bifurcation point. Those parameter sets were then set-
tled to the bifurcation manifold by a Newton fixed-point
algorithm (Kelley, 2003).
In the single-layer model this procedure yields only

bifurcation points of saddle-node type, which in this
model mark the onset of bistability. The absence of
Hopf bifurcations, which typically correspond to the on-
set of oscillatory dynamics, supports the previously ob-
served absence of oscillations in the single-layer model.
In the two and three-layermodels we find both Hopf and
saddle-node bifurcations, which shows that both bista-
bility and oscillations are generically possible in these
models.
Further insights can be gained by investigating the

dynamics close to unstable steady states. For all un-
stable steady states found in 107 samples we checked
whether the leading eigenvalue, which governs the de-
parture from the steady state, is real or complex valued.

In the one-layer model, we found no unstable steady
states with complex leading eigenvalues, providing fur-
ther evidence for the absence of oscillatory dynamics.
By contrast, leading complex eigenvalues are found in
4% of the unstable steady states of the two-layer system
and in 34% of the unstable steady states of the three-
layer system. This suggests that oscillatory dynamics
appear more prominently in the three-layer cascade.

3.6. Complex global dynamics

Since we saw that oscillatory dynamics is absent in
the one-layer system, but appears when a second layer
is added, one can ask whether even more complex dy-
namics such as quasiperiodicity or chaos can occur in
the three-layer system. Generalized modeling, being es-
sentially based on a local analysis, cannot detect such
global dynamics directly. However, generalized mod-
els can be used to search for local bifurcations of higher
codimension that can serve as proxies for complex dy-
namics.
In order to find a bifurcation of codimension two,

one must adjust two parameters of the system simul-
taneously to their exact bifurcation values. There-
fore, codimension-2 bifurcations are almost never ob-
served directly in experiments and have, for the lack
of examples, received relatively little attention in the
mathematical literature (Guckenheimer and Holmes,
1997)(p. 420). Nevertheless the identification of
codimension-2 bifurcations can reveal many insights in
the dynamics of a system because of their role of orga-
nizing centers for different types of dynamics.
An example of a codimension-2 bifurcation is shown

in Fig. 6 in a three-parameter bifurcation diagram,
which was created by a triangulation procedure de-
scribed in (Stiefs et al., 2008). The parameters are given
in Table S1 in the supplementary material. In the three-
dimensional parameter space a surface of Hopf bifurca-
tion points (light surface) and a surface of saddle-node
bifurcation points (dark surface) intersect. On the in-
tersection line of the surfaces the Jacobian has both a
single zero eigenvalue and a purely imaginary eigen-
value pair, marking the points on the intersection line
as codimension-2 Gavrilov-Guckenheimer bifurcation
points. It is well known from normal form analysis that
close to this type of bifurcation quasiperiodic dynam-
ics should generally occur (Kuznetsov, 1995)(p. 345).
Another example of a codimension-2 bifurcation is the
double-Hopf bifurcation, which is characterized by the
presence of two purely imaginary eigenvalue pairs. This
bifurcation generically involves the creation of chaotic
and quasiperiodic regions (Kuznetsov, 1995)(p. 369).
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While the presence of Gavrilov-Guckenheimer and
double Hopf bifurcations cannot guarantee complex
long-term behavior, they serve as proxies indicating pa-
rameter regions in which such complex dynamics is
likely. We therefore used the generalized model to
search specifically for these bifurcations. Explicit nu-
merical simulation of the conventional model was then
used to explore the dynamics close to these bifurcation
points. In this way the greater efficiency of generalized
models is combined with the higher predictive power
of conventional models. In the model of the MAPK
cascade we observed interesting dynamics only close
to double-Hopf bifurcations, which appear exclusively
in the three-layer system. A two-parameter bifurca-
tion diagram of a double-Hopf bifurcation and two ex-
ample time series from different regions are shown in
Fig. 7. The corresponding parameters are listed in Table
S1 and Table S2 in the supplementary material. Both
timeseries show evidence of complex mixed-mode os-
cillations. Moreover the spike-like time-series shown
in Fig. 7C exhibits an irregularity that is indicative of
Šilnikov chaos. Similar dynamics were also observed
at multiple points in the neighborhood (not shown). We
are therefore confident that the system shows chaotic
long-term behavior in a finite parameter region. How-
ever, to confirm the chaotic nature of the dynamics and
to determine the parameter ranges in which they occur
will requiremore extensive numerical investigations, in-
cluding the computation of Lyapunov exponents, which
exceed the scope of this paper.

3.7. Explicit Feedback
In addition to the sequestration-mediated negative

feedback inherent in the cascade, we also considered the
implications of adding explicit feedback loops. While
the structure of the MAPK cascade is widely conserved
throughout eukaryotic cells, this is not necessarily true
for the types of feedback that may depend on species
and tissue (Kolch et al., 2005). Here we consider two
types of mechanisms: a) In fibroblasts, inhibitory phos-
phorylation of SOS, a protein upstream from Ras (K0R),
by ERK (S 22) effectively inhibits the formation of the
Ras-Raf complex (S 02) (Langlois et al., 1995; Kholo-
denko, 2000). b) In COS1-cells, activated ERK (S 22)
feeds back to MEK (S 10) during cell adhesion by phos-
phorylating it at the site T292, which inhibits phospho-
rylation by PAK at the adjacent site S298. The sup-
pressed phosphorylation facilitates the formation ERK-
Raf complexes (S 13,S

1
5) (Eblen et al., 2004), resulting in

a negative feedback of S 22 on S
1
0.

As it is widely believed that the MAPK cascade is uti-
lized mainly as an ultrasensitive switch, we ask whether

the feedback loops act to suppress other dynamics, such
as oscillations. We therefore investigated whether the
oscillatory regime is reduced by introducing feedback in
the system. To study this question in conventional mod-
els is not trivial for two reasons: First, in a conventional
model the effect of the feedback has to be restricted to
a specific functional form, which can in practice be dif-
ficult to derive. Second, and perhaps more importantly,
to study the effect of feedbacks in isolation in conven-
tional models is not trivial. The question is typically
how the stability of a given steady state observed in na-
ture depends on the nonlinearity of the feedback. How-
ever, if feedback parameters in conventional models are
changed one generally observes the combined effect of
both the altered nonlinearity and the corresponding shift
in the steady state. Both of these difficulties are easily
avoided in generalized models as they are designed to
deal with unknown functions and parameterize the po-
sition of the steady state independently from the nonlin-
earities in the system.

We studied the effect of the feedback of type a) and
b) by adding an inhibitory link from the final product
of the cascade, S 22, back to the phosphorylation steps in
the first (a) and second (b) layer, respectively. In our
model inhibitory feedback implies that the first deriva-
tive of the feedback function is negative. The effect of
the feedback can therefore be modeled by introducing
θ f = θ

μ1

S 22
< 0 (feedback a) and θ f = θμ7S 22

= θ
μ13

S 22
< 0

(feedback b). In order to determine the effect of the
feedback we generated an ensemble consisting of 107
parameter sets for each of the two feedback mecha-
nisms. The parameter sets were drawn randomly, as
described above, except for the additional feedback pa-
rameter θ f , which were drawn randomly from a uni-
form distribution in the interval [−2, 0]. This range is
for instance consistent with inhibition modeled by a Hill
function with exponent two. For each parameter set, we
then computed the spectrum of the Jacobian with and
without feedback. While the stability of steady states
corresponding to individual data sets changes when the
feedback is switched on, the net effect on stability on
the whole ensemble is small for both types of feed-
back (not shown). A stronger effect of the feedback
becomes apparent if one considers the dynamics subse-
quent to the loss of stability. Figure 8 shows the change
in the number of unstable states in which the leading
eigenvalue of the Jacobian is complex or real, respec-
tively. For both feedback mechanisms we observe that
as the feedback parameter increases the number of un-
stable steady states with complex leading eigenvalues
increases, while the number of unstable steady states
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with real leading eigenvalues decreases. Although the
observation of an unstable steady state with complex
leading eigenvalues does not imply that the long-term
dynamics of the system is oscillatory, the increase of
such states over a wide parameter range strongly sug-
gests that also oscillatory long-term dynamics is pro-
moted rather than suppressed by the two feedback loops
under consideration.

4. Discussion

In this paper we used generalized modeling to ana-
lyze the dynamics of a class of models of different sub-
systems describing the MAPK cascade. By a correla-
tion analysis, building on tens of millions of parameter
sets, we determined the impact of the individual model
parameters on the stability of the steady states. This
analysis confirmed that sequestration of enzymes has a
strong impact on the dynamics of the cascade. In partic-
ular, we showed that instability is likely if large portions
of the kinase and phosphatase acting on the lowest level
of the cascade are sequestered into complexes (S 23 and
S 26 in our notation). In this case a positive feedback loop
is formed that destabilizes stationary states.
In a second step we used bifurcation analysis, spec-

tral analysis of unstable states, and explicit simulation
to investigate the dynamics subsequent to the loss of
stability. In a subsystem, consisting of only one layer
of the cascade, bifurcation analysis of the generalized
model revealed that steady states lose their stability only
in saddle-node bifurcations. By contrast, in the two-
and three-layer subsystems Hopf bifurcations as well as
saddle-node bifurcations occur. In the present model it
was confirmed by numerical simulations that the saddle-
node bifurcationsmark the onset of bistability, while the
Hopf bifurcationsmark the onset of oscillations. Our re-
sults are therefore in agreement with earlier work (Qiao
et al., 2007) showing that, without external feedback, at
least two layers of the cascade are required to observe
oscillatory dynamics, while bistability already occurs in
a single layer of the cascade.
Using a combination of generalized and conventional

modelingwe then identified a parameter region in which
complex and potentially chaotic mixed-mode oscilla-
tions occur. To determine the exact nature of these os-
cillations and the parameter ranges in which they can be
observed is a promising question for future studies, but
will probably require more extensive numerical simula-
tions and the computation of Lyapunov exponents.
Finally, we have investigated the impact of two

known feedback loops acting on the MAPK cascade.
Our analysis indicates that, under general conditions,

the effect of these loops is to reduce bistability and pro-
mote oscillatory dynamics in the cascade.
Sustained oscillations in cells can be generated by

several different mechanisms (Tyson et al., 2003). The
most prominent cause of oscillations is negative feed-
back, sometimes in connection with a time delay. Ex-
plicit negative feedback led to sustained oscillations in
various models of the MAPK cascade (Kholodenko,
2000; Shankaran et al., 2009) and indeed enlarged the
oscillatory parameter regime in our model, too. How-
ever, negative feedback cannot explain the oscillations
without explicit feedback, which must therefore rely on
a different mechanism. It is known that in a system with
positive feedback that exhibits bistability, a slow pro-
cess can cause the system to jump between the two sta-
ble states. As a result, relaxation oscillations occur that
usually have a pulselike shape (Kholodenko, 2006). In-
deed, it was found that in the MAPK cascade, the sec-
ond layer is in the regime of bistability when the whole
system oscillates (Qiao et al., 2007). The bistable dou-
ble phosphorylation loop is controlled by a slow process
in the top level, thus alternating between the two stable
states. It is conceivable that a third process in the full
cascade could interact with an already oscillating two-
layer system and thereby cause chaotic behavior.
An important question is whether oscillatory dynam-

ics in the MAPK cascade play a role in vivo. Based
on the early modeling results, it is often assumed that
the cascade is utilized as an ultrasensitive switch, and
other dynamics appear only as nonfunctional byprod-
ucts. Our results illustrate that the oscillatory param-
eter space is quite large and therefore likely to be en-
countered in vivo. This view is supported by the recent
experimental observation of MAPK oscillations (Hilioti
et al., 2008; Shankaran et al., 2009).
Further support for the functional role of oscillations

comes from an evolutionary argument. If oscillations
were indeed non-functional one could suspect that spe-
cific mechanisms suppressing oscillations should have
evolved. Yet, the basic topology of the MAPK cas-
cade that can sustain oscillations is conserved through
evolution. By contrast, external feedback loops, that
could potentially suppress oscillations, differ among or-
ganisms and cell types. Moreover, the two examples
of feedback loops studied here were found to promote
oscillations instead of suppressing them. If the MAPK
cascade is indeed used both as a switch and as an oscil-
lator under different physiological conditions, it is intu-
itive that the system should be very well conserved, as
any further mutations are unlikely to maintain both of
the cascade’s function.
To ascribe biological function also to the irregular os-
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cillations reported here is highly speculative. Neverthe-
less, it is conceivable that the observed spike-like dy-
namics could play a useful role. One could alternatively
suspect that the complex oscillations are a byproduct of
a mechanism that enhances differences between individ-
ual cells.
Such a mechanism may be useful because if in a pop-

ulation of cells, a substantial fraction of the populations
changed their behavior at a similar level of an external
stimulus, then the response would become switch-like
also on the population level. This could have detrimen-
tal consequences because it could seriously decrease
the dynamical stability on the population level and pro-
duce unnecessarily strong responses. It may therefore
be advantageous to sustain a high sensitivity not only
to the stimulus but also to enzyme concentrations that
may differ between individual cells. Thereby, signals in
different cells could be triggered at different levels of
the stimulus, so that the response of the population is
smooth, while the response of the individual cell stays
sharp. Weakly chaotic dynamics could possibly arise as
a byproduct of this internal sensitivity.
The question whether the detected forms of dynam-

ics can appear in vivo is closely connected to the ques-
tion how realistic the space of parameters assessed in
our study is. The ranges that we assigned to the gen-
eral parameters were motivated by experimental data.
While the total concentrations of the involved enzymes
have been measured in one cell type (Huang and Ferrell,
1996), less is known about the remaining parameters.
Note, however, that large differences in the fluxes fi (see
supplementary material) are to be expected since also
the total concentration listed in Table 5 vary strongly be-
tween different layers. Therefore the parameter ranges
in which oscillations and complex dynamics were ob-
served in this study are not unreasonable. Nevertheless,
future experimental work covering further variables and
different cell types and developmental stages would be
highly desirable to clarify the dynamics and function of
the MAPK cascade in vivo.
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Appendix

Construction of the Jacobian
We demonstrate the construction of the Jacobian for

the one-layer system, consisting of two phosphorylation

steps. In a general form, the associated system of ODEs
is

d
dt
S 11 = f9(S 13) − f10(S

1
1, P

1
R) + f11(S

1
4)

− f13(S 11,K
1
R) + f14(S

1
5) + f18(S

1
6)

d
dt
S 12 = f15(S 15) − f16(S

1
2, P

1
R) + f17(S

1
6)

d
dt
S 13 = f7(S 10,K

1
R) − f8(S

1
3) − f9(S

1
3)

d
dt
S 14 = f10(S 11, P

1
R) − f11(S

1
4) − f12(S

1
4)

d
dt
S 15 = f13(S 11,K

1
R) − f14(S

1
5) − f15(S

1
5)

d
dt
S 16 = f16(S 12, P

1
R) − f17(S

1
6) − f18(S

1
6)

From these equations, the stoichiometric matrix N is
constructed according to the rule that Ni, j = 1 if f j+6
appears in the equation for S 1i with a positive sign,
Ni j = −1 if f j+6 appears in the equation with a nega-
tive sign and Ni j = 0 else. Note that we use f j+6 for
the sake of a consistent notation. Since the first layer of
the cascade is not included in this model, the fluxes start
with f7 here.
Next, Λi j = Ni j f j+6/S 1i is constructed from the stoi-

chiometric matrix.
Assuming mass action, the matrix of derivatives is

given by

θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

S 11
S 10

−

S 12
S 10

−

S 13
S 10
−

S 13
K1R

−

S 14
S 10

−

S 15
S 10
−

S 15
K1R

−

S 16
S 10

0 0 1 0 0 0
0 0 1 0 0 0
1 0 0 −

S 14
P1R

0 −

S 16
P1R

0 0 0 1 0 0
0 0 0 1 0 0
1 0 −

S 13
K1R

0 −

S 15
K1R

0
0 0 0 0 1 0
0 0 0 0 1 0
0 1 0 −

S 14
P1R

0 −

S 16
P1R

0 0 0 0 0 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The entries of θ that are equal to 1 indicate linear de-
pendencies.
The remaining nonzero entries arise due to indirect

effects because of mass conservation. Here we show the
calculation for

θ
μ1
x1 =

∂μ1

∂x1

∣∣∣∣∣
S=S∗

(7)
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Assuming mass action, f7 = α7S 10K
1
R with a rate con-

stant α7. It follows that

θ
μ1
x1 =

f7
f ∗7
=
S 10K

1
R

S 1,∗0 K
1,∗
R

(8)

Because of mass conservation of the substrate and the
kinase, S 10 = S

1
T − S

1
1 − S

1
2 − S

1
3 − S

1
4 − S

1
5 − S

1
6 and

K1R = K
1
T − S

1
3 − S

1
5. Therefore, taking the derivative

with respect to x1 = S 11/S
1,∗
1 gives

θ
μ1
x1 =

∂μ1

∂x1

∣∣∣∣∣
S=S∗
=

S 1,∗1
S 1,∗0 K

1,∗
R

∂K1RS
1
0

∂S 11

∣∣∣∣∣∣
S=S∗
= −

S 1,∗1
S 1,∗0

(9)

The Jacobian J = Λθμx can then be obtained by ma-
trix multiplication. The resulting matrix is shown in the
supplementary material.

Parameter Ranges
In the two-layer and the three-layer model we use pa-

rameters inferred from biologically reasonable ranges.
We choose the parameters based on data from Xenopus
oocyte extracts (Huang and Ferrell, 1996).

Parameter Value
S 0T 2nM
S 1T 1.2μM
S 2T 1.2μM
K0T 0.3nM
P0T 0.3nM
P1T 0.3nM
P2T 120nM

We vary all total concentrations parameters by factors
of 5 in the random sampling. The steady-state concen-
trations of all dynamic variables are then determined by
the algorithm outlined in the main part of the paper.
Since we do not know of experimental data for typ-

ical steady-state fluxes f, we tried to infer ranges for
these quantities using information on rate constants. For
each steady-state flux fi, there is a rate constant αi of
the conventional model. From (Qiao et al., 2007) we
adopt ranges of 30 − 750min−1 for α3n+2 and α3n with
n = 1 . . .10. Combining this with the steady-state con-
centrations, we can assign ranges to most fluxes. The
remaining fluxes are determined by the flux modes. For
this reason, and also because continuation of the gener-
alized parameters in the bifurcation analysis alters also
the parameters of the conventional models, we cannot
guarantee that all αi of conventional models remain re-
stricted to these ranges. The αi of the samples for which
we show simulations are given in the supplementary
material.
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Figure Legends

Figure 1: Diagrammatric representation of the MAPK signaling cas-
cade. The pathway consists of three layers, a single phosphorylation
loop at the top layer and two double-phosphorylation loops at the other
layers. Phosphorylated forms are indicated by P’s in the figure. The
fully phosphorylated product in each level acts as a kinase phospho-
rylating the proteins on the level below.

Figure 2: Schematic overview of the MAPK cascade. The solid ar-
rows correspond to biochemical reactions while the dashed arrows
denote the binding of an enzyme in the formation of an substrate-
enzyme complex. The dotted kinase K1R (1-layer model) is replaced
by S 01 in the larger models. The three different subsystems that we
analyzed separately are indicated by boxes. The gray dotted lines rep-
resent two types of feedback, which are only included in the model in
Sec. 3.7.

Figure 3: Correlations of parameters with stability. We consider three
different subsystems of the cascade, a single layer (A), two connected
layers (B) and three layers (C). The bars show the correlation of a
given parameter with the stability of the steady states in a large en-
semble of randomly generated parameter sets. The statistical errors,
which are determined by bootstrap resampling, are on the order of the
line width. The plots show a conserved pattern of correlations and
indicate the parameters that are important for stability.

Figure 4: Connection between steady-state concentrations and stabil-
ity. Contour lines computed from 107 random parameter sets show
the fraction of stable systems depending on the two concentrations.
The top left panel shows that instability is promoted by low concen-
trations of free kinase and phosphatase, highlighting the importance
of sequestration effects. The model parameters with the strongest im-
pact on stability are the concentrations of substrates S 13 and S

1
6 (top

right).

Figure 5: Instability in a single layer of the cascade. The components
of the eigenvector corresponding to the largest eigenvalue of the Ja-
cobian are analyzed. For each dynamic variable, the color indicates
the averaged value of the corresponding entry of the eigenvector. All
eigenvectors were normalized so that S 15 = 1 before taking the aver-
age over 106 samples. The diagram shows that the systems leaves the
region of a typical unstable state by accumulating mass in either one
of the two phosphorylation cycles, while depleting the other.

Figure 6: Three-parameter bifurcation diagram of a codimension-2
Gavrilov-Guckenheimer bifurcation. The codimension-2 bifurcation
is formed at the intersection line of a Hopf bifurcation (light gray)
with a saddle-node bifurcation (dark gray). Bifurcations of higher
codimension such as Gavrilov-Guckenheimer and double Hopf bifur-
cations can serve as proxies that indicate parameter regions in which
complex dynamics can potentially be observed. See the supplemen-
tary material for additional parameters.

Figure 7: Complex dynamics close to a double-Hopf bifurcation. A:
Two-dimensional bifurcation diagram with a double Hopf bifurcation.
Parameters are S 0T and S

2
T. Hopf bifurcations are drawn in red, saddle-

node bifurcations in blue. At the green line (AP), a Hopf pair loses its
imaginary part, leading to two distinct real eigenvalues. The numbers
denote the number of complex and real eigenvalues with a positive
real part, in this order. This means that the stable region is marked
by 00. The points B and C at which we show numerical integration
results are drawn in. B and C: Complex oscillations and chaos close
to the double-Hopf bifurcation.

Figure 8: The effect of external feedback. Color-coded is the change
in relative abundance of unstable stationary states as feedback is
switched on. This change is shown separately for unstable states
with leading complex eigenvalues (left) and leading real eigenvalues
(right). The top row corresponds to feedback to the first layer (type
a) while the bottom row corresponds to feedback to the second layer
(type b). In both cases stronger feedback (large values of θ) means that
more unstable steady states with a complex and less states with a real
leading eigenvalue occur. This suggests that the feedbacks promote
rather than inhibit oscillatory dynamics.
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