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Abstract 

In the modeling of complex biological systems, and specially in the framework of the 

description of metabolic pathways, the use of power-law models (such as S-systems and 

GMA systems) often provides a remarkable accuracy over several orders of magnitude in 

concentrations, an unusually broad range not fully understood at present. In order to 

provide additional insight in this sense, this article is devoted to the renormalization group 

analysis of reactions in fractal or self-similar media. In particular, the renormalization 

group methodology is applied to the investigation of how rate-laws describing such 

reactions are transformed when the geometric scale is changed. The precise purpose of such 

analysis is to investigate whether or not power-law rate-laws present some remarkable 

features accounting for the successes of power-law modeling. As we shall see, according to 

the renormalization group point of view the answer is positive, as far as power-laws are the 

critical solutions of the renormalization group transformation, namely power-law rate-laws 

are the renormalization group invariant solutions. Moreover, it is shown that these results 

also imply invariance under the group of concentration scalings, thus accounting for the 

reported power-law model accuracy over several orders of magnitude in metabolite 

concentrations.  

 

Keywords: GMA models; S-systems; self-similarity; scaling; reaction rates.  
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1. Introduction 

 

1.1. Power-law modeling 

 

Power-law models constitute a highly structured nonlinear representation of many 

complex biological systems. Such models, originally developed on the basis of a first order 

Taylor series in log-log space, have provided a very powerful modeling framework, 

specially (but not only) in the domain of biochemical pathways. For instance, see Savageau 

(1976); Voit (2000); Voit et al. (1991) for a general and detailed description of the 

formalism and its applications. As indicated, one important advantage of such formalism is 

that the mathematical description of complex systems is highly structured, thus allowing a 

remarkable mathematical tractability, let it be in the form of S-systems 
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or of generalized mass-action (or GMA, in what follows) systems:  
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In both cases, and in the biochemical context, the system variables xi describe metabolite 

concentrations. Therefore, both S-systems and GMA systems are purely reactional models, 

the power-law functions describing the kinetic rate-laws (also termed velocity functions) of 

the reactions being modeled. An additional and very significant feature of modeling based 

on either S-systems or GMA systems is that, typically, such models are valid over several 

orders of magnitude in concentrations. This behavior has been widely reported in the 

literature (Savageau, 1976; Sorribas and Savageau 1989a, 1989b, 1989c; Voit and 

Savageau, 1987; Voit et al. 1991). In fact, it is not uncommon that such models provide 

accurate predictions over variations of two or three orders of magnitude in concentrations, 

namely it is possible to find sizes as large as 100- or 1000-fold for the range of validity of 
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the models. In spite that power-law models were in principle conceived as precise nonlinear 

approximations, such success seems to suggest that more fundamental reasons might exist 

in such a way that power-law models could, in fact, be the natural description for many 

processes, specially in a biochemical framework. In the last context, an equivalent question 

is: to what extent power-law rate-laws do implement some fundamental properties of 

reactions, that could explain the accuracy of power-law models? In the literature, different 

approaches and explanations have been proposed in order to account for such features. In 

this sense, we can mainly mention the mathematical nature of the formalism, the existence 

of systemic regulations that maintain the concentrations within narrow limits, or the 

advantages of the agregation of interactions in the case of S-systems  (Voit et al. 1991). 

Other arguments are derived from considerations based on approximation theory 

(Savageau, 1979a, 1979b) as well as on the role of fractal kinetics (Aon et al. 2004; 

Kopelman, 1986, 1991; Savageau, 1993, 1995, 1998). In particular, it is interesting to recall 

the important role of fractals in the context of in vivo chemistry, as far as many reactions 

are confined to two-dimensional membranes, one-dimensional channels, or fractal domains 

of non-integer dimension, and an alternative to the classical framework is necessary for the 

analysis of such phenomena. All the contributions just mentioned provide very valuable 

insights that help understanding the naturalness of the power-law function as a tool for 

modeling, in spite that the ultimate reasons accounting for this success seem to be not yet 

understood. In this context, the methods of group theory in general (and of the powerful 

tools of renormalization group in particular) have not been exploited in order to analyze the 

fundamental reasons that confer on power-laws such a special role. Actually, the different 

studies about power-law systems based on group-theoretic properties (Díaz-Sierra et al. 

1999; Hernández-Bermejo and Fairén, 1997; Voit, 1992) are not devoted to the reported 

accuracy of power-law models. In fact, such papers deal mainly with mathematical 

properties of power-law systems, such as the existence of first integrals or reduction 

procedures. Precisely, the purpose of the present work is to make use of renormalization 

group methods in order to shed some light on the fundamental properties accounting for the 

success of power-law functions in the modeling through several orders of magnitude in 

concentrations. In first place, let us recall some general features regarding the 

renormalization group in order to provide a self-contained presentation.  
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1.2. Brief outline of the renormalization group methods 

 

 Renormalization group techniques constitute a significant tool of physics. Actually, 

renormalization group methods are very diverse, ranging from quantum field theory to 

statistical mechanics. The last perspective, naturally associated to real space 

transformations, will be the one of interest in what follows. For instance, see Creswick et 

al. (1992); Fisher (1998); Schroeder (1991); Takayasu (1990) for some clear introductions 

to renormalization group methods in statistical mechanics, including applications to fractals 

and self-similarity.  

 

 The purpose of the renormalization group is to treat quantitatively the change of a 

physical magnitude when the geometric scale is changed. Here the term “physical” is to be 

understood in a broad sense. For instance, let q be a certain physical quantity measured at a 

certain scale of coarse-graining, and let q* be the same quantity measured with the scale of 

coarse-graining changed by a factor λ. The rescaled value q* can be related to the original 

value of q by an appropriate transformation q* =fλ(q). This transformation fλ is the 

renormalization group transformation for magnitude q. Now the basis of the 

renormalization group analysis proceeds to the search of a fixed point of the 

renormalization group transformation, namely the search of a critical value qc such that qc 

=fλ(qc). The value qc thus corresponds to a renormalization group invariant solution, as far 

as it remains unaltered after the application of the renormalization group transformation. In 

statistical mechanics, such solutions usually correspond to critical values of different 

processes such as phase transitions, percolation, etc. The reason is clear: after successive 

application of the renormalization group transformation, we find qc =fλ(fλ(qc)). This 

explains also the close relationship of the renormalization group invariant solutions and 

fractality. In fact, historically the notions of fractal and renormalization group appeared 

independently, but both were intended to analyze what is invariant under the change of 

scale of observation: fractal for geometrical objects, and renormalization group for physical 

quantities. It is also important to stress that, except for very simple problems, the 
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renormalization group transformation is generally an approximation. In other words, 

usually fλ is not the exact description of how q changes after the scaling. Instead, it is in 

general a simplified approximation in order to (i) have the possibility of explicitly writing a 

renormalization group transformation fλ, and (ii) find a transformation fλ that is amenable to 

analysis. This implies also that the solutions found by means of renormalization group 

techniques often provide a hint about the system properties, usually qualitative (and only 

approximate from a quantitative point of view) rather that leading to a precise analysis. Of 

course, the previous considerations imply also that a given problem can be analyzed by 

means of the renormalization group methods with progressively refined degrees of 

approximation.  

 

In a biological context, the origin of power-law or allometric relationships has deserved a 

significant interest from many decades (e.g. see Huxley, 1932). In this sense, very diverse 

contributions can be found in the literature, for instance those based on statistical 

approaches (Kaitaniemi, 2004; Packard, 2009; Wu et al., 2002), network theory (Furusawa 

and Kaneko, 2006), and on physical arguments, mainly based on fractality and scaling 

principles (see Aon et al. 2004; Auffray and Nottale, 2008; Demetrius, 2006; West, 1999; 

West et al. 2002; West and Brown, 2005). In addition, some authors have specifically 

addressed the relevance of group theory and the renormalization group approach (Derome, 

1977; West, 2004) in such framework. However, as indicated in the previous subsection, 

the renormalization group methodology has not yet been applied in the context of power-

law models (such as S-systems and GMA systems) and power-law rate-laws in order to 

account for the accuracy of the resulting models. As indicated, this is just the purpose of the 

present work. More precisely, in this article the renormalization group analysis of reactions 

in fractal or self-similar media is considered. In particular, the renormalization group 

methodology is applied to the investigation of how rate-laws describing such reactions are 

transformed when the geometric scale is changed. This will be done in two successive steps 

corresponding to different degrees of refinement in the renormalization group 

approximation. Such steps shall be termed Zero-Order renormalization group 

approximation (Section 2) and First-Order renormalization group approximation (Section 

3). The precise purpose of such analysis is to investigate whether or not power-law rate-
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laws present some remarkable features accounting for the successes of power-law 

modeling. As we shall see, according to the renormalization group point of view the answer 

is positive, as far as power-laws are the critical solutions of the renormalization group 

transformation, namely power-law rate-laws are the renormalization group invariant 

solutions. Moreover, it is shown that these results also imply the system invariance under 

the group of concentration scalings, thus accounting for the reported power-law model 

accuracy over several orders of magnitude in metabolite concentrations. The work 

concludes in Section 4 with a discussion of the results found.  
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2. Zero-Order renormalization group approximation: exact solution 

 

2.1. One-variable case 

 

Let us first consider the simplest situation in which a single metabolite A reacts in a 

given region of volume V in which the reacting species is restricted to a region of fractal 

dimension d. In the following, we shall denote by M the initial number of molecules in that 

volume, and therefore the concentration of the metabolite is x=M/V. In addition, let N be 

the increment in the number of molecules of A in that region per time unit due to the 

reaction. Thus, N>0 implies a net production of A, while N<0 means that A is depleted. 

Accordingly, the rate of the reaction is given by v=N/V. Assume now that due to the 

underlying fractality, the system is self-similar after a scaling, and let λ be the scaling 

factor, namely we postulate the invariance of the system in a scale λ times larger, and let us 

denote with a star superscript the system parameters in the new scale. Obviously, now we 

have V*= λ3V but notice that it is M*= λdM. Consequently, for the concentration we find 

x*=M*/V*=λd–3 x. Now, it is postulated that the invariance of the system in the new scale 

can be quantitatively expressed as:  

 

**

*

VM
N

MV
N =                (1) 

 

In other words, the system invariance is assumed to mean that the fraction of molecules 

reacting per unit of time and per unit of volume remains invariant after the scaling. Thus, 

after (1) we readily find that N*=NM*V*M–1V–1= λd+3 N, as well as v*=N*/V* = λd v. Since 

the reactional rate-law v(x) is actually a function of the concentration, the scaling condition 

v*= λd v must be explicitly written as an identity between functions, namely v*(ξ)= λd v(ξ) 

for any argument ξ. This identity for v is specially important for what is to follow, as far as 

it will be necessary for the application of the renormalization group condition. In fact, our 

main goal is to characterize the renormalization group invariant rate-laws. As indicated in 

the Introduction, the renormalization group condition assumes the scale invariance of the 

system, in our case in the context of the invariance of the rate-law. Consequently, in our 
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case the renormalization group condition amounts to v*(x*)= v(x). This identity can be 

combined with the scaling condition v*(ξ)= λd v(ξ) in order to explore the implications of 

renormalization group invariance in several cases.  

 

To begin with, let us consider the case of a power-law functional form: v(x)=v0xg. 

We thus have for the renormalization group condition: v*(x*) = λd v(λd–3 x) = λd+g(d–3)v0xg = 

v0xg = v(x). Then, after equating both functions, it is found that the renormalization group 

condition amounts to: λd+g(d–3)=1. This equation admits a solution that actually provides 

invariance for all scales (i.e. for all values of λ). Such solution relates the renormalization 

group value of the kinetic order g with the fractal dimension d of the region. Thus the 

renormalization group value is:  

 

30,
3

<<
−

= d
d

dg                                                             (2) 

 

This result presents several interesting features. First of all, notice that g is positive, but can 

take arbitrarily large values. It is worth emphasizing that the renormalization group method 

is an approximation. Let us ignore for the moment the formal divergence at d=3, which is a 

consequence of the approximate character of the renormalization group approach in the 

Zero-Order case (note that for d=3 the only solution corresponds to the transformation for 

which λ=1). Such divergence will dissapear in the First-Order renormalization group 

approach to be presented later. The important feature at this stage is that the kinetic order 

increases when the fractal dimension grows, and such kinetic order can take a wide range of 

possible values. This is a reasonable property since the dimensional restriction of the 

medium should limit the ability of the metabolite to react. In fact, we see that g tends to 

zero when d also tends to zero, which is to be expected. The most important conclusion 

here is that, in this approximation, the power-law rate-law is an exact solution of the 

renormalization group condition for all values of λ.  

 

Let us now compare this result with other possible functional forms. For instance, 

let us first turn to kinetic functions of the kind v(x)=v0xg/(K+ xg), with g>0. This form 
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includes as particular cases the well-known Michaelis-Menten (g=1) and Hill rate-laws. 

Once the renormalization group condition v*(x*)= v(x) is imposed, we readily find: 

 

gdg

dgd

g xKxK )3(

)3(1
−

−+

+
=

+ λ
λ  

 

Clearly, this outcome does not allow the renormalization group invariance in general. 

Anyway, such invariance can be approximately found in the limit case K>> xg. In this 

situation, i.e. if xg can be considered negligible when compared to K (for instance, in the 

case of sufficiently low concentration) then the kinetic function can be approximated by a 

power-law: v(x)≈(v0/K)xg. Of course, this functional dependence was already considered 

before. Accordingly, kinetic functions of the form v(x)=v0xg/(K+ xg) do not satisfy the 

renormalization group invariance condition.  

 

As an additional possibility, we shall consider the case of quasi-polynomial kinetic 

functions, namely: ∑
=

=
q

i

g
i

ixaxv
1

)( , where the gi are in general real numbers. We thus 

impose the renormalization group invariance condition v*(x*)= v(x) and the outcome is that 

the following identity must be verified:  
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Consequently, renormalization group invariance exists if and only if d+gi(d–3)=0 for every 

i=1,...,q. In turn, this implies that g1= g2=...= gq=d/(3–d), namely all exponents are equal 

and then the quasi-polynomial is actually a power-law. Otherwise, renormalization group 

invariance is not present for any quasi-polynomial not being a power-law.  

 

We thus conclude that the power-law seems to be the only evident renormalization 

group invariant kinetic function in the single-variable case. Clearly, the same property 
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should remain essentially valid in the generalization to several reacting metabolites. The 

investigation of this issue is the aim of the next subsection.  

 

 

2.2. Generalization to the n-variable case 

 

Let us now consider the generalized situation in which several metabolites A1,...,An 

react in a region of volume V and fractal dimension d. We denote by M1,...,Mn the initial 

number of molecules of each kind in that volume, the concentrations of the metabolites thus 

being xi=Mi/V. As before, Ni will describe the variation in the number of molecules of Ai 

that are present in that region per unit of time due to the reactions taking place, and then the 

reaction velocities are vi=Ni/V. Let us assume again that the system is self-similar after a 

scaling of factor λ, and denote with a star superscript the system parameters in the new 

scale. Now we have V*= λ3V but Mi
*= λdMi. Then, for the concentrations we find 

xi
*=Mi

*/V*=λd–3 xi. As we did in the previous subsection, it is postulated that the dynamical 

invariance of the system in the new scale can be quantitatively expressed as:  

 

**

*

VM
N

VM
N

i

i

i

i =                (3) 

 

for all i=1,...,n. In other words, now the system invariance is assumed to mean that the 

fraction of molecules of each species reacting per unit of time and per unit of volume 

remains invariant after the scaling. Thus, after (3) we again find that Ni
*= λd+3 Ni, as well as 

vi
*=Ni

*/V* = λd vi. Recalling that the rate-law vi(x1,...,xn) is actually described as a function 

of the concentrations, the scaling condition vi
*= λd vi  must be understood as an identity 

between functions, namely vi
*(ξ1,...,ξn)= λd vi(ξ1,...,ξn) for any n-variable argument (ξ1,...,ξn). 

Again, our main goal is to characterize the renormalization group invariant rate-laws. 

Following a reasoning similar to the one for the single variable case, the renormalization 

group invariance criterion now amounts to ),,(),,( 1
**

1
*

nini xxvxxv …… =  for all i=1,...,n. Let 

us now analyze the implications of this condition for several functional dependences.  
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In first place, we consider the case of power-law functions:  

 

nixvxxv ijg
j

n
jini ,,1,),,( 101 …… =∏= =  

 

After some algebra, the joint application of the renormalization group invariance criterion 

and the scaling condition leads to the following compatibility equations:  

 

nid
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j
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                                   (4) 

 

For future convenience, we shall define nΓ==Γ≡Γ …1 . Obviously, equation (4) is a 

generalization of equation (2). As it was the case in the single-metabolite situation, 

equation (4) constitutes a solution that actually provides an exact invariance for all scales 

(i.e. for all values of λ). This result presents several interesting features additional to those 

found for a single variable. First of all, note that condition (4) admits an infinity of different 

compatible solutions for the kinetic orders gij, including the possibility of simultaneous 

negative and positive values. Again, the average kinetic order increases when the fractal 

dimension grows, showing that the dimensional restriction of the medium should limit the 

ability of the metabolites to react. Once again, the most relevant conclusion is that, in this 

approximation, the power-law rate-law is an exact solution of the renormalization group 

condition for all values of λ (perfect self-similarity).  

 

 Due to the fact that equation (4) admits an infinity of solutions for the kinetic orders 

gij, now the renormalization group renormalization group invariance extends also to the 

case of quasi-polynomial velocity functions:  
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In fact, if we now apply the renormalization group invariance condition, namely 

),,(),,( 1
**

1
*

nini xxvxxv …… = , after some calculations we find the following compatibility 

conditions:  

 

jid
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dg
n

k
ijk ,,30,

31
∀<<

−
=∑

=

                                   (5) 

 

This is obviously a generalization of (4). Thus, from (5) we see that every power-law 

making up every quasipolynomial velocity function vi must verify independently condition 

(4). Consequently, in particular (5) implies that all quasi-polynomial functions vi must be 

homogeneous of the same degree d/(3–d). Therefore, when modeling the reactions of n 

metabolites, the renormalization group invariance criterion is compatible with the use of the 

actual power-law models (GMA systems in general, including S-system models in 

particular). 

 

For the sake of brevity, calculations involving alternative functional forms (such as 

n-variable rational functions generalizing Michaelis-Menten or Hill rate-laws) are not 

presented here. Such calculations are direct generalizations of those given for a single 

reacting metabolite. Moreover, the conclusions are entirely similar, as far as those functions 

are not compatible with renormalization group invariance. We thus conclude that power-

law and quasipolynomial rate-laws appear as the natural renormalization group invariant 

solutions in the Zero-Order renormalization group approximation.  

 

 

2.3. Alternative interpretation of the Zero-Order renormalization group exact solutions 

 

Let us consider a general power-law based model of a metabolic pathway, namely a 

description in terms of a system of differential equations of GMA form, which for 

simplicity we can write as:  
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Therefore in (6) we have that ),,( 1 nij xxv …  is a power-law for all i, j. In addition, we 

assume that the renormalization group condition (4) is verified by every power-law 

function vij or equivalently, that identity (5) holds for all functions vi conforming the right-

hand side of equations (6). Consider now that a scaling transformation is applied over the 

GMA system (6). Such transformation is defined in terms of a one-parameter Lie group 

transforming the system variables as: yi=μxi for all i=1,...,n. Since the xi are the system 

concentrations, actually such scaling is not a geometric one (as it was before, in the 

application of the renormalization group criterion) but a scaling in the metabolite 

concentrations. This explains that the group parameter now is termed μ instead of λ. In the 

new, transformed variables, the GMA system becomes:  
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Precisely, the last step in the previous equation is the direct consequence of identities (4) 

and (5): note that if (5) holds for a power-law function vij, then after some direct 

calculations we find that ),,(),,( 1
1

1
1

nijnij yyvyyv …… Γ−−− = μμμ . Therefore, in the new 

variables yi the GMA system remains the same with the only exception of a constant 

multiplicative factor Γ−1μ . This means that if the GMA system velocities vi in (6) verify the 

renormalization group condition (5), then the phase-space trajectories of the rescaled flow 

are identical to the original ones, namely such trajectories are exactly the same. In fact, this 

can be shown in a simple way if we perform a time reparametrization of the form dτ = 
Γ−1μ dt, where t is the initial time variable and τ is the new time. We thus see that:  

 

niyyv
dt
dy

dt
dy

d
dt

d
dy iq
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                   (7) 



Acc
ep

te
d m

an
usc

rip
t 

 14

 

As indicated, a time reparametrization does not modify the system trajectories, its only 

effect being a rescaling of the “speed” at which the phase state vector moves over such 

trajectories. Therefore, we see in (7) that the phase-space of the GMA system remains 

invariant after the scaling in the concentrations, and this happens if and only if the Zero-

Order renormalization group invariance condition is verified. Mathematically, such 

condition in fact means that the GMA system is homogeneous, as anticipated, and this 

property accounts for the invariance found. Note that this property is independent of the 

actual value of parameter Γ, actually. Then, we have shown that the renormalization group 

invariance implies also phase-space invariance under scaling of concentrations and, in 

particular, this means that the GMA model remains valid over an infinite range of 

concentrations. In fact, this result accounts for the property, already mentioned in the 

Introduction, involving the reported validity of GMA and S-system models over several 

orders of magnitude in concentrations. In the Zero-Order approximation we obtain an 

idealized result in which the theoretical renormalization group range for concentrations is 

infinite, something that will be polished in the next section. We thus see how the 

renormalization group methods provide a direct link between self-similarity (geometric 

scaling) and the validity of the model over broad variations in the system variables (scaling 

in metabolite concentrations). Therefore the renormalization group approach leads to a 

unified perspective of both aspects of power-law modeling.  
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3. First-Order renormalization group approximation: exact solution 

 

As indicated in the Introduction, the renormalization group is essentially an 

approximation, as are the corresponding results. The Zero-Order renormalization group 

calculations just developed provide a good starting point in order to understand the 

significant role of power-law models in the implementation and description of self-

similarity. Actually, the results are valid for all values of λ, therefore describing a perfect 

self-similarity at all scales. This is clearly an idealization. It seems thus a good idea to 

proceed to a higher degree of approximation, in order to refine and validate different 

aspects of the results previously found. As it was done in the last section, now two cases (a 

single metabolite and more than one metabolite) are distinguished for the sake of clarity.  

 

 

3.1. One-variable case 

 

As in Subsection 2.1, we consider a single metabolite A reacting in a volume V and 

fractal dimension d. With the same notation, M is the initial number of molecules in that 

volume, and N is the increment per unit of time in the number of molecules of A in that 

region. As before, the velocity is v=N/V. After a geometric scaling of factor λ, we again 

have V*= λ3V as well as M*= λdM. These are general features that remain unaltered. Now 

the refinement to be presented arises from the evaluation of the concentration x. In the 

Zero-Order renormalization group approach, it was x=M/V. However, M is the initial 

number of molecules in the region, namely such number ignores the variation due to the 

reaction taking place. In order to refine the evaluation of x, this time we shall consider the 

evolution due to the ongoing reaction during an infinitesimal time interval δ. At the initial 

time t, it is true that the concentration in the region is M/V. However at the time t+δ, such 

concentration will be M/V + δv. We can thus make use of an averaged value, and write in 

what follows that:  

 

( )εδδ +≡⎟
⎠
⎞

⎜
⎝
⎛ +=+= 1

2
1

2 V
M

M
N

V
M

V
N

V
Mx                                (8) 
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where ε<<1 is a small dimensionless parameter. The smallness of ε arises from the fact that 

typically N<<M and, in addition, the time interval δ is infinitesimal and for practical 

purposes can be made arbitrarily small. It is worth recalling that the kind of approximation 

based on taking an average value at the central point t+δ/2 of the time interval is very 

common in numerical analysis, for instance in the domain of finite element methods 

(Young and Gregory, 1973). Notice also from (8) that in the limit case 0→ε , we remain 

in the Zero-Order renormalization group approximation. As before, we now assume that the 

geometric and dynamic invariance of the system in the new scale can be quantitatively 

expressed as:  

 

**

*

VM
N

MV
N =  

 

Taking into account this invariance condition, we again obtain N*= λd+3N and 

v*=N*/V*=λdv. Finally, we can use (8) in order to compute x*:  

 

( )ελλδ 33
*

*

*

*
* 1

2
1 +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= −

V
M

M
N

V
Mx d  

 

Let us now impose the one-variable renormalization group condition for velocities, namely 

v*(x*)= v(x). In what follows, we shall focus on the case of a power-law rate-law, v(x)=v0xg. 

Then, after some simplifications we arrive to the condition: ( ) ( )gdgdg ελλε 3)3( 11 +=+ −+ . 

Note that this equation is identically satisfied when λ=1 for all values of g, d and ε. In 

addition, in the limit 0→ε , we consistently retrieve the Zero-Order renormalization group 

identity (2), as expected. From the previous First-Order renormalization group relationship, 

by taking logarithms we obtain that:  

 

⎟
⎠
⎞

⎜
⎝
⎛

+
++−

=

ελ
ε

λ 31
1log

log
1)3( d

dg                                  (9) 
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As before, the limit 0→ε  amounts to the Zero-Order renormalization group identity (2). 

However, now some important differences arise. First of all, notice that now the Zero-Order 

divergence observed for d=3 is avoided. In fact, g can take a wide range of values for 3≤d  

without a formal divergence. As an illustration of this result, Figure 1 displays a typical 

behavior of the First-Order renormalization group kinetic order (9) for a fixed value of λ 

and varying values of d and ε.  

 

 

Figure 1. 

 

 

 
An additional point of view regarding equation (9) is provided by Figure 2. In this case, the 

First-Order renormalization group kinetic order (9) is displayed for a fixed value of d and 

variable values of λ and ε. 

 

 

Figure 2. 

 

 

 

Figure 2 also illustrates another relevant property of the First-Order renormalization group 

result (9), namely that such kinetic order is dependent on λ. As explained before, an exact 

renormalization group invariant solution being independent of λ, as it was the case in the 

Zero-Order approach, reflects a perfect and exact invariance at all scales. However now this 

is not the case, as far as (9) is λ-dependent. This means that, in fact, a given power-law rate-

law now can be an exact solution of the First-Order renormalization group equations for a 

single value λ0, but not for all values of λ. In other words, in this approximation a power-

law with a fixed kinetic order g does not comply to a perfect self-similarity at all scales. 

However, this is not the end of the story. Actually, power-law functions do present an 
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approximate First-Order renormalization group invariance for a finite range of scales: the 

reason is that condition (9) depends on the small parameter ε. As indicated, if ε=0 we have 

an exact invariance for all scales (Zero-Order approximation). Thus, in the First-Order 

approach the power-law is not exactly renormalization group invariant for every λ, but it is 

invariant to a high degree of approximation over an interval of values of λ, which depends 

on the small parameter ε. This is the case because function ⎟
⎠
⎞

⎜
⎝
⎛

+
+

ελ
ε
31

1log  in (9) is close to 

zero in absolute value and varies slowly as λ changes. For instance, Figure 3 presents the 

relative deviation between the First-Order kinetic order (9) and the Zero-Order one (2). Let 

us denote both kinetic orders by gF and gZ, respectively. Then the relative deviation is 

defined as R=(gZ–gF)/gZ. Accordingly, Figure 3 depicts the variation of R for a fixed value 

of the fractal dimension d and for broad variations in the scaling parameter λ and in ε. As 

expected, the relative variation remains small.  

 

 

Figure 3. 

 

 

 

Therefore, it is worth recalling that the degree of approximate First-Order renormalization 

group invariance of a power-law is dependent on the precise value of λ, not being equal at 

all scales. As we have seen, now g is a function of (d, λ, ε). This means that the 

renormalization group invariant exponent g now is not one and the same for all scales. 

Accordingly, a given power-law can only provide exact invariance for a given scaling, 

namely for a given value λ0 of parameter λ, as well as a very approximate invariance for 

values of λ close to λ0 (for constant values of d and ε). Emphasizing once again the 

approximate character of the renormalization group techniques, the previous conclusions 

seem to provide a justification about the prominent role of the power-law functions in the 

description of metabolic pathways in self-similar media: briefly speaking, it can be 

concluded that such functions approximate very precisely the property of self-similarity 

over a broad (but necessarily finite) range of scales.  
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In what follows, let us analyze the generalization to several reacting metabolites.  

 

 

3.2. Generalization to the n-variable case 

 

As it was the case in Subsection 2.2, we again consider the more general situation in 

which several metabolites A1,...,An react in a region of volume V and fractal dimension d. 

As before, Mi is the initial number of molecules of Ai in that volume for every i=1,...,n, 

respectively. Also, Ni is the increment in the number of molecules of Ai in that region per 

unit of time, and then vi=Ni/V. Accordingly, if the system remains self-similar after a 

scaling of factor λ, we again have V*= λ3V and Mi
*= λdMi. As in the previous arguments, it 

is postulated that the dynamical invariance of the system in the new scale can be 

quantitatively expressed as:  

 

**

*

VM
N

VM
N

i

i

i

i =  

 

for all i=1,...,n. After such relationship we again find Ni
*= λd+3 Ni, as well as vi

*= λd vi. 

Recall that this condition must be written in functional terms as vi
*(ξ1,...,ξn)= λd vi(ξ1,...,ξn) 

for any n-variable argument (ξ1,...,ξn). To complete the preliminaries, we need an 

expression for the concentrations xi. Following a similar reasoning to that in Subsection 3.1, 

we introduce an infinitesimal time interval δ and write an averaged value for the 

concentrations:  

 

( )i
i

i

iiii
i V

M
M
N

V
M

V
N

V
Mx εδδ +≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+= 1

2
1

2
 

 

Consequently, after the scaling the concentrations are transformed as:  
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( )i
id

i

ii
i V

M
M
N

V
M

x ελλδ 33
*

*

*

*
* 1

2
1 +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= −  

 

Once again, we wish to investigate the renormalization group invariance. As we know, the 

renormalization group criterion amounts to ),,(),,( 1
**

1
*

nini xxvxxv …… =  for all i=1,...,n. 

Specifically, we shall analyze the case of a power-law functional dependence, i.e. we 

investigate the invariance of the following set of rate-laws:  

 

nixvxxv ijg
j

n
jini ,,1,),,( 101 …… =∏= =  

 

After some calculations based on the same procedures used in previous sections, eventually 

we arrive to the following set of compatibility conditions:  

 

nidgd ij

n

j j

j ,,1,
1
1

log
log

13
1

3 …==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+−∑
= ελ

ε
λ

                  (10) 

 

Notice that these equations admit an infinity of possible solutions for the kinetic orders gij, 

including in particular the possibility of solutions having negative components. In addition, 

in the limit 0→iε  the Zero-Order renormalization group result (4) is retrieved. The nature 

of relationships (10) is more evident if we consider the particular case in which ε1= ...=εn 

≡ε. If this is the situation, equation (10) becomes simplified as:  

 

ni
d

dg
n

j
ij ,,1,

1
1log

log
13 3

1

…=
⎟
⎠
⎞

⎜
⎝
⎛

+
++−

=Γ≡∑
=

ελ
ε

λ

                        (11) 

 

It is evident in (11) that it is a direct generalization of (9). It is thus natural that the 

conclusions obtained in the one-variable First-Order renormalization group approach 

remain valid.  
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As before, the limit 0→ε  amounts to the Zero-Order renormalization group identity (4). 

However, now the Zero-Order divergence observed for d=3 is again avoided, and the 

kinetic orders can take a broad range of values also in the case d=3. The second relevant 

property of the First-Order renormalization group result (11) is that such equations are 

again dependent on λ, thus showing that power-law rate-laws can be exact solutions of the 

First-Order renormalization group equations for a given value λ0 of the scaling parameter λ, 

but not for all values of λ. In addition, we now have an approximate renormalization group 

invariance for values of λ close to λ0, and such approximate invariance is due to the 

dependence on the small parameter ε. Then, as it was the case in the one variable First-

Order renormalization group analysis, the power-law functional form is not exactly 

renormalization group invariant over a finite interval of λ values, but it is invariant to a high 

degree of approximation over such interval which depends on the small parameter ε. In 

addition, the dependence on λ implies that the First-Order renormalization group exponents 

gij now are not the same for all scales. Accordingly, a given set of power-laws can only 

provide an exact invariance for a certain scaling parameter λ0 as well as an approximate 

invariance for values of λ close to λ0 (provided constant values of d and ε). Therefore, we 

again conclude that power-law rate-laws implement very precisely the property of self-

similarity over a limited (not infinite) range of scales. As shown, in the limit 0→ε  the 

exact (infinite) invariance is retrieved. Therefore, the property of self-similarity over a 

limited range of scales is implemented with an accuracy which can be as precise as desired 

if ε takes a value sufficiently close to zero in absolute value. Obviously, following a 

reasoning similar to the one displayed in Subsection 2.2, analogous conclusions are valid 

for quasi-polynomial rate-laws. However, the calculations are omitted for the sake of 

conciseness.  

 

 

3.3. Alternative interpretation of the First-Order renormalization group exact solutions 

 

As it was shown in the Zero-Order renormalization group analysis, when applied to 

a general GMA model (6), conditions (4) and (5) amount to the fact that the GMA 

differential equations are homogeneous. This allowed an additional interpretation of the 
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Zero-Order renormalization group condition as the GMA system invariance with respect to 

the scaling group yi=μxi, i=1,...,n. As indicated, since the xi are the system variables (which 

are not lengths), actually such scaling is not a geometric one (as it was before, in the 

application of the renormalization group criterion) but a scaling in the metabolite 

concentrations. In the First-Order renormalization group approximation, now conditions (4) 

are replaced by their generalization (10). As we have seen, such generalization depends on 

the small parameters εi in such a way that (4) is retrieved in the limit 0→iε . Due to the 

smallness of parameters εi it is clear that conditions (10) imply that the associated GMA 

models are almost homogeneous, the exact homogeneity arising only in the limit 0→iε . 

Accordingly, the First-Order renormalization group criterion leads to an approximate GMA 

system invariance with respect to the scaling group yi=μxi, i=1,...,n. In other words, we have 

shown that GMA models verifying (10), namely almost homogeneous GMA systems, 

remain valid over a broad (but this time finite) range of concentrations. According to the 

original renormalization group hypothesis this result provides a link for GMA systems 

between (i) an approximate geometric self-similarity of the system over a finite range of 

geometric scaling factors, and (ii) an approximate phase-space invariance under scaling of 

concentrations over a finite range of variation of such concentrations. Consequently, we 

retrieve the property, mentioned in the Introduction, involving the validity of GMA and S-

system models over several orders of magnitude in concentrations. In the Zero-Order 

approximation we obtained an idealized result in which the theoretical renormalization 

group range for concentrations is infinite, something that now has been polished. Therefore 

the First-Order renormalization group approximation allows establishing a direct link 

between finite-range self-similarity (geometric scaling) and the validity of the model over 

broad variations of the system variables (scaling in metabolite concentrations).  

 

 

3.4. Example: linear chain with feedback inhibition 

 

In what follows a detailed example is presented for the sake of illustration. 

Specifically, the metabolic pathway considered is a linear chain with feedback control by 
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inhibition, a well-known mechanism (Savageau, 1976). Such pathway is schematically 

displayed in Figure 4.  

 

 

Figure 4. 

 

 

 

In terms of power-law modeling, and in agreement with equations (4) and (5), the Zero-

Order model for the system is described by the following set of equations, in which for 

every index i the variable xi accounts for the concentration of the metabolite Xi.  

 

ΓΓ

Γ−+Γ

−=

−=

2212
2

11201
1

xbxa
dt

dx

xbxxa
dt
dx γγ

                                               (12) 

 

Recall that this Zero-Order model is necessarily homogeneous, as discussed in Section 2. 

We see that the resulting GMA model (12) is also an S-system. Notice that, as usual in this 

case, the concentration x0 of the initial precursor X0 is considered to have a fixed value that 

can be independently modified by experimental means. The resulting system is thus two-

dimensional, a very convenient feature for illustrative purposes, as we shall see. In what 

follows, the values Γ = 2.5, d = 15/7 ≈ 2.14 and γ = 0.5 will be the ones employed. In 

addition, for the sake of clarity it will be very convenient to have the steady-state of the 

Zero-Order model in the coordinates (1,1). Accordingly, we set .122101 ====+Γ babxa γ  

This is just a convenient choice of parametric values suitable for presentation purposes, but 

any other set of values would be equally good. The dynamics of the resulting system 

correspond to a stable steady-state, as depicted in Figure 5. 
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Figure 5. 

 

 

 

Let us now define the First-Order system associated to this pathway. For this, we must take 

into account equation (10). For convenience, let us introduce the following definition:  

 

2,1,0,
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We then arrive to the First-Order system, which is given by:  
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1

2
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1
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wdwd

wdwwd

xx
dt

dx

xxxa
dt
dx

−=

−= +Γ−+Γ γγ

                                    (13) 

 

As it can be seen, in the previous equations the kinetic order of X0 is maintained as Γ+γ for 

clarity of illustration as in the Zero-Order case (recall that by definition it is 101 =+Γ γxa ). 

Note that the expression γ+Γ
01xa  takes the value 1 for convenience, in order to place the 

steady-state at point (1,1), as mentioned before. Such factor is explicitly written in Eq. (13) 

for clarity, because from condition (10) the value of the exponent of x0 determines the value 

of the exponent of x2 in the same monomial. Alternatively, the factor γ+Γ
01xa  can be 

replaced by its constant value 1. Note that in general, the rescaling is applied to both 

independent and dependent variables: however, independent variables are actually constant 

parameters and, in fact, they remain unaltered when the rescaling is applied to them. This 

can be verified easily, and x0 in the present model is an example of it. In addition we shall 

set ε0 = 0 and consistently w0 = 3–d. Also, the values ε1 = 10–5 and ε2 = –10–7 are defined for 

the rest of the example.  
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 In first place, we shall consider the effect of geometric scalings over the First-Order 

system (13). According to (10), mathematically this amounts to the variation of parameter 

λ. Of course, this variation modifies the values of the kinetic orders in model (13). The 

effect of progressively higher scalings is displayed Figure 6. In particular, the phase plots 

are displayed for λ=2 (Figure 6a), λ= 50 (Figure 6b) and λ=100 (Figure 6c). In addition, the 

trajectories displayed in each plot are equivalent, namely for the sake of comparison the 

same initial conditions have been chosen for the trajectories plotted in Figure 5 and in 

Figures 6a, 6b and 6c. The presentation of this kind of graphical comparison is possible as 

far as the steady-state remains by construction located at (1,1), as anticipated. It is evident 

that even with a 100-fold geometric scaling (namely, over several orders of magnitude) the 

system trajectories remain essentially unaltered, in full agreement with the approximate 

invariance established for the First-Order renormalization group power-law models.   

 

 

Figure 6 (Figures 6a, 6b, 6c). 

 

 

 

In order to complete the example, we shall now turn to examine the effect of scalings in the 

metabolite concentrations in the First-Order system (13). Let us recall that such scalings are 

given by the one-parameter Lie group yi = μxi for all i=1,2,3. When applied to system (13), 

and taking into account that 101 =+Γ γxa , the outcome is:  
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μμ γγ

                            (14) 

 

By means of system (14) we can check the additional effect of scaling in concentrations, 

which is displayed in Figure 7.  
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Figure 7 (Figures 7a, 7b, 7c). 

 

 

 

More precisely, the phase plots in Figure 7 are displayed for the values μ=2 (Figure 7a), μ= 

50 (Figure 7b) and μ=100 (Figure 7c). In all cases, the geometric scaling parameter has the 

value λ=2. Note that, consistently, for every value of parameter μ now the steady-state is 

approximately centered at the coordinates (μ,μ). Again, even with a 100-fold concentration 

scaling it is clear that near-invariance is present as far as the stable steady-state topology of 

the solutions remains unaltered. The “straight-line” aspect of trajectories in Figures 7b and 

7c is due to the magnification efect produced on the phase-plot by this kind of 

transformation. Consequently, we verify also in the case of concentration scalings the 

approximate invariance established for the First-Order renormalization group power-law 

models over several orders of magnitude. 
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4. Discussion  

 

As shown throughout the previous section, power-law functions can be regarded as 

the most basic renormalization group invariant rate-laws. This has several implications that 

deserve some additional comments.  

 

In first place, it is worth recalling that geometric invariance is actually present only 

over a limited (not infinite) range of scales. Precisely, the significance of power-laws is that 

they approximate such invariance over a limited range of scales, which is the actual 

property to be described. As we have seen, such feature is not present in other common 

rate-laws such as Michaelis-Menten, Hill, or their generalizations. However, the previous 

results are also useful in order to account for the ability of many functions to provide 

accurate predictions when employed in the construction of differential models: a possible 

explanation is that such functions are often relatively close to power-laws (Sorribas et al. 

2007); accordingly, those functions could, in some situations, reproduce precisely the actual 

invariance properties of the system which is being analyzed.  

 

 It is also convenient to provide some additional considerations regarding the 

assumptions being made in the present work. This is necessary in order to put in 

perspective the present results with respect to previous approaches (Kopelman, 1986, 1991; 

Savageau, 1993, 1995, 1998).  In first place, it is worth noting that the existence of kinetic 

equilibrium is not assumed, as far as an ongoing reaction is considered in the previous 

calculations. As a consequence, the concentrations are in fact not taken as constant in the 

first-order analysis. The fact that the average kinetic order is a decreasing function of the 

fractal dimension d, as well as the precise functional form of this dependence, is one the 

most direct and novel consequences obtained from this point of view. Another difference 

with previous approaches is that usually the effects of a dimensionally limited diffusion are 

the ones analyzed, while here we have focused on purely reactional effects (namely 

excluding diffusion). In other words, our approach deals with kinetics taking place in a 

dimensionally limited environment, that is to say a region of fractal dimension d < 3, on 

which only reaction kinetics is considered. In the present work, the specific analysis of 
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reactional effects has allowed the use of the renormalization group methods in order to 

develop the combined perspective of geometric scalings and concentration scalings just 

presented, which is to the author’s knowledge new in the literature. In addition, it seems 

that focusing on reactional effects is natural in this context, as far as power-law models 

such as S-systems and GMA systems are purely reactional.  

 

Another aspect of interest involves the practical use of GMA models and the 

evaluation of kinetic orders. As we have seen in the First-Order renormalization group 

approach, according to (10) the invariant GMA models should be almost homogeneous. In 

practice, it is worth recalling the difficulties in the construction of models (e.g. see Voit, 

2000). In fact, even the fitting of a single power-law from data is today a controversial issue 

(Kaitaniemi, 2004; Packard, 2009). Due to the relevance of different uncertainties and 

sources of errors (experimental and numerical) in parameter estimation for model 

determination, specially when modeling in vivo processes, probably it is not to be expected 

that the homogeneity or almost homogeneity properties should be apparent in practice.  

 

 As recalled in the previous analysis, the renormalization group methodology is an 

approximation. In spite that its quantitative predictions are often not precise, 

renormalization group equations usually provide qualitative hints of great value in a 

workable way. This explains the successes of renormalization group theory in many 

different domains. In our case, the most important results obtained are those providing a 

link among three aspects of modeling: (i) the use of power-laws for the description of rate-

laws; (ii) the geometric (and according to relationships (3) also physical) self-similarity 

under spatial scalings; and (iii) the self-similarity under concentration scalings (accounting 

for the reported GMA model validity over several orders of magnitude in metabolite 

concentrations). In particular, the last item is a consequence of the system invariance 

characterized which provides a mathematical background for the observed model validity 

over different orders of magnitude in concentrations. This feature was presented in detail in 

the Introduction, mathematically developed in Subsections 2.3 and 3.3, and illustrated in 

the example of Subsection 3.4. The conceptual link thus established between power-law 

modeling, fractality and different types of invariance (spatial scalings and concentration 
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scalings) probably will lead to novel perspectives and tools from the modeling point of 

view, in spite that at the present stage the results obtained are essentially theoretical. In this 

sense, and on the basis of the assumptions established in order to develop the previous 

calculations, the qualitative results obtained (already discussed in detail in Sections 2 and 3) 

seem to provide additional insight on some fundamental reasons accounting for the 

successes of power-law modeling.   
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FIGURE CAPTIONS  

 

 

Figure 1:  

First-order renormalization group kinetic orders. A typical behavior of the first-order 

renormalization group kinetic order (9) for some selected values. In this graph, the 

value λ=5 is the one selected for the scaling parameter. It can be seen that the kinetic 

order g is a decreasing function of the fractal dimension d.  

 

 

Figure 2:  

First-order renormalization group kinetic orders. Alternative representation of a typical 

behavior of the first-order renormalization group kinetic order (9) for some selected 

values. In this graph, the value d=2.3 of the fractal dimension is fixed, while λ and ε 

are allowed to vary.  

 

 

Figure 3:  

Relative deviation between the renormalization group kinetic orders. Behavior of the 

relative deviation R for the kinetic order g between the first and Zero-Order renormalization 

group approximations. R is displayed for a fixed value of the fractal dimension d=2.3 and 

for broad variations in the scaling parameter λ and in ε. As expected, the relative deviation 

remains small, in this case within limits of ±5%.  

 

 

Figure 4:  

Metabolic pathway for the example in Section 3.4. The example considers a linear chain 

with feedback control by inhibition. The end product X2 acts acts as an allosteric effector 

causing inhibition of the first reaction in the sequence.  
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Figure 5:  

Trajectories of the Zero-Order system (12). The phase plot shows the steady-state of 

system (12) which is placed by construction at point (1,1) and is stable. The parameter 

values of the system are detailed in the main text. 

 

 

Figure 6:  

Trajectories of the First-Order system (13) for different values of the scaling parameter 

λ. The phase plots are displayed for λ=2 (Figure 6a), λ= 50 (Figure 6b) and λ=100 (Figure 

6c). The trajectories displayed in each plot are equivalent, namely for the sake of 

comparison the same initial conditions have been chosen for the trajectories plotted in 

Figure 5 and in Figures 6a, 6b and 6c.  

 

 

Figure 7:  

Trajectories of the First-Order system (14) for different values of the concentration 

scaling parameter μ. The phase plots are displayed for μ=2 (Figure 7a), μ= 50 (Figure 7b) 

and μ=100 (Figure 7c). In all cases, the geometric scaling parameter has the value λ=2.  
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Fig 1 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 
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Fig 6a 
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Fig 6b 
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Fig 6c 
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Fig 7a 
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Fig 7b 
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Fig 7c 

 
 

 

 

 

 

 

 

 

 

 




