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Abstract 

Metabolic reactions are fundamental to living organisms, and a large number of reactions simultaneously 

occur at a given time in living cells transforming diverse metabolites into each other. There has been an 

ongoing debate on how to classify metabolites with respect to their importance for metabolic performance, 

usually based on the analysis of topological properties of genome scale metabolic networks. However, none 

of these studies have accounted quantitatively for flux in metabolic networks, thus lacking an important 

component of a cell’s biochemistry.  

We therefore analyzed a genome scale metabolic network of Escherichia coli by comparing growth under 

19 different growth conditions, using flux balance analysis and weighted network centrality investigation. 

With this novel concept of flux centrality we generated metabolite rankings for each particular growth 

condition. In contrast to the results of conventional analysis of genome scale metabolic networks, different 

metabolites were top-ranking dependent on the growth condition. At the same time, several metabolites were 

consistently among the high ranking ones. Those are associated with pathways that have been described by 

biochemists as the most central part of metabolism, such as glycolysis, tricarboxylic acid cycle and pentose 

phosphate pathway. The values for the average path length of the analyzed metabolite networks were 

between 10.5 and 12.6, supporting recent findings that the metabolic network of E. coli is not a small-world 

network.  

Keywords 
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Introduction 

Since the initial discovery of common design principles in various kinds of networks (Barabási and Albert, 

1999; Watts and Strogatz, 1998), many studies have addressed the issue how topology relates to network 

function (Ekman et al., 2006; Jeong et al., 2001; Milo et al., 2002). This especially holds true for metabolic 

networks, which have been reconstructed for different organisms from genome information (Duarte et al., 

2004; Edwards and Palsson, 2000). By graph theoretical analysis of the topology of genome scale metabolic 

networks it is possible to infer hypotheses about the functionality of metabolism. An example is the 

identification of common design principles of metabolic networks, which are thought to be responsible for 

robustness and error tolerance based on the comparison of parameters such as average path length (APL, 

which is the average of the shortest path length over all pairs of nodes in the network), connectivity 

distribution and substrate ranking between different organisms (Jeong et al., 2000). Typically, such studies 

mainly analyze the effect of the presence or absence of a connection on viability or optimal performance. It 

has been shown that highly connected metabolites (hubs) are more important for the operation of a network 

than metabolites with low connectivity (Jeong et al., 2000). In several studies metabolites have been ranked 

based on their place/position within the network to determine their importance, a process called centrality 

analysis, leading to significantly different results ((Arita, 2004; Fell and Wagner, 2000; Jeong et al., 2000; 

Ma and Zeng, 2003a); see Discussion for details). All these studies describe biochemical reactions in 

metabolic networks as uniform links connecting metabolites and do not take into account stoichiometric 

constraints or any quantitative flux information about a particular connection. This may be an 

oversimplification considering that the real performance of a metabolic network is not a connectivity 

property but the conversion of matter from substrates towards end products, which furthermore occurs at 

different rates. One of several possible classifications of substrates of a metabolic network might be 

consisting of three categories: a) metabolites such as pyruvate which constitute the flux of carbon from 

metabolic substrates to end products, b) cofactors (e.g. ATP, NADH, NADPH) which are constantly 

detached from and attached to metabolic intermediates, and c) inorganic substances (e.g. H2O, Pi) which are 

mostly not transformed into metabolic end products. Cofactors and inorganic substances may be 
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summarized under the term currency metabolites (Ma and Zeng, 2003a). They are generally highly 

connected as a result of their role in metabolism. However, rather than simply drawing conclusions on the 

importance of a metabolite from the topology of the network, a classification that accounts for the role of a 

metabolite in the flow of carbon from substrates to end products would be more valuable. Recognizing this 

problem Arita used the concept of ‘carbon atomic traces’ to add the aspect of material transport into network 

analysis by following the fate of individual carbon atoms through the network (Arita, 2004). In consequence, 

the top hubs in his metabolic networks are less occupied by currency metabolites, but more by metabolites 

of carbon metabolism. However, as the author did not consider the quantity of carbon flux through the 

network, the mentioned study is still of qualitative nature. 

Here we further develop the concept of metabolic network analysis by introducing the concept of carbon 

flux centralities (or short flux centrality) which combines centrality analysis with flux balance analysis 

(FBA) under various growth conditions (see Methods section for details). Based on this concept it was 

possible to a) rank metabolites according to their importance for the metabolic processes, b) derive a 

meaningful core metabolism, and c), for central metabolism, automatically cluster metabolites into 

pathways. 

Results 

Flux balance analysis 

We used the Escherichia coli genome scale metabolic network iJR904 ((Reed et al., 2003); see Methods) to 

simulate optimal growth under 19 different growth conditions (aerobic and anaerobic) with 15 different 

single carbon sources including sugars, sugar alcohols, organic acids and amino acids. The resulting flux 

vectors are given in SI Table 2. Simulation of aerobic growth on glucose, glycerol and acetate predicted a 

biomass yield of 0.51, 0.58 and 0.37 g dry weight (DW) per g substrate consumed, respectively, which is in 

the range of experimental values reported for E. coli MG1655 grown in chemostat culture (Weikert et al., 

1997). Simulation of anaerobic growth on glucose, ribose, sorbitol or gluconate resulted in excretion of the 
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fermentation products acetate, ethanol, formate, glycolate and succinate, and therefore much reduced 

biomass yield (see Methods section for details about the 19 growth conditions). 

Carbon-balanced metabolite network and flux centrality 

Within the multitude of biochemical reactions converting substrates to biomass during organism growth, 

carbon chains can be seen as the essential structures being transformed through the network, while protons 

and oxygen are often exchanged with free H2O. In a similar manner, phosphate groups are mainly transiently 

attached to the transformed carbon chains. Therefore, a meaningful way to analyze metabolic networks is to 

describe the links connecting metabolites based only on carbon transitions. Hence, for calculating a flux 

centrality value we define that each metabolic connection is weighted according to the carbon flux passing 

through it. Consequently, all non-carbon connections have zero weight, which results in a considerable 

reduction of network size. The flux centrality value of a certain carbon metabolite defined in this way is a 

measure for the maximum rate at which other reachable metabolites can be produced from this metabolite, 

i.e. it indicates the importance of this metabolite for biomass formation. 

To calculate the flux centrality, each of the 19 growth condition specific bipartite metabolite-enzyme 

networks has to be transformed into a unipartite metabolite network. As all metabolite networks should be 

carbon-balanced, we need to incorporate the information how many carbon atoms are transferred from one 

metabolite to another in any reaction. Each of the 19 growth conditions therefore resulted in a weighted 

metabolite network representing the carbon fluxes (see Methods section for details). The flux centralities 

calculated for these 19 weighted networks are shown in SI Table 3. 

Prior to detailed analysis (see below), the flux centrality values of all metabolites were summed over all 

growth conditions and the metabolites ranked accordingly. From the 395 ranked metabolites the Top-30 

shown in Table 1 constitute most of central metabolism, which traditionally is divided into glycolysis, the 

tricarboxic acid (TCA) cycle and the pentose phosphate pathway (PPP). The colors of the metabolites in 

Table 1 match their occurrence in the visualization of the pathways shown in Figure 1. Virtually all 

glycolytic intermediates, TCA cycle intermediates and intermediates of the PPP are found within the top 30 

ranked metabolites. In addition to these, there are several other metabolites present in this group: coenzyme 
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A (CoA), part of several anabolic and catabolic routes; malonyl-CoA, which is an intermediate in fatty acid 

synthesis; aspartate (ASP) and 5-Phospho alpha-D-ribose 1-diphosphate (PRPP), which are precursors of 

several amino acids and nucleotides; CO2, which is integrated into organic compounds, e.g. via anapleurotic 

reactions. 

Clustering of flux centrality values reveals modularity of metabolism 

For further analysis of the data obtained in this study, the original flux centrality values for all metabolites 

under all growth conditions were visualized as a heatmap (Figure 2), with 395 metabolites and 19 growth 

conditions clustered by similarity. For presentation purposes, in Figure 2 we divided the metabolites into 6 

groups (1-6), and the growth conditions into 3 groups (A-C).  

Within most growth conditions, the metabolites of group 1 (Figure 3a) have outstanding high flux centrality 

values. Although under anaerobic growth (group C) most centrality values are smaller than under aerobic 

growth, most of group 1 metabolites still have relative high centrality values. A close-up into the 

hierarchical clustering tree (see Methods) of metabolite group 1 (Figure 3a) reveals that the respective 

clusters are almost exclusively constituted of metabolites from central metabolism, i.e. glycolysis, the TCA 

cycle, and the PPP, essentially consistent with the metabolites found in the top-30 list in Table 1. 

Metabolites of these three pathways are grouped into distinct sub-clusters (Figure 3a). The clustering reveals 

that under different conditions the intermediates between fructose 6-phosphate (F6P) and phosphoenol 

pyruvate (PEP) generally behave similar with respect to flux centrality, supporting the perception of 

glycolysis as one functional unit within the central metabolic network. Similar findings apply for the TCA 

cycle and the PPP (compare Figure 1 with Figure 3). Some findings are possibly different to the classical 

pathway definition: pyruvate (PYR) and acetyl-CoA (AcCoA) are assigned closer to the TCA cycle than to 

glycolysis. Furthermore, glucose 6-phosphate (G6P), 6-phospho-D-glucono 1,5-lactone (6PGL), and 6-

phospho-D-gluconate (6PGC) form a cluster that is distant from all other central metabolic pathways.  

In Figure 2 the metabolite groups 2 and 4 refer to the 15 growth substrates. For a particular growth condition 

all substrates which are not supplied have centrality values of zero while the supplied growth substrates and 

intermediates of metabolic routes connecting to central metabolism have high centrality values. This is 
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exemplified by the clustering tree in Figure 3b (magnified from Figure 2, group 2), which shows some 

metabolites that only play an important role when the cells are growing on lactose as a substrate.  

Groups 3 and 5 consist of metabolites which belong to biosynthesis of a multitude of biomass precursors 

including several amino acids, purines, pyrimidines and different cofactors. The centralities of these 

metabolites are relatively independent of the growth condition, resulting in diffuse clustering. This reflects 

the fact that 1) the total flux into biomass is spread among more than 20 major biomass constituents and 2) 

for all simulations the biomass composition does not change and therefore the anabolic pathways in clusters 

3 and 5 have largely the same activity regardless of the growth substrate supplied. Finally, group 6 consists 

of metabolites that have a flux centrality near zero for all growth conditions. 

With respect to the clustering of growth conditions (Figure 2, groups A-C) different metabolic states can be 

differentiated. It appears that group A in Figure 2 unifies aerobic growth on different sugars and related 

derivatives (sorbitol, gluconate). The substrates of group A need to be metabolized through glycolysis and/or 

the pentose phosphate pathway (PPP) to be used as carbon source for the majority of biomass components. 

Accordingly, intermediates of glycolysis and PPP have higher centrality values than intermediates of the 

TCA cycle. In contrast, group B in Figure 2 relates mainly to organic acids as substrates. These are 

accessible for the synthesis of many biomass components without passing through glycolysis or the PPP, 

such as amino acids derived from pyruvate, oxaloacetate and ketoglutarate. Here TCA cycle metabolites 

have higher centrality values than those of intermediates of glycolysis and PPP. Under anaerobic conditions 

(group C), TCA cycle intermediates are ranked lower than glycolysis and PPP, which is expected since in 

the absence of oxygen oxidative phosphorylation and thus cyclic flux through the TCA cycle is suppressed 

and the TCA cycle can only be used for anabolic functions. The clustering tree reveals that the centrality 

distribution upon growth on glycerol (GLYC) and on lactose (LCTS) results in outcomes different from the 

other groups. For example, lactose is different because as the only disaccharide substrate in this study, it 

requires unique conversions at the carbohydrate level.  
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Discussion 

Centrality and path length in metabolic networks 

Former studies on the topology of metabolic networks lead to valuable conclusions about the design 

principles of metabolism. Especially centrality analysis has drawn particular attention over the past few 

years. Jeong et al. investigated the topology in metabolic networks from 43 organisms (Jeong et al., 2000). 

They found that the metabolic networks have small-world properties, with the degree distribution following 

a power-law function and the average path length of 3.2. However, this number mainly reflects the 

extraordinarily high connectivity of a few metabolites such as water and ATP. In the E. coli iJR904 

metabolic reconstruction used in this study, already 19% of the reactions include ATP, and accordingly in 

the study of Jeong et al. many metabolites are directly connected via ATP (Jeong et al., 2000). 

Consequently, the Top-10 list of most important metabolites for E. coli obtained by Jeong et al. contains 

only inorganic metabolites and cofactors like ATP, with the exception of glutamate, which is acting as 

amino group donor in numerous transaminase reactions (see SI Table 5). Wagner and Fell (2000; 2001) 

found for E. coli an APL of 3.8 using a similar approach, but omitting ADP, ATP and NAD(P)(H). Both 

studies suggest that any metabolite can be made out of any other one by an average of less than 4 enzymatic 

steps. According to the Top-10 lists of connectivity in both studies (SI Table 5), group donors or acceptors 

(cofactors) dominate among the most highly connected metabolites. 

This dominance can be related to some ambiguity observed in the way multi-substrate/multi-product enzyme 

reactions are decomposed into metabolite - metabolite interactions by unipartite graphs. As an illustrative 

example, a hypergraph representing the transketolase reaction (Figure 4a) can be transformed into a 

unipartite graph where each substrate is connected to each of the products (Figure 4b). However, although 

the transketolase uses ribose 5-phosphate (R5P) and produces glyceraldehyde 3-phosphate (G3P) in equal 

amounts, there is no mass transfer between the two. It appears that to define connectivity, mass transfer is a 

more rigorous criterion than stoichiometry. Leaving out this connection as shown in Figure 4c is a more 

accurate representation of the transketolase reaction, showing that mass transfer defines connection. 
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In order to discriminate minor mass transfers against the main transfers in a reaction, Ma and Zeng (2003a) 

introduced current or currency metabolites, which are inorganic molecules, cofactors, functional group 

donors or acceptors, that play only the ‘second role’ in a reaction. By manual classification, they did not 

allow connections through these currency metabolites, thus leading to an increased value for the APL of 8.2. 

In a second analysis of the reconstructed metabolic networks Ma and Zeng used the overall closeness 

centrality to identify central metabolites (Ma and Zeng, 2003b). Applying this method to the metabolic 

network of E. coli resulted in a Top-10 list of metabolites, which is dominated by intermediates of glycolysis 

and the TCA cycle (see SI Table 5). 

Furthermore, since the main structure of organic compounds is given by carbon, the mass transfer of carbon 

in enzyme reactions may be considered as a meaningful criterion for connectivity in metabolite networks. To 

mediate the conservation of structural carbon moieties throughout a pathway, Arita (2004) followed the path 

of individual carbon atoms in metabolic reactions annotated for Escherichia coli. Using the measure of 

degree centrality, this approach resulted in a Top-10 list of important metabolites that is significantly 

different to the ones reported previously (see SI Table 5) and an APL of 8.4 for the network, thus similar to 

the value calculated by Ma and Zeng (2003a). 

More recently, Rahman and Schomburg (2006) introduced a new centrality measure for the analysis of 

metabolic networks. The computation of their “load points” centrality is based on the number of k-shortest-

paths passing through a given node. It can be applied either to the metabolite network, to rank metabolites, 

or to the enzyme network, to rank enzymes. They applied this centrality to rank metabolites of two Bacillus 

species of which one is a pathogen (see SI Table 5). 

While Ma and Zeng (2003a), Arita (2004) as well as Rahman and Schomburg (2006) consider connectivity 

qualitatively, our present study defines connectivity quantitatively by carbon flux between metabolites. In 

summary, we derived metabolite networks in which only those metabolites are connected which exhibit 

carbon transfer in a biochemical reaction, and in which edges are weighted by flux as derived from a the 

simulated flux distribution (FBA) and the number of carbon atoms that are transferred in a reaction. These 

networks were analyzed with the novel concept of flux centrality, based on weighted network centrality 

investigation. As a result, it could be shown here for the first time, how the centrality of a metabolite in the 
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network is dependent on the flux distribution and hence the physiological state (growth condition). In 

addition, some metabolites consistently have high centrality values. In fact, summing the centrality values 

over all different growth conditions identified metabolites of central metabolism as having general 

importance in E. coli (see Table 1). Furthermore, the Top-30 list of important metabolites does not contain 

metabolites that principally act as group donors, such as ATP, NADPH, and glutamate, which are donors of 

phosphate, hydrogen, and amino groups, respectively. 

Finally, using the flux weighted metabolite network the APL for each growth condition was computed 

considering the presence or absence of connections under each condition. The APL over all growth 

conditions is 11.3 with a range from 10.7 (Proline, aerobic) to 12.5 (Ribose, anaerobic). These values are 

larger than any value reported before. For example, for directed networks in E. coli Ma and Zeng (2003a) 

and Arita (2004) reported an APL of 8.2 and 8.4, respectively. Defining connectivity based on carbon 

transfer and flux as in this study therefore leads to the so far highest APL values for E. coli. While our 

metabolite networks nevertheless are scale-free (data not shown), the high APL shows that they do not have 

the small-world property. This is consistent with the observation of Arita (2004). 

In a study similar to ours, Kim et al. (2007) simulate E. coli under different growth conditions and analyze 

network performance concerning metabolites. However, they characterize functionality of metabolites in a 

network by introducing severe network perturbations (removal of metabolites or reactions). The property of 

essentiality they describe relates to functional redundancy. In our study flux and network topology are 

integrated in the unperturbed system and important metabolites are those that are the most heavily used. 

Defining a core metabolism 

In addition to deriving the importance of a metabolite for metabolism, several studies aimed at defining the 

core of metabolism by computational means. Thereby ‘metabolic core’ can be defined as a central, highly 

connected part of metabolism, which provides key precursors for many biosynthetic reactions and is 

probably evolutionary highly conserved. 
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For example, Ma et al. (2004) used a network clustering algorithm to decompose the metabolic network of 

E. coli into functional modules, the most central of which are pyruvate metabolism, glyoxylate metabolism, 

valine, leucine and isoleucine synthesis.  

Investigating the E. coli MG1655 genome scale reconstruction iJE660a (Edwards and Palsson, 2000) based 

on flux balance analysis, Almaas et al. (2004) define a High Flux Backbone by removing from each 

metabolite all reactions but the largest incoming and outgoing flux. This way they found that the overall 

activity of metabolism is dominated by several reactions with very high fluxes, and that E. coli responds to 

changes in growth conditions by reorganizing the fluxes predominantly within this High Flux Backbone 

(Almaas et al., 2004). In a follow-up paper, Almaas and coauthors performed flux balance analysis under a 

variety of different simulated growth conditions generated by defining growth on combinations of some of 

the 89 potential input substrates in addition to a minimal uptake basis (Almaas et al., 2005). They identified 

a set of reactions that are connected and carry non-zero fluxes under all growth conditions, which they 

named the metabolic core. However, in the first study (Almaas et al., 2004), several ‘key’ metabolites and 

enzymes are absent from the metabolic core (e.g. citrate and isocitrate are not connected). In the second 

study (Almaas et al., 2005) only few glycolytic reactions and none of the TCA cycle are part of the 

metabolic core. These findings are not consistent with the idea that central metabolism should be a coherent 

(functional) sub-network and the often expressed notion that glycolysis or the TCA cycle is considered as a 

part of central metabolism in E. coli (Edwards and Palsson, 2000; Szyperski, 1995). 

In this study we identified one group of metabolites with consistently high centrality values and with highly 

diverse distribution of flux centrality values dependent on growth condition (see Figure 2, metabolite group 

1). This group is essentially identical to the metabolites of the ‘classical’ central metabolism (glycolysis, 

pentose phosphate cycle, tricarboxylic acid cycle). It characterizes a coherent piece of metabolism providing 

precursors for most of the remaining metabolism. Our approach of classification of metabolites based on 

flux centrality can therefore help to define core metabolism in an unsupervised and systematic way in 

different organisms.  
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Cluster metabolites into pathways 

A number of studies discuss algorithmic methods to cluster metabolites into functional units called modules 

or pathways. In metabolic networks of 43 organisms, Ravasz et al. (2002) calculated the common number of 

neighbors between any pair of metabolites. Applying a clustering approach to the results they were able to 

divide the networks into distinct modules. Similarly, Ma et al. (2004) proposed a decomposition method that 

uses the path length between any two pairs of reactions as the dissimilarity measure, resulting in 11 

subnetworks with defined biological functions. Holme et al. (2003) divided bipartite metabolic networks 

into components by successively removing reaction nodes with high betweenness centrality. They conclude 

that biochemical networks consist of outer shells encapsulating a core of the most connected substances.  

In addition to the ranking of metabolites and defining the core of metabolism, our study allows also the 

identification of parts of the metabolic network that can be recognized as functional units usually described 

as pathways such as glycolysis, PPP and the TCA cycle (compare Figure 1, Figure 3a). The recognition of 

metabolites being part of these pathways by our analysis is for the largest part without gaps. All metabolites 

that are recognized as part of the oxidative and non-oxidative pentose phosphate pathway are found in the 

cluster shown in Figure 3a and are therefore a functional metabolic unit. In addition, metabolites between 

fructose 6-phosphate (F6P) and PEP are found in one sub-cluster (Figure 3a) marking off glycolysis. 

Pyruvate and acetyl-CoA are usually classified as glycolytic metabolites. However, the clustered heatmap 

(Figure 2) reveals that when the carbon source enters the central part of metabolism downstream of PEP, the 

TCA cycle intermediates, AcCoA and PYR exhibit the largest flux centrality. In contrast, in the case that the 

carbon source enters upstream of PEP, the other glycolytic intermediates exhibit the largest flux centrality. 

These results suggest that these putative glycolytic intermediates rather form a metabolic unit with the 

metabolites of the TCA cycle. In eukaryotes this classification is even more obvious since pyruvate is the 

metabolite entering the mitochondria to supply respiration. 

In summary, the cluster analysis offers an unbiased modularization of the metabolism that recognizes sub-

networks that have been described as pathways long ago by biochemists as universal catabolic routes that 

deliver cofactors, energy and key substrates for a multitude of biosynthetic pathways.  
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Conclusion 

In this study, flux centrality was presented as a new concept integrating flux analysis and topological 

analysis of metabolic networks. From the perspective of biochemists, flux centralities give most meaningful 

insights into the potential of metabolites in E. coli. Clustering of carbon flux centralities for the different 

growth conditions recognized well-known central metabolism pathways as functional units. While our 

current study considers different possible substrates for E. coli, this method could be applied to any 

organism, and an analogous study in other organisms by variation in biomass composition could be highly 

useful in revealing the importance of different metabolites and the modularity in anabolism as related to the 

biosynthesis of different biomass compounds. 

 

Materials and Methods 

Flux Balance Analysis of E. coli genome scale metabolic network 

In order to study the flux distribution in a genome scale metabolic network of E. coli we used the metabolic 

network of E. coli K-12 as defined by Reed et al. (2003). This model includes transmembrane transport 

reactions, carbon source utilization pathways, central carbon metabolism as well as the metabolic pathways 

responsible for the synthesis and degradation of amino acids, lipids, nucleic acids, vitamins and cofactors.  

The model configurations for optimization were basically as described in (Reed et al., 2003). The non-

growth associated ATP maintenance reaction was fixed to 7.6 mmol h-1 g DW-1. Carbon dioxide, ammonia, 

sulfate, sodium, potassium, phosphate, protons, water and iron (II) were allowed to freely enter and leave the 

system. All other metabolites marked as extracellular were allowed to freely leave the system. Aerobic 

growth on 15 substrates (acetate, alanine, glucose, gluconate, glycerol, ketoglutarate, lactate, lactose, malate, 

octadecanoate, proline, pyruvate, ribose, sorbitol, and succinate) was simulated as well as anaerobic growth 

on glucose, ribose, sorbitol, and gluconate. For all carbon sources the uptake rates were limited to the 

equivalent of 60 mmol carbon h-1 g DW-1. In the case of growth on glucose this means the uptake was 

limited to 10 mmol glucose h-1 g DW-1 as reported before (Reed et al., 2003). For all conditions with aerobic 
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growth, oxygen uptake was non-limiting, while anaerobic growth was simulated by constraining oxygen 

uptake to zero.  

All computations were performed on an SBML level 1 file of the model retrieved in June 2007 from 

http://www-bioeng.ucsd.edu/research/research_groups/gcrg/organisms/ecoli/ecoli_sbml.html. Simulation 

and optimization of the in silico model under the selected growth conditions were performed using the 

COBRA toolbox (Becker et al., 2007). In all cases the biomass flux was first maximized by linear 

programming using the COIN-OR Linear Program Solver (CLP solver) (http://www.coin-

or.org/projects/Clp.xml and Lougee-Heimer, 2003) and afterwards an additional quadratic optimization, 

again with the CLP solver, was performed to handle the problem of multiple alternate optimal solutions. 

During the second optimization step the biomass flux was fixed to the value of the first optimization step 

and all other flux values were minimized according to the Euclidean distance (Mahadevan et al., 2003). 

Selection of the growth conditions 

In the E. coli network iJR904 we count 128 unique carbon substrates that can be imported into the model. 

Most of them can be classified by the chemical categories of carbohydrates, amino acids, organic mono- and 

dicarboxylates as well as purines, pyrimidines and co-enzymes. For the model simulations substrates were 

selected from these different groups. We also considered which of the in silico substrates are known from 

literature to support growth of E. coli cells if provided as sole carbon source. Accordingly we selected 

sugars and sugar alcohols (glucose, ribose, lactose, sorbitol, glycerol), organic acids (gluconate, acetate, 

ketoglutarate, pyruvate, lactate, malate, succinate, octadecanoate) and amino acids (l-alanine, l-proline) as 

substrates. We did not include purines, pyrimidines or co-enzymes since we did not find support that E. coli 

can grow on them. Based on this selection of substrates we claim that we have simulated a set of conditions 

that are of biological relevance and representative for the broad spectrum of E. coli metabolic capabilities. 

Supporting literature is: acetate (Andersen et al., 1980, Fong et al., 2003, Hempfling et al., 1975, Liu et al., 

2005), a-ketoglutarate (Fong et al., 2003), alanine (Liu et al., 2005), d-gluconate (Alam et al., 1989, Lin, 

1987), d-glucose (Alam et al., 1989, Andersen et al., 1980, Fong et al., 2003, Lin, 1987, Liu et al., 2005), d-

lactate (Andersen et al., 1980, Fong et al., 2003), d-ribose (Fong et al., 2003, Lin, 1987), d-sorbitol (Alam et 
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al., 1989, Lin, 1987), glycerol (Andersen et al., 1980, Fong et al., 2003, Hempfling et al., 1975, Liu et al., 

2005), lactose (Burstein et al., 1965, Lin, 1987), l-proline (Liu et al., 2005), malate (Fong et al., 2003, Lin, 

1987), octadecanoate (Nunn, 1987, Overath et al., 1969), pyruvate (Andersen et al., 1980, Fong et al., 

2003), succinate (Andersen et al., 1980, Fong et al., 2003, Hempfling et al., 1975, Lin 1987, Liu et al., 

2005). 

Transformation of flux distribution and network structure into weighted 

metabolite networks 

For each growth condition the optimization of biomass flux resulted in a vector of steady state fluxes (SI 

Table 2). Each flux distribution vector was used to construct a flux-weighted metabolite graph representing 

the same metabolic model. In these graphs two metabolites were connected if they participate in the same 

reaction and at least one carbon atom was transported between the metabolites by the reaction under 

consideration. Accordingly, for all reactions in the metabolic network metabolite pairs were assigned using 

the carbon transitions described in the RPAIR database in KEGG (Oh et al., 2007). The mapping towards 

RPAIR was mostly one-to-one and in all other cases additional textbook information was used. Edge 

directionality is given by the sign of the flux for the corresponding reaction. Edge weights are computed by 

multiplying the flux value with the amount of carbon atoms transferred between two metabolites (SI Table 

4). For example, for the transketolase reaction (Figure 4) the flux value is multiplied by 3 for the edge 

connecting D-xylulose 5-phosphate and glyceraldehyde 3-phosphate. If by existence of isoenzymes, two 

metabolites would be connected by parallel edges, one edge was created instead and assigned the sum of the 

individual weights (i.e., fluxes). Similarly, as a final step to the completion of the metabolite network, all 

pairs of anti-parallel edges were replaced with a single edge having weights and directionality according to 

the difference of the individual weights.  

For the 19 simulated growth conditions the whole procedure always resulted in one large metabolite network 

component and a few disconnected metabolites and/or very small network fragments containing only two 

metabolites. These isolates and fragments were removed. As a result we obtained 19 connected metabolite 

networks with a size of 283-331 metabolites. It should be noted that the resulting networks are mass 



balanced, i.e. carbon flows into a metabolite and out are balanced. All 19 networks are scale-free for both, 

the in- and the out-degree as the corresponding distributions follows a power-law (data not shown). 

Flux centralities computed 

Centralities are functions that assign to every vertex of a network a numerical value. By convention, the 

higher a centrality value, the more important (or central) is a vertex within the network under consideration. 

Based on centrality values vertices can be ranked, which highlights the most central metabolites. Different 

concepts of centralities are known and about 20 of them are discussed in a recent review (Koschützki et al., 

2005). A simple example is the out-degree centrality, which is calculated as the number of outgoing 

connections from a vertex. Some centralities can be generalized to account for the weights assigned to 

edges. For example, out-degree can be extended by summing all weights of the outgoing edges of the vertex 

under consideration.  

In this study the general concept of centrality based on the qualitative property of connectivity was extended 

by considering the quantity of carbon-flux derived weights attributed to the edges. The centrality developed 

in this study is based on the concept of maximum flow. Considering any two vertices s and t in a network, 

the maximum flow between the two is defined by the largest flow that is observed for all possible paths 

connecting the two (Ahuja et al., 1993). In simple terms, out of the many connecting paths we are looking 

for a set of paths forming the “strongest carbon flux” connecting s and t. We denote this maximum flow 

between s and t as max_flow (s,t). In order to derive a centrality, we refer to the shortest-path closeness 

centrality (Koschützki et al., 2005), which sums the lengths of the shortest-paths from a vertex s to all other 

vertices t (t∈V, V is the set of all vertices in the network). Accordingly, we define the maximum-flow 

closeness as:  

∑
∈Vt

t)flow(s,max=mfc(s) _   

This formula might be broken in the created PDF. It should read (in LaTeX-Notation): 

mfc(s) = \sum_{t \in V} max_flox (s,t) 

For each vertex the resulting value of the maximum-flow closeness centrality might be interpreted as a 

“metabolic potential” of the respective metabolite. The higher a mfc value of a metabolite, the more of it is 
 16
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converted into other metabolites throughout the network. It should be noted that a more precise name of the 

defined centrality is out-maximum-flow closeness, because the flow leaving the vertex of interest is 

computed and a corresponding in-maximum-flow closeness, computing the flow entering the vertex, might 

be defined in a similar way. 

The average path length (APL) was computed for the unweighted directed networks. Pairs of vertices 

without any connecting path were not considered in the calculation. 
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Figures 

 

Figure 1. Central metabolism of E. coli. The colors differentiate the three major pathways of central 

metabolism: red, glycolysis; green, TCA cycle; blue, pentose phosphate pathway (PPP). Squares enclose the 

15 metabolites used as sole carbon source for the FBA simulations. Additional paths between some pairs of 

metabolites are not shown here for simplicity. The figure was created with the software VANTED (Junker et 

al., 2006). Abbreviations not given in Table 1: 6PGL, 6-phospho-D-glucono 1,5-lactone; AC, acetate; ALA, 

L-alanine; GLC, D-glucose; GLCN, D-gluconate, GLU, L-glutamate; GLYC, glycerol; LAC, D-lactate; 

LCTS, lactose; OCDCA, octadecanoate, PRO, L-proline; RIB, D-ribose; SBT, sorbitol. 

 

Figure 2. Heatmap of flux centrality values derived from simulations of 19 different growth conditions 

with E. coli iJR904 (Reed et al., 2003). High centrality values are marked as red spots, intermediate values 

as yellow spots and low to zero values are marked white. The centrality values were clustered using 

hierarchical clustering with Euclidean distance and the complete linkage method. Clustering was computed 

with the software system R (http://www.R-project.org). Of the 761 metabolites in the flux balance model the 

395 metabolites with non-zero centrality value are mapped here with their centrality values. Figure 3a and 

3b show details of the dendrogram. Groups 1-6 and A-C are discussed in the text. A large-scale figure 

including metabolite names is given as SI Figure 5. Growth conditions shown in the bottom are marked + 

for aerobic and – for anaerobic growth. Abbreviations for growth conditions, see Table 1, AC – Acetate, 

ALA – L-Alanine, GLC – D-Glucose, GLCN – D-Gluconate, GLYC – Glycerol, LAC – D-Lactate, LCTS –

Lactose, OCDCA – Octadecanoate, PRO – L-Proline, RIB – D-Ribose, SBT – sorbitol. 

 

Figure 3. Magnifications of two metabolite clusters from Figure 2. (a) is the cluster with the highest flux 

centralities, comprising of intermediates from glycolysis, the pentose phosphate pathway and the tricarboxic 

acid cycle. Metabolites were colored according to Figure 1. (b) representative cluster of a pathway only 

active under one growth condition. Abbreviations for metabolites, see Table 1, 6PGL – 6-phospho-D-

glucono 1,5-lactone, GAL – D-Galactose, GAL1P – Galactitol 1-phosphate, GLC – D-Glucose, LCTS – 
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Lactose (cytosolic, extra cellular and boundary), UDPG –UDPglucose, UDPGAL –UDPgalactose. The 

addition of the letter ‘c’ after a metabolite means ‘cytosolic’, ‘e’ means ‘external’, and ‘b’ means ‘boundary’ 

(Reed et al., 2003). 

 

Figure 4. Visualization of the construction process of the networks. (a) representation of the reaction 

transketolase as a hypergraph; (b) representation of the same reaction as a substrate graph (metabolite graph) 

where all substrates are connected to all products; (c) representation used in this study. Metabolites are 

connected only if a transfer of carbon atoms occurs and edge weights are dependent on the number of carbon 

atoms. Abbreviations for metabolites, see Table 1, TKT1 – Transketolase. 
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 Tables 

Table 1. Top-30 metabolites based on the summed flux centrality value under 19 different 

growth conditions. Colors: red (glycolysis), green (TCA cycle), blue (pentose phosphate 

metabolism).  
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Supporting Information 

Four supplemental tables, one supplemental figure and one supplemental document: 

 

SI Table 2: FBA-based flux values for the 19 growth conditions. 

SI Table 3: Centrality values according to the flux centrality for the 19 growth conditions. 

SI Table 4: Carbon transfer information for each reaction. 

SI Table 5: Top 10 list of metabolites according to different centrality measures extracted 

from several publications (see discussion). 

 

SI Figure 5: Figure 2 with labels for each metabolite on the left side. 

 

SI Document 1: A description of the method to compute the flux centrality values. 
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A

Position Metabolite ID Metabolite Name Summed Centrality Value Pathway
1 G3P Glyceraldehyde 3-phosphate 11584,21 Glycolysis
2 F6P D-Fructose 6-phosphate 11564,81 Glycolysis
3 13DPG 3-Phospho D-glyceroyl-phosphate 10705,56 Glycolysis
4 AcCoA Acetyl CoA 10619,46 Glycolysis
5 3PG 3-Phospho D-glycerate 10486,82 Glycolysis
6 PYR Pyruvate 10204,73 Glycolysis
7 MAL L-Malate 10157,91 TCA
8 FUM Fumarate 10109,16 TCA
9 MALCo Malonyl CoA 10061,77
10 CoA Coenzyme A 10030,76
11 OAA Oxaloacetate 10009,09 TCA
12 SUCC Succinate 9942,48 TCA
13 RU5P D-Ribulose 5-phosphate 9878,29 PPP
14 CIT Citrate 9873,87 TCA
15 2PG D-Glycerate 2-phosphate 9872,83 Glycolysis
16 ICIT Isocitrate 9694,15 TCA
17 DHAP Dihydroxyacetone-phosphate 9652,38 Glycolysis
18 AKG 2-Oxoglutarate 9641,94 TCA
19 PEP Phosphoenolpyruvate 9547,94 Glycolysis
20 SUCCoA Succinyl CoA 9170,58 TCA
21 R5P alpha-D-Ribose 5-phosphate 9064,74 PPP
22 XU5P D-Xylulose 5-phosphate 8762,09 PPP
23 FDP D-Fructose 1,6-bisphosphate 8130,85 Glycolysis
24 G6P D-Glucose 6-phosphate 7173,67 Glycolysis
25 S7P Sedoheptulose-7-phosphate 6975,80 PPP
26 E4P D-Erythrose 4-phosphate 6389,81 PPP
27 ASP L-Aspartate 6340,43
28 CO2 CO2 6002,98
29 6PGC 6-Phospho D-gluconate 5847,29 PPP
30 PRPP 5-Phospho D-ribose 1-diphosphate 5567,11
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