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IRCCyN UMR no 6597 CNRS, Ecole Polytechnique de l’Universite de Nantes,
rue Christian Pauc, La Chantrerie, 44306 Nantes, France

ABSTRACT

In multimedia quality assessment, observer ratings are typi-
cally averaged into mean opinion scores (MOS) to obtain a
subjective ground truth for a set of stimuli. Valuable infor-
mation about individual observer rating behaviour and inter-
observer differences is lost during this process. Such infor-
mation, however, can be useful to improve subjective exper-
iment procedures and quality of experience prediction mod-
els. In this paper, we therefore present an inter-observer anal-
ysis framework that tackles the quality assessment problem
from an inverse angle, setting the focus on individual observer
differences rather than stimuli differences. The framework
consists of a set of procedures for inter-observer analysis as
well as the necessary considerations during pre-processing
and post-processing. The aim of this paper is to raise aware-
ness that sole consideration of MOS simplifies quality assess-
ment too much, especially given the ever increasing complex-
ity of multimedia quality assessment.

Index Terms— Inter-observer differences, multimedia
quality assessment, inter-rater coefficients, data mining.

1. INTRODUCTION

Quality of Experience (QoE) has been of major concern for
multimedia service providers in recent years to complement
more traditional paradigms such as Quality of Service (QoS)
[1]. The objective is a transition from an application-centered
to an user-centered delivery of multimedia services with the
main goal being the satisfaction of the users’ experience. This
task has been considerably complicated through recent ad-
vances in coding and networking technology that facilitated
ubiquitous usage of a broad range of multimedia applications
on a variety of digital devices, ranging from mobile phones
over laptop computers to high definition television in the home.
For multimedia service providers it is crucial to automatically
measure the QoE provided to satisfy the consumers’ expecta-
tions. Hence, a considerable research effort has been devoted
to the development of models that predict human quality per-
ception. However, despite the increased complexity of mul-
timedia quality assessment, subjective experiment outcomes
are still reduced to an average vote over all participants, the
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Fig. 1. Normalised distributions of standard deviations σ for
images distorted through Gaussian blur or fast fasting [2].

mean opinion score (MOS). The agreement between partici-
pants is measured using confidence intervals (CI) and related
quantities, such as the standard error of the mean.

The use of MOS and CI may have sufficed in the context
of ’simple’ assessment tasks, such as in the evaluation of con-
tent with single, additive distortions. However, contemporary
multimedia applications constitute a considerably more com-
plex scenario, as a multitude of factors impact on the quality,
including, source coding, error-prone networks, error con-
cealment, re-scaling, and display devices. With such an in-
creased complexity of the assessment task, the disagreement
between observers may increase. This is illustrated in Fig. 1.
Here, normalised distributions of standard deviations over all
observers are shown for all Gaussian blur and fast fading dis-
torted images in the LIVE image quality database [2]. It can
be seen, that generally the observer agreement is considerably
higher for the Gaussian blur distorted images, as indicated by
the lower standard deviations. This can be attributed to the
comparably simpler assessment task as the fast fading dis-
torted images exhibit more complex distortion patterns. Not
only system related factors, however, but also other internal
(subjective) and external (environmental) factors have been
found to contribute to observer disagreement. In [3], for in-
stance, it was shown that the confidence of human observers
into their quality ratings is inversely related to the CI. Differ-
ent internal and external factors have been profiled in [4] in
the context of audiovisual 3D perception, revealing individ-
ual quality preferences with respect to certain modalities.

To address the shift to user-centric multimedia services, it
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Fig. 2. Framework for inter-observer analysis in multimedia quality assessment.

is crucial to go beyond considerations of simple MOS and to
gain a better understanding of individual observer perception
in the context of multimedia services. The importance of eval-
uating human observer differences has already been recog-
nised in other research disciplines, especially in medical anal-
ysis [5]. Not just the disagreement between observers as such
needs to be quantified (as is done with CI) but more insight
into rating behaviour needs to be obtained by analysing indi-
vidual observers and by determining possible observer groups
that exhibit similar behaviour. To identify whether differences
are due to internal factors (e.g. personal preferences) or exter-
nal factors (such as environmental influences or artifacts in
the experimental design) is one goal of inter-observer analy-
sis. This in turn is instrumental to improve psychophysical ex-
periment procedures and to design elaborate QoE prediction
models that more adequately reflect the complexity of mod-
ern multimedia applications. To this end, conventional psy-
chophysical assessment strategies and data analysis method-
ologies deployed by the multimedia quality assessment com-
munity may need to be revisited and additional, unconven-
tional procedures need to be established.

1.1. Towards a framework of inter-observer analysis

To address the above issues, we present in this paper a frame-
work for assessment of inter-observer variability. The ob-
jectives in this context are twofold. Firstly, we aim to raise
awareness that inter-observer differences should not be ne-
glected in multimedia quality assessment. This is particularly
true in case of multimodal assessment and for novel applica-
tions such as 3D video, where observer differences are ex-
pected to be large. Secondly, we propose a set of existing and
novel techniques to measure inter-observer variations and ap-
ply them in a multimedia quality assessment context.

The integral parts of the framework are presented in Fig. 2
and are discussed in detail in this paper. Generally, the frame-
work can be divided into three parts; preparation, inter-observer

analysis, and data exploitation. To take full advantage of the
framework, special considerations should already take place
during the psychophysical experiment and the pre-processing
of the data. These preparatory issues are explained in Section
2. The focus of this paper is on the heart of the framework, the
inter-observer analysis. We consider three different means to
quantify inter-observer differences; statistics, inter-rater coef-
ficients, and data mining [6], which are discussed in detail in
Section 3. The subsequent visualisation and interpretation of
the results is essential for a thorough exploitation and com-
prehension of the inter-observer analysis and is briefly dis-
cussed in Section 4, along with some implications on experi-
mental design and predictive modelling. Finally, conclusions
are drawn and future directions are given in Section 5.

The ultimate goal of the framework is to answer many im-
portant questions, including: What are the underlying causes
of observer differences? To what degree do they depend on
internal and external factors, as well as the experimental de-
sign? Can random variations be distinguished from system-
atic variations? Are there particular observer groups that can
be identified? Can individual observer differences or observer
groups be incorporated into predictive quality models to im-
prove their performance? It should be noted that the current
state of the framework is by no means considered to be com-
plete. The purpose is rather to initiate re-consideration of
conventional quality assessment, discuss representative can-
didate methodologies for inter-observer assessment, and to
pose open questions that need more attention.

2. PREPARATION

This section discusses special considerations that should be
taken into account in the conduction of the experiment and
the data pre-processing to maximise the outcomes of the inter-
observer analysis. A 3D quality experiment [7] is briefly in-
troduced that is used throughout the paper as a means to better
illustrate the different aspects of the framework.



2.1. Psychophysical experiments

Although analysis of inter-observer differences is of great in-
terest for any existing experiment data, one may in fact take
it particularly into account already during preparation of fu-
ture experiments. This applies to all aspects of experiment
design and especially to the stimuli preparation, observer re-
cruitment, and the assessment methodology.

The presented stimuli are usually selected with the aim to
determine system performance by carefully choosing param-
eters from a realistic parameter space. Similar considerations
can be applied to identify observer differences, where content
classes can be carefully chosen such as to identify personal
preferences or distortions can be introduced such as to iden-
tify thresholds with respect to certain modalities.

The recruitment of observers does not necessarily need
to be solely based on the discrimination between experts and
non-experts, as is often done. To identify differences in rat-
ing behaviour between observers, one may consider further
demographic data and observer profiles as a criterion for ob-
server recruitment. For instance, recruitment of observers
who have a 3D television and observers who do not may aid
in identifying whether there is a difference in the comfort that
these observer groups experience when viewing 3D content.

Depending on the application and the intended purpose,
data should be recorded during the experiment in addition to
the quality ratings. For instance, to identify observer confi-
dence, additional confidence scores and response times have
been recorded in [3]. To assess the comfort during 3D video
viewing, additional comfort scores were collected in [7]. Such
complementary information aids to gain a deeper insight into
the rating behaviour and the perception of the presented stim-
uli. Questionnaires handed out before and after the experi-
ment can further provide valuable information.

In summary, the increasing complexity of quality assess-
ment in contemporary multimedia applications needs to be
reflected already during the conduction of the experiment.

2.1.1. 3D video quality experiment

The outcomes of a 3D video quality experiment are used here
to illustrate the concepts of the framework. Details of the
experiment can be found in [7] and are summarised in the
following. The experiment was conducted in two laborato-
ries in France and Sweden, however, in this paper we con-
sider only the former experiment. Eleven different 3D video
sources (SRC) were used along with 15 hypothetical refer-
ence circuits (HRC) to create a total of 165 processed video
sequences (PVS). The HRCs consisted of a number of differ-
ent coding scenarios, including multi view coding and H.264
simulcast, to identify their impact onto perceived quality. The
videos were viewed by 22 naive observers. In addition to the
quality scores, comfort scores were collected to measure the
degree of discomfort due to the 3D experience. Both scores
were rated on a 5-point absolute category rating (ACR) scale.
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Fig. 3. Quality and comfort MPS including error bars.

2.2. Pre-processing

Pre-processing typically involves detection of observers that
exhibit a considerably different rating behaviour compared to
the majority of the observer population. These outliers are
often removed according to certain criteria such as the ones
specified by VQEG [8]. To identify the causes of the dis-
agreement rather than directly rejecting these observers is one
goal of the inter-observer framework.

Inter-observer analysis based on data mining techniques,
as discussed in Section 3.3, needs particularly careful pre-
processing to prepare the data with the aim to improve the
quality of the outcome [6]. For instance, dimensionality re-
duction using principal component analysis (PCA) based meth-
ods can be used on high dimensional data to improve compre-
hension of the results. Furthermore, discretisation of continu-
ous scale data is usually needed for classification algorithms.
To identify certain patterns it can further aid to transform the
data into a more suitable format or representation before de-
ploying the data mining algorithm.

3. INTER-OBSERVER ANALYSIS

In this framework we consider three means of inter-observer
analysis, statistics, inter-rater coefficients, and data mining
techniques, which are explained in the following sections.

3.1. Statistics

Simple statistics such as the mean, standard deviation, skew-
ness, and kurtosis are usually computed over the observer
population to quantify the characteristics of the ratings for
particular PVS or HRC. Inversely, these simple statistics can
be utilised to quantify rating behaviour of each observer over
the presented stimuli. Figure 3 shows the mean PVS scores
(MPS) for of the comfort versus quality scores for all 22 par-
ticipants. It can be clearly seen that there is a wide range
of different average quality and comfort ratings. To identify
whether this ’bias’ is due to the observers’ different percep-
tion of the PVS, due to systematic error in the experiment
design, or simply by chance is of great importance.

The scatter plot in Fig. 3 gives an overview of the av-
eraged differences amongst the observers, however, it does
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Fig. 4. Co-joint quality and comfort ratings for 4 observers.

not provide detailed information regarding the differences in
rating behaviour. These differences are better accounted for
in statistics that consider the distribution of the scores, such
as the histograms of the co-occurrences of quality and com-
fort scores illustrated in Fig. 4. Here, one can clearly identify
considerable differences in rating behaviour between the four
observers. Whereas observer 10 uses both scores in different
combinations, observer 17 tends to give the same scores for
a particular PVS, meaning, the scores are highly correlated.
Observer 18, on the other hand uses a wide range of qual-
ity scores but utilises mainly the middle of the comfort scale.
Observer 22 focuses mainly on a very narrow range for both
scores. These differences in rating behaviour should not be
ignored and their underlying cause needs to be investigated.

The difference between any two observers can be quan-
tified using correlations, such as the Pearson linear correla-
tion coefficient illustrated in Fig. 5. The upper figure shows
the correlations between all observers for the quality scores
(above diagonal) and the comfort scores (below diagonal).
The correlations are generally higher for the quality scores,
which is supported by the marginal distributions in the lower
plot. The lower agreement on comfort can have multiple rea-
sons, including, more difficulty in rating or larger differences
in perception, maybe due to the novelty of 3D applications.

In [9] it is argued that correlation is different from agree-
ment and thus, should not be used to measure inter-observer
agreement. This argument is supported by the simple exam-
ple in Fig. 6. Here, the diagonal represents perfect correlation
and perfect agreement. The solid dots, however, represent
perfect correlation but poor agreement, due to the distance of
the dots from the diagonal. The circles, on the other hand,
represent high agreement but zero correlation.

Typically, analysis of variance (ANOVA) is used to mea-
sure whether or not differences amongst two or more factors

O
bs

er
ve

r 
nu

m
be

r

 

 1

3

5

7

9

11

13

15

17

19

21 0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.5

1

Observer number

M
ea

n 
co

rr
el

at
io

n

 

 

Quality Comfort

Fig. 5. Inter-observer correlations for quality scores (above
diagonal) and comfort scores (below diagonal) and their
marginal distributions.
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Fig. 6. Difference between correlation and agreement [9].

are significant. However, in [9] it is argued that ANOVA
makes two assumptions that not necessarily hold in analysing
observer disagreement. Firstly, ANOVA assumes that ob-
servers have the same error variance and, secondly, it assumes
that correlations between any two observer pairs are the same
throughout the population. Especially the latter assumption
is particularly questionable in case of subjective experiments
with non-expert observers.

Given the above, so called inter-rater coefficients that are
widely used in medical research and decision making could
constitute a more suitable measure of inter-observer analysis.

3.2. Inter-rater coefficients

Inter-rater coefficients take into account that a certain amount
of agreement between observers is due to chance alone [5].
As such, they aim to measure the true disagreement by iden-
tifying and segregating the chance agreement. Early coeffi-
cients include Kendall’s W [10] and Scott’s Pi [11]. Cohen’s
κ [12], probably the most widely used inter-rater coefficient,
is an extension of Scott’s Pi which does not assume that ob-



Table 1. Confusion matrix applied to a 5-point scale.
Ratings observer A

1 2 3 4 5 Total

1 n11 n12 n13 n14 n15 n1·
Ratings 2 n21 n22 n23 n24 n25 n2·
observer 3 n31 n32 n33 n34 n35 n3·

B 4 n41 n42 n43 n44 n45 n4·
5 n51 n52 n53 n54 n55 n5·

Total n·1 n·2 n·3 n·4 n·5 n
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Fig. 7. Confusion matrices between observers 17 and 18 for
(a) quality and (b) comfort scores.

servers have the same rating distributions. Fleiss’ κ [13] is an
extension of Cohen’s κ from two to multiple observers.

Cohen’s κ is essentially based on a confusion matrix be-
tween two observers, which is given in Table 1 for a 5-point
scale. For illustration, the confusion matrices between ob-
servers 17 and 18 are given in Fig. 7 for quality and comfort
scores. One can see that the agreement between the two ob-
servers is higher for the quality scores, as indicated by the
high magnitudes around the diagonal.

The κ coefficient is computed as

κ =
po − pe
1− pe

=
1
n

∑5
i=1 nii − 1

n2

∑5
i=1 ni·n·i

1− 1
n2

∑5
i=1 ni·n·i

(1)

with po and pe denoting the observed and expected agree-
ment, respectively. In [14] it is stated that the conventional κ
is only suitable for nominal data and is inappropriate for or-
dinal data, such as given with ordinal scales in quality assess-
ment. The reason being, that in ordinal scales there are dif-
ferent levels of disagreement and, hence, a weighted κ is rec-
ommended that penalises disagreements in correspondence to
their severeness as follows

κw =
1
n

∑5
i=1

∑5
j=1 wijnij − 1

n2

∑5
i=1

∑5
j=1 wijni·n·i

1− 1
n2

∑5
i=1

∑5
j=1 wijni·n·i

.

(2)
Note that the unweighted κ is a special case of the weighted
κ with wij = 1 for i = j and wij = 0 for i ̸= j. Here, we use
linear weights wij = 1− 0.25|i− j|.
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Both the weighted and unweighted κ are measured on a
scale from -1 to 1, with 1 indicating perfect agreement and
0 meaning agreement by chance. Values below zero indicate
agreement less than chance and are very rare. To improve
interpretation of κ, an ordinal scale was introduced in [15] as
follows: ≤0 = poor, 0.01-0.2 = slight, 0.21-0.4 = fair, 0.41-
0.6 = moderate, 0.61-0.8 = substantial, and 0.81-1 = almost
perfect. However, the authors themselves admitted that the
choice of ranges and labels was somewhat arbitrary, for which
reason we do not consider them here.

In Fig. 8, Cohen’s weighted κw between all observers
is presented for the quality scores (above diagonal) and the
comfort scores (below diagonal). The red crosses addition-
ally mark the κw where the null hypothesis that agreement
is accidental is accepted (based on a p value of 0.05). It can
be seen that the κw are generally lower and the chance agree-
ment is higher for the comfort scores as compared to the qual-
ity scores. It is further apparent, that observer 22 not only ex-
hibits chance agreement with the majority of observers for the
comfort scores, but also for the quality scores. This disagree-
ment is also indicated in the correlations (see Fig. 5), however,
its severeness is more apparent using the κw coefficient.

3.3. Data mining

Within this framework, data mining techniques are instrumen-
tal to identify patterns in the experiment data and to determine
possible observer groups. These techniques are particularly
useful in cases where an extensive amount of data is avail-
able and when the dimensionality of the assessment task ex-
ceeds easy comprehension of the results. Furthermore, pow-
erful and freely available data mining software, such as the
Waikato Environment for Knowledge Analysis (WEKA) [16]
or RapidMiner [17], allow for straightforward application of
a wide range of data mining algorithms. In [6], data mining
techniques are generally separated into four categories, each
of which finds their application within inter-observer analysis.
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Fig. 9. Clustering using EM and 5 clusters.

Clustering [18] is considered to be particularly useful to
identify user groups with respect to one or multiple different
attributes. A range of different algorithms [19], such as k-
means, expectation maximisation (EM), and support vector
machines, provide powerful tools to identify these patterns.
We applied EM clustering with 5 clusters to the MPS pre-
sented in Fig.3. The results are presented in in Fig. 9 with
different markers indicating the association of a data point to
a cluster. It can be seen, that 5 clusters are created by the EM
algorithm, however, the separation between clusters is not al-
ways very distinct. Considerations of inter-observer analysis
already during the quality experiment (see Section 2.1) may
improve cluster separation.

Association analysis can be used to discover strongly as-
sociated attributes in the data, which is particularly useful for
experiment data where a large number of different factors are
considered. Implementations such as the Apriori algorithm
facilitate efficient extraction of patterns in such high dimen-
sional experiment data.

Anomaly detection devotes itself to the identification of
data that is significantly different from the rest of the data
and is thus particularly useful for outlier detection. Various
techniques utilising proximity, density, or clustering-based al-
gorithms cover outlier detection for low to high dimensional
experiment data.

Predictive modelling is useful to infer models from the
experiment data using classification (e.g. decision trees) or
regression-based methods for discrete and continuous data,
respectively. Typically, predictive modelling is conducted us-
ing the MOS, however, more detailed information about in-
dividual observer ratings may help to derive models that take
into account the complexity of multimedia QoE assessment.

In general, data mining provides powerful tools for inter-
observer analysis. However, a careful selection of suitable al-
gorithms along with a thorough parameterisation are essential
to maximise the usefulness of the output. The pre-processing
of the data, as discussed in Section 2.2, is crucial to maximise
the performance of the data mining algorithms. Strong inte-
gration of data mining techniques into inter-observer analysis
is an ultimate objective of the proposed framework.

4. DATA EXPLOITATION

As with conventional quality assessment, appropriate visu-
alisation of the analysis outcomes is essential for compre-
hension of the results with respect to the intended goals of
the experiment. In case of inter-observer analysis the focus
should thus be on emphasising the differences amongst ob-
servers rather than different PVS. An appropriate visualisa-
tion is the first step towards successful data interpretation and
in fact, in some cases visualisation alone can help to identify
patterns in the data (often referred to as visual data mining).
In case of high-dimensional data, a technique called online
analytical processing (OLAP) [6] is particularly useful as it
aggregates data to aid subsequent analysis. Several of these
visualisation techniques have been discussed in this paper, a
more comprehensive selection is given in [6].

Interpreting the data and making sense of it is possibly
the most difficult part of the framework. From the discussion
thus far it is obvious that there are indeed strong differences
between observers in terms of bias and rating patterns. How-
ever, to identify what exactly these differences stem from (in-
ternal versus external factors, systematic versus random dif-
ferences, ...) is a highly difficult task and in fact, the authors
believe that data interpretation would benefit from a careful
deployment of the entire framework, starting with the experi-
mental design.

Thoroughly interpreted inter-observer analysis outcomes
are expected to be beneficial towards the improvement of sub-
jective experiment procedures as well as for the improvement
of QoE prediction models. For instance, in [7] it was found
that there was a bias between the scores that were given in the
two experiments, which could be caused by differences in the
conduction of the experiment. However, they could also be
due to cultural differences between the French and Swedish
participants or other factors that yet need to be identified.

5. CONCLUSIONS

We propose a framework of inter-observer variability anal-
ysis in the context of multimedia quality assessment. The
paper serves to both, raise awareness to the importance of
inter-observer analysis and to provide representative tools to
conduct it. The different parts of the framework have been
discussed in relation to a 3D video quality experiment. A
considerable number of references is provided as a roadmap
for the reader to further explore the discussed framework.

The results presented here are only a first step towards
a more complete framework and many aspects are yet to be
investigated. For instance, other inter-observer coefficients
need to be investigated, including bivariate coefficients [20]
that simultaneously account for two variables (here: quality
and comfort). Also, the range of available data mining tech-
niques is vast and yet to be explored to fully exploit their
power in identifying patterns in the data. The authors also



plan to extend the framework to other domains, such as to the
identification in observer differences of gaze patterns recorded
through eye tracking [21]. Finally, the framework is planned
to be applied to exhaustive data sets (such as the VQEG com-
mon set) and a dedicated experiment is planned taking the ob-
jective of inter-observer analysis into account already during
the design of the procedures.
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