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We address the estimation of conditional quantiles when the covariate is functional and when the order of the quantiles converges to one as the sample size increases. In a first time, we investigate to what extent these large conditional quantiles can still be estimated through a functional kernel estimator of the conditional survival function. Sufficient conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed estimators. In a second time, basing on these result, a functional Weissman estimator is derived, permitting to estimate large conditional quantiles of arbitrary large order. These results are illustrated on finite sample situations.

Introduction

Let (X i , Y i ), i = 1, . . . , n be independent copies of a random pair (X, Y ) in E × R where E is an infinite dimensional space associated to a semi-metric d. We address the problem of estimating q(α n |x) ∈ R verifying P(Y > q(α n |x)|X = x) = α n where α n → 0 as n → ∞ and x ∈ E. In such a case, q(α n |x) is referred to as a large conditional quantile in contrast to classical conditional quantiles (or regression quantiles) for which α n = α is fixed in (0, 1). While the nonparametric estimation of ordinary regression quantiles has been extensively studied (see for instance [START_REF] Roussas | Nonparametric estimation of the transition distribution function of a Markov process[END_REF][START_REF] Stone | Consistent nonparametric regression (with discussion)[END_REF] or [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Chapter 5), less attention has been paid to large conditional quantiles despite their potential interest. In climatology, large conditional quantiles may explain how climate change over years might affect extreme temperatures. In the financial econometrics literature, they illustrate the link between extreme hedge fund returns and some measures of risk. Parametric models are introduced in [START_REF] Davison | Models for exceedances over high thresholds[END_REF][START_REF] Smith | Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion)[END_REF] and semi-parametric methods are considered in [START_REF] Beirlant | Regression with response distributions of Pareto-type[END_REF][START_REF] Hall | Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data[END_REF]. Fully nonparametric estimators have been first introduced in [START_REF] Davison | Local likelihood smoothing of sample extremes[END_REF][START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF] through local polynomial and spline models. In both cases, the authors focus on univariate covariates and on the finite sample properties of the estimators. Nonparametric methods based on moving windows and nearest neighbors are introduced respectively in [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF] and [START_REF] Gardes | Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels[END_REF]. We also refer to [START_REF] Falk | Laws of small numbers: Extremes and rare events[END_REF], Theorem 3.5.2, for the approximation of the nearest neighbors distribution using the Hellinger distance and to [START_REF] Gangopadhyay | A note on the asymptotic behavior of conditional extremes[END_REF] for the study of their asymptotic distribution.

An important literature is devoted to the particular case where the conditional distribution of Y given X = x has a finite endpoint ϕ(x) and when X is a finite dimensional random variable. The function ϕ is referred to as the frontier and can be estimated from an estimator of the conditional quantile q(α n |x) with α n → 0. As an example, a kernel estimator of ϕ is proposed in [START_REF] Girard | Frontier estimation via kernel regression on high power-transformed data[END_REF], the asymptotic normality being proved only when Y given X = x is uniformly distributed on [0, ϕ(x)].

We refer to [START_REF] Korostelev | Minimax theory of image reconstruction[END_REF] for a review on this topic.

Estimation of unconditional large quantiles is also widely studied since the introduction of Weissman estimator [45] dedicated to heavy-tailed distributions, Weibull-tail estimators [START_REF] Diebolt | Bias-reduced extreme quantile estimators of Weibull tail-distributions[END_REF][START_REF] Gardes | Estimating extreme quantiles of Weibull tail distributions[END_REF] dedicated to light-tailed distributions and Dekkers and de Haan estimator [START_REF] Dekkers | On the estimation of the extreme-value index and large quantile estimation[END_REF] adapted to the general case.

In this paper, we focus on the setting where the conditional distribution of Y given X = x has an infinite endpoint and is heavy-tailed, an analytical characterization of this property being given in the next section. In such a case, the frontier function does not exist and q(α n |x) → ∞ as α n → 0.

Nevertheless, we show, under some conditions, that large regression quantiles q(α n |x) can still be estimated through a functional kernel estimator of P(Y > .|x). We provide sufficient conditions on the rate of convergence of α n to 0 so that our estimator is asymptotically Gaussian distributed.

Making use of this, some functional estimators of the conditional tail-index are introduced and a functional Weissman estimator [45] is derived, permitting to estimate large conditional quantiles q(β n |x) where β n → 0 arbitrarily fast.

Assumptions are introduced and discussed in Section 2. Main results are provided in Section 3 and illustrated both on simulated and real data in Section 4 and Section 5. Extensions of this work are briefly discussed in Section 6. Proofs are postponed to the appendix.

Notations and assumptions

The conditional survival function (csf) of Y given X = x is denoted by F (y|x) = P(Y > y|X = x).

The functional estimator of F (y|x) is defined for all (x, y) ∈ E × R by

Fn (y|x) = n i=1 K(d(x, X i )/h)Q((Y i -y)/λ) n i=1 K(d(x, X i )/h), (1) 
2 with Q(t) = t -∞ Q ′ (s)
ds where K : R + → R + and Q ′ : R → R + are two kernel functions, and h = h n and λ = λ n are two nonrandom sequences (called window-width) such that h → 0 as n → ∞. Let us emphasize that the condition λ → 0 is not required in this context. This estimator was considered for instance in [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], page 56. Its rate of uniform strong consistency is established by [START_REF] Ferraty | Rate of uniform consistency for nonparametric estimates with functional variables[END_REF]. In Theorem 1 hereafter, the asymptotic distribution of ( 1) is established when estimating small tail probabilities, i.e when y = y n goes to infinity with the sample size n. Similarly, the functional estimators of conditional quantiles q(α|x) are defined via the generalized inverse of Fn (.|x):

qn (α|x) = F ← n (α|x) = inf{t, Fn (t|x) ≤ α}, (2) 
for all α ∈ (0, 1). Many authors are interested in this estimator for fixed α ∈ (0, 1). Weak and strong consistency are proved respectively in [START_REF] Stone | Consistent nonparametric regression (with discussion)[END_REF] and [START_REF] Gannoun | Estimation non paramétrique de la médiane conditionnelle, médianogramme et méthode du noyau[END_REF]. Asymptotic normality is shown in [START_REF] Berlinet | Asymptotic normality of convergent estimates of conditional quantiles[END_REF][START_REF] Samanta | Non-parametric estimation of conditional quantiles[END_REF][START_REF] Stute | Conditional empirical processes[END_REF] when E is finite dimensional and by [START_REF] Ferraty | Conditional quantiles for dependent functional data with application to the climatic El Nino Phenomenon[END_REF] for a general metric space under dependence assumptions. In Theorem 2, the asymptotic distribution of ( 2) is investigated when estimating large quantiles, i.e when α = α n goes to 0 as the sample size n goes to infinity. The asymptotic behavior of such estimators depends on the nature of the conditional distribution tail. In this paper, we focus on heavy tails. More specifically, we assume that the csf satisfies

(A.1): F (y|x) = c(x) exp - y 1 1 γ(x) -ε(u|x) du u ,
where γ is a positive function of the covariate x, c is a positive function and |ε(.|x)| is continuous and ultimately decreasing to 0. Examples of such distributions are provided in Table 1. (A.1) implies that the conditional distribution of Y given X = x is in the Fréchet maximum domain of attraction.

In this context, γ(x) is referred to as the conditional tail-index since it tunes the tail heaviness of the conditional distribution of Y given X = x. More details on extreme-value theory can be found for instance in [START_REF] Embrechts | Modelling extremal events[END_REF]. Assumption (A.1) also yields that F (.|x) is regularly varying at infinity with index -1/γ(x). i.e for all ζ > 0,

lim y→∞ F (ζy|x) F (y|x) = ζ -1/γ(x) . (3) 
We refer to [START_REF] Bingham | Regular Variation[END_REF] for a general account on regular variation theory. The auxiliary function ε(.|x) plays an important role in extreme-value theory since it drives the speed of convergence in (3) and more generally the bias of extreme-value estimators. Therefore, it may be of interest to specify how it converges to 0. In [START_REF] Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF][START_REF] Gomes | Semi-parametric estimation of the second order parameter, asymptotic and finite sample behaviour[END_REF], |ε(.|x)| is supposed to be regularly varying and the estimation of the corresponding regular variation index is addressed.

Some Lipschitz conditions are also required:

(A.2): There exist κ ε , κ c , κ γ > 0 and u 0 > 1 such that for all (x, x ′ ) ∈ E × E and u > u 0 ,

|log c(x) -log c(x ′ )| ≤ κ c d(x, x ′ ), |ε(u|x) -ε(u|x ′ )| ≤ κ ε d(x, x ′ ), 1 γ(x) - 1 γ(x ′ ) ≤ κ γ d(x, x ′ ).
The last two assumptions are standard in the functional kernel estimation framework.

(A.3): K is a function with support [0, 1] and there exist 0

< C 1 < C 2 < ∞ such that C 1 ≤ K(t) ≤ C 2 for all t ∈ [0, 1]. (A.4): Q ′ is a probability density function (pdf) with support [-1, 1].
One may also assume without loss of generality that K integrates to one. In this case, K is called a type I kernel, see [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Definition 4.1. Letting B(x, h) be the ball of center x and radius h, we finally introduce ϕ x (h) := P(X ∈ B(x, h) the small ball probability of X. Under (A.3), the τ -th moment µ

(τ )

x (h) := E{K τ (d(x, X)/h) can be controlled for all τ > 0 by Lemma 3 in Appendix. It is shown that µ

(τ )
x (h) is of the same asymptotic order as ϕ x (h).

Main results

The first step towards the estimation of large conditional quantiles is the estimation of small tail probabilities F (y n |x) when y n → ∞ as n → ∞.

Estimation of small tail probabilities

Defining Λ n (x) = n F (y n |x) (µ (1) 
x (h)) 2 µ

(2)

x (h)

-1/2
, the following result provides sufficient conditions for the asymptotic normality of Fn (y n |x).

Theorem 1 Suppose (A.1) -(A.4) hold. Let x ∈ E such that ϕ x (h) > 0 and introduce y n,j = a j y n (1 + o(1)) for j = 1, . . . , J with 0 < a 1 < a 2 < • • • < a J and where J is a positive integer.

If

y n → ∞ such that nϕ x (h) F (y n |x) → ∞ and nϕ x (h) F (y n |x)(λ/y n ∨ h log y n ) 2 → 0 as n → ∞, then Λ -1 n (x)
Fn (y n,j |x)

F (y n,j |x) -1 j=1,...,J
is asymptotically Gaussian, centered, with covariance matrix C(x) where C j,j ′ (x) = a

1/γ(x) j∧j ′ for (j, j ′ ) ∈ {1, . . . , J} 2 .
Note that nϕ x (h) F (y n |x) → ∞ is a necessary and sufficient condition for the almost sure presence of at least one sample point in the region B(x, h) × (y n , ∞) of E × R, see Lemma 4 in Appendix.

Thus, this natural condition states that one cannot estimate small tail probabilities out of the sample using Fn . Besides, from Lemma 3, Λ -2 n (x) is of the same asymptotic order as nϕ x (h) F (y n |x) and consequently Λ n (x) → 0 as n → ∞. Theorem 1 thus entails Fn (y n,j |x)/ F (y n,j |x) P -→ 1 which can be read as a consistency of the estimator. The second condition nϕ x (h) F (y n |x)(λ/y n ∨ h log y n ) 2 → 0 imposes to the biases λ/y n and h log y n introduced by the two smoothings to be negligible compared to the standard deviation Λ n (x) of the estimator. Theorem 1 may be compared to [START_REF] Einmahl | The empirical distribution function as a tail estimator[END_REF] which establishes the asymptotic behavior of the empirical survival function in the unconditional case but without assumption on the distribution.

Estimation of large conditional quantiles within the sample

In this paragraph, we focus on the estimation of large conditional quantiles of order α n such that nϕ x (h)α n → ∞ as n → ∞. This is a necessary and sufficient condition for the almost sure presence of at least one sample point in the region B(x, h) × (q(α n |x), ∞) of E × R, see Lemma 4 in Appendix. In other words, the large conditional quantile q(α n |x) is located within the sample.

Letting

σ n (x) = nα n (µ (1) 
x (h)) 2 µ

(2)

x (h)

-1/2
, Lemma 3 shows that σ n (x) is of the same asymptotic order as (nϕ x (h)α n ) -1/2 and thus the

condition nϕ x (h)α n → ∞ is equivalent to σ n (x) → 0 as n → ∞.
Theorem 2 Suppose (A.1) -(A.4) hold. Let x ∈ E such that ϕ x (h) > 0 and consider a sequence

τ 1 > τ 2 > • • • > τ J > 0 where J is a positive integer. If α n → 0 such that σ n (x) → 0 and σ -1 n (x)(λ/q(α n |x) ∨ h log α n ) → 0 as n → ∞, then σ -1 n (x) qn (τ j α n |x) q(τ j α n |x) -1 j=1,...,J
is asymptotically Gaussian, centered, with covariance matrix γ 2 (x)Σ where Σ j,j ′ = 1/τ j∧j ′ for (j, j ′ ) ∈ {1, . . . , J} 2 .

Remark that (A.1) provides an asymptotic expansion of the density function of Y given X = x:

f (y|x) = 1 γ(x) F (y|x) y (1 -ε(y|x)) = 1 γ(x) F (y|x) y (1 + o(1))
as y → ∞. Consequently, Theorem 2 entails that the random vector µ

x (h) (µ

(2) x (h)) 1/2 (nτ j α n (1 -τ j α n )) -1/2 f (q(τ j α n |x)|x) (q n (τ j α n |x) -q(τ j α n |x)) j=1,...,J
is also asymptotically Gaussian and centered. This result coincides with [START_REF] Berlinet | Asymptotic normality of convergent estimates of conditional quantiles[END_REF], Theorem 6.4 established in the case where α n = α is fixed in (0, 1) and in a finite dimensional setting.

Estimation of arbitrary large conditional quantiles

This paragraph is dedicated to the estimation of large conditional quantiles of arbitrary small

order β n . For instance, if nϕ x (h)β n → c ∈ [1, ∞) then q(β n |x) is located near the boundary of the sample. If nϕ x (h)β n → c ∈ [0, 1) then q(β n |x) is located outside the sample.
Here, a functional Weissman estimator [45] is proposed to tackle all possible situations:

qW n (β n |x) = qn (α n |x)(α n /β n ) γn(x) . (4) 
Here, qn (α n |x) is the functional estimator (2) of a large conditional quantile q(α n |x) within the sample and γn (x) is an estimator of the conditional tail-index γ(x). As illustrated in the next theorem, the extrapolation factor (α n /β n ) γn(x) allows to estimate arbitrary large quantiles.

Theorem 3 Suppose (A.1) -(A.4) hold. Let x ∈ E and introduce • α n → 0 such that σ n (x) → 0 and σ -1 n (x)(λ/q(α n |x)∨h log α n ∨ε(q(α n |x)|x)) → 0 as n → ∞, • (β n ) such that β n /α n → 0 as n → ∞, • γn (x) such that σ -1 n (x)(γ n (x) -γ(x)) d -→ N (0, V (x)) where V (x) > 0. Then, σ -1 n (x) log(α n /β n ) qW n (β n |x) q(β n |x) -1 d -→ N (0, V (x)).
Let us now focus on the estimation of the conditional tail-index. Let α n → 0 and consider a

sequence 1 = τ 1 > τ 2 > • • • > τ J > 0
where J is a positive integer. Two additional notations are introduced for the sake of simplicity: u = (1, . . . , 1) t ∈ R J and v = (log(1/τ 1 ), . . . , log(1/τ J )) t ∈ R J . The following family of estimators is proposed

γφ n (x) = φ(log qn (τ 1 α n |x), . . . , log qn (τ J α n |x)) φ(log(1/τ 1 ), . . . , log(1/τ J )) , (5) 
where φ : R J → R denotes a twice differentiable function verifying the shift and location invariance

conditions    φ(θv) = θφ(v) φ(ηu + x) = φ(x) (6) 
for all θ > 0, η ∈ R and x ∈ R J . In the case where

J = 3, τ 1 = 1, τ 2 = 1/2 and τ 3 = 1/4, the function φ FP (x 1 , x 2 , x 3 ) = log exp(4x 2 ) -exp(4x 1 ) exp(4x 3 ) -exp(4x 2 )
leads us to a functional version of Pickands estimator [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF]:

γφFP n (x) = 1 log 2 log qn (α n |x) -qn (2α n |x) qn (2α n |x) -qn (4α n |x) .
We refer to [START_REF] Gijbels | Estimation of a support curve via order statistics[END_REF] for a different variant of Pickands estimator in the context where the distribution of Y given X = x has a finite endpoint. Besides, introducing the function m p (x 1 , . . . , x J ) = J j=1 (x jx 1 ) p for all p > 0 and considering φ p (x) = m 1/p p (x) gives rise to a functional version of the estimator considered for instance in [START_REF] Segers | Residual estimators[END_REF], example (a):

γφp n (x) =   J j=1 [log qn (τ j α n |x) -log qn (α n |x)] p J j=1 [log(1/τ j )] p   1/p .
As a particular case φ 1 (x) = m 1 (x) corresponds to a functional version of the Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]:

γφ1 n (x) = J j=1 [log qn (τ j α n |x) -log qn (α n |x)] J j=1 log(1/τ j ) .
More interestingly, if {φ (1) , . . . , φ (H) } is a set of H functions satisfying (6) and if A : R H → R is a homogeneous function of degree 1, then the aggregated function A(φ (1) , . . . , φ (H) ) also satisfies [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF].

Generalizations of the functional Hill estimator can then be obtained using H = 2, A p (x, y) =

x p y 1-p and defining φ p,q,r = A p (φ q , φ r ) = m

p/q q m (1-p)/r r : γφp,q,r n (x) = J j=1 [log qn (τ j α n |x) -log qn (α n |x)] p p/q J j=1 [log(1/τ j )] r (p-1)/r J j=1 [log qn (τ j α n |x) -log qn (α n |x)] r (p-1)/r J j=1 [log(1/τ j )] p p/q .
For instance, the estimator introduced by [START_REF] Gomes | Generalizations of the Hill estimator -asymptotic versus finite sample behaviour[END_REF], equation (2.2) corresponds to the particular function φ p,p,1 and the estimator of [START_REF] Caeiro | Bias reduction in the estimation of parameters of rare events[END_REF] corresponds to φ p,pθ,p-1 .

For an arbitrary function φ, the asymptotic normality of γφ n (x) is a consequence of Theorem 2. The following result permits to establish the asymptotic normality of the above mentioned estimators in an unified way.

Theorem 4 Under the assumptions of Theorem 2 and if, moreover,

σ -1 n (x)ε(q(α n |x)|x) → 0 as n → ∞, then, σ -1 n (x)(γ φ n (x) -γ(x)
) converges to a centered Gaussian random variable with variance

V φ (x) = γ 2 (x) φ 2 (v) (∇φ(γ(x)v)) t Σ(∇φ(γ(x)v)).
Let us note that the additional condition σ -1 n (x)ε(q(α n |x)|x) → 0 is standard in the extremevalue framework: Neglecting the unknown function ε(.|x) in the construction of γφ n (x) yields a bias that should be negligible with respect to the standard deviation σ n (x) of the estimator. Finally, combining Theorem 3 and Theorem 4, the asymptotic distribution of the functional large quantile estimator qW,φ n (β n |x) based on (4) and ( 5) is readily obtained.

Corollary 1 Suppose (A.1) -(A.4) hold. Let x ∈ E such that ϕ x (h) > 0 and consider a sequence

1 = τ 1 > τ 2 > • • • > τ J > 0 where J is a positive integer. If • α n → 0, σ n (x) → 0 and σ -1 n (x)(λ/q(α n |x) ∨ h log α n ∨ ε(q(α n |x)|x)) → 0 as n → ∞, • β n /α n → 0 as n → ∞, then σ -1 n (x) log(α n /β n ) qW,φ n (β n |x) q(β n |x) -1 d -→ N (0, V φ (x)).
As an example, in the case of the functional Hill and Pickands estimators, we obtain

V φ1 (x) = γ 2 (x)   J j=1 2(J -j) + 1 τ j -J 2     J j=1 log(1/τ j )   2 . V φFP (x) = γ 2 (x)(2 2γ(x)+1 + 1) 4(log 2) 2 (2 γ(x) -1) 2 .
Clearly, V φFP (x) is the variance of the classical Pickands estimator, see for instance [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF], Theorem 3.3.5.

Illustration on simulated data

The finite sample performance is illustrated on N = 200 replications of a sample of size n = 500 from a random pair (X, Y ), where the functional covariate

X ∈ E = L 2 [0, 1] is defined by X(t) = cos(2πZt) for all t ∈ [0, 1] where Z is uniformly distributed on [1/4, 1]
. Some examples of simulated random functions X are depicted on Figure 1. Besides, the conditional distribution of Y given X is a Burr distribution (see Table 1) with parameters τ (X) = 2 and λ(X) = 2/(8 X 2 2 -3) with

X 2 2 = 1 0 X 2 (t)dt = 1 2 1 + sin(4πZ) 4πZ .
We focus on the estimation of q(β n |x) with β n = 5/n. To this end, the functional Weissman estimator qW n (β n |x) is used with a piecewise linear kernel K(t) = (1.9 -1.8t)I{t ∈ [0, 1]} and the triangular kernel Q ′ . The conditional tail index is estimated by the functional Hill estimator γφ1

n . The choice of the semi-metric d is a recurrent issue in functional estimation (see [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Chapter 3).

Here, two semi-metrics are considered. The first one is defined for all (s, t) ∈ E 2 by d X (s, t) = st 2 and coincides with the L 2 distance between functions. Remarking that the conditional quantile q(α n |X) depends only on X 2 2 , or equivalently on Z, another interesting semi-metric is

d Z (s, t) = s 2 2 -t 2 2 .
Finally, in Section 5, an example of the use of a metric based on second derivatives is presented.

With such choices, the functional Weissman estimator qW n (β n |x) depends on three parameters h, λ and α n and on the τ j 's used to compute γφ1

n . -The smoothing parameter h is selected using the cross-validation approach introduced in [46] and implemented for instance in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF][START_REF] Gannoun | Reference ranges based on nonparametric quantile regression[END_REF]:

h opt = arg min    n i=1 n j=1 I{Y i ≥ Y j } -Fn,-i (Y j |X i ) 2 , h ∈ H   
where Fn,-i is the estimator (depending on h) given in [START_REF] Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF] 

computed from the sample {(X ℓ , Y ℓ ), 1 ≤ ℓ ≤ n, ℓ = i}. Here, H is a regular grid, H = {h 1 ≤ h 2 ≤ • • • ≤ h M } with h 1 = 1/100, h M = 1/10
and M = 20. Let us note that this approach was originally proposed for finite dimensional covariates. Up to our knowledge, its optimality (with respect to the mean integrated squared error for instance) is not established in the functional framework. We refer to [START_REF] Ferraty | Thresholding in nonparametric functional regression with scalar response[END_REF] for such a work in functional regression.

-In our experiments, the choice of the bandwidth λ appeared to be less crucial than the other smoothing parameter h. It could have been selected with the same criteria as previously, but for simplicity reasons, it has been fixed to λ = 0.1.

-The choice of α n is equivalent to the choice of the number of upper order statistics in the nonconditional extreme-value theory. It is still an open question, even though some techniques have been proposed, see for instance [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF] for a bootstrap based method.

-The selection of the τ j 's is equivalent to the selection of an estimator for the conditional tail index. Once again, extreme-value theory does not provide optimal solution to this problem.

In order to assess the impact of the choice of α n and τ j 's, the L 2 -errors 2. For a fixed value of s, the best error obtained with the semi-metric d Z is always smaller than the best error obtained with d X (both displayed in bold font). Let us note that the optimal value of c does not seem to depend on the semi-metric. Besides, it will appear in the following that the estimations are not, at least visually, very sensitive with respect to the choice of α n (or equivalently c) and τ j (or equivalently s). In Figure 234, the estimator qW n (β n |x) is represented as a function of Z. The estimator has been computed for two sets of (α n , τ j ): (α n = 15 log(n)/n, τ j = (1/j) 3 ) and (α n = 10 log(n)/n, τ j = (1/j) 2 ) and for the two semi-metrics d X and d Z . We limited ourselves to the representation of the estimator computed on the replications giving rise to the median, 10% quantile and 90% quantile of the L 2 -errors ∆ (r) d , r = 1, . . . , N . It appears that there is no visual significative difference between the two choices of (α n , τ j ).

∆ (r) d = n i=1 qW n (β n |X i ) (r) -q(β n |X i ) 2 , r = 

Illustration on real data

In this section, we propose to illustrate the behaviour of our large conditional quantiles estimators on functional chemometric data. It concerns n = 215 samples of finely chopped meat (see for example [START_REF] Ferraty | The functional nonparametric model and application to spectrometric data[END_REF] for more details). For each unit i taken among this sample, we observe one spectrometric curve χ i discretized at 100 wavelengths λ 1 , . . . , λ 100 . The covariate x i is thus defined by x i = (x i,1 , . . . , x i,100 ) t with x i,j = χ i (λ j ) for all j = 1, . . . , 100. Each variable x i,j is thelog 10 of the transmittance recorded by the Tecator Infratec Food and Feed Analyzer spectrometer. The dataset can be found at http://lib.stat.cmu.edu/datasets/tecator. Clearly, the covariate x i is in fact a discretized curve but, as mentioned in [START_REF] Leurgans | Canonical correlation analysis when the data are curves[END_REF], the fineness of the grid spanning the discretization allows us to consider each subject as a continuous curve.

Hence, the covariate can be considered as belonging to an infinite dimensional space E. For each spectrometric curve χ i , the fat content Ỹi ∈ [0, 100] (in percentage) is given. Since these values are bounded they cannot satisfy model (A.1) and we propose to use as variable of interest the inverse of the fat content defined as:

Y i = 100/ Ỹi ∈ [1, ∞), i = 1, . . . , n.
In the following, the semi-metric based on the second derivative is adopted, as advised in [START_REF] Ferraty | Nonparametric functional data analysis[END_REF],

Chapter 9:

d 2 (χ i , χ j ) = χ (2) i (t) -χ (2) 
j (t) 2 dt,
where χ (2) denotes the second derivative of χ. To compute this semi-metric, one can use an approximation of the functions χ i and χ j based on B-splines as proposed in [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Chapter 3. Here, we limit ourselves to a discretized version d of d:

d2 (x i , x j ) = 99 l=2 {(x i,l+1 -x j,l+1 ) + (x i,l-1 -x j,l-1 ) -2(x i,l -x j,l )} 2 .
Other semi-metrics could be considered: Functional Principal Component Analysis (FPCA) or Multivariate Partial Least-Squares Regression (MPLSR) are useful tools for computing proximities between curves in reduced dimensional spaces, see [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Section 3.4.

We propose to estimate the large conditional quantile of order β n = 5/n in a given direction of the space E. More precisely, we focus on the segment [χ i0 , χ i1 ] where χ i0 and χ i1 denote the most different curves in the sample, i.e.

(i 0 , i 1 ) = arg max 1≤i<j≤n d(x i , x j ).

The selected curves χ i0 and χ i1 are plotted in Figure 5. Since these curves appear to be smooth, the chosen semi-metric, which is based on the second derivative, seems to be well adapted. The conditional quantile to estimate is q(β n , t(ξ)) where t(ξ) = ξχ i1 + (1ξ)χ i0 for ξ ∈ [0, 1]. To this end, the functional Weissman estimator is considered with the same kernels as in the previous section. The selected smoothing parameters are h = 0.02 and λ = 0.1.

The estimated quantile qW n (β n , t(ξ)) is plotted as a function of ξ in Figure 6 for different values of weights τ j and probability α n . Here again, it appears that the estimated quantiles are not too sensitive with respect to these parameters. The globally decreasing shape of the curves indicates that heaviest tails (i.e. largest values of γ(t(ξ))) are found in the neighbourhood of the curve χ i0 (i.e. for small values of ξ). At the opposite, lightest tails are found in the neighbourhood of the curve χ i1 . These results are confirmed by Figure 7: The estimated conditional tail-index γφ1 n (x) is larger for x = χ i0 than for x = χ i1 . These very different shapes confirm a strong heterogeneity of the sample in terms of tail behaviour.

Further work

Our further work will consist in establishing uniform convergence results. The rate of uniform strong consistency of the csf estimator Fn (y|x) defined in ( 1) is already known since [START_REF] Ferraty | Rate of uniform consistency for nonparametric estimates with functional variables[END_REF] for fixed y. The first step will then to adapt this result for y = y n → ∞ as n → ∞. On this basis, it should be possible to get uniform results for q(α n |x) (see [START_REF] Beirlant | Regression with response distributions of Pareto-type[END_REF]) in the case of large conditional quantiles withing the sample, ie. α n → 0 with nϕ x (x)α n → ∞. The last step would be to extend these results to qW n (β n |x) defined in (4) when β n → 0 arbitrarily fast. Such results would require the uniform convergence of γn (x), the estimator of the conditional tail index.

7 Appendix: Proofs

Preliminary results

The following two lemmas are of analytical nature. The first one is dedicated to the control of the local variations of the csf when the quantity of interest y goes to infinity.

Lemma 1 Let x ∈ E and suppose (A.1) and (A.2) hold.

(i) If y n → ∞ and h log y n → 0 as n → ∞, then, for n large enough,

sup x ′ ∈B(x,h) F (y n |x) F (y n |x ′ ) -1 ≤ 2(κ c + κ γ + κ ε )h log y n .
(ii) If y n → ∞ and y ′ n → ∞ as n → ∞, then, for n large enough,

sup x ′ ∈B(x,h) F (y ′ n |x ′ ) F (y n |x ′ ) -1 ≤ y n y ′ n 2/γ(x) -1 .
Proof. (i) Assumption (A.1) yields, for all x ′ ∈ B(x, h):

log F (y n |x) F (y n |x ′ ) ≤ |log c(x) -log c(x ′ )| + yn 1 1 γ(x) - 1 γ(x ′ ) + |ε(u|x) -ε(u|x ′ )| du u ≤ κ c h + yn 1 (κ γ + κ ε )h du u ≤ (κ c + κ γ + κ ε )h log y n , eventually, from (A.2). Thus, sup d(x,x ′ )≤h log F (y n |x) F (y n |x ′ ) = O(h log y n ) → 0
as n → ∞ and taking account of log(u + 1) ∼ u as u → 0 gives the result.

(ii) Let us assume for instance y ′ n > y n . From (A.1) we have

F (y ′ n |x ′ ) F (y n |x ′ ) -1 = 1 - y ′ n y n -1/γ(x ′ ) exp y ′ n yn ε(u|x ′ ) u du ≤ 1 - y ′ n y n -1/γ(x ′ )-|ε(yn|x ′ )| . (7) 
Now, x ′ ∈ B(x, h) and (A.2) imply for n large enough that

1 γ(x ′ ) + |ε(y n |x ′ )| ≤ 1 γ(x) + (κ ε + κ γ )h + |ε(y n |x)| ≤ 2 γ(x)
.

Replacing in [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF], it follows that

F (y ′ n |x ′ ) F (y n |x ′ ) -1 ≤ 1 - y ′ n y n -2/γ(x)
.

The case y ′ n ≤ y n is similar.

The second lemma provides a second order asymptotic expansion of the quantile function. It is proved in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF].

Lemma 2 Suppose (A.1) hold.

(i) Let 0 < β n < α n with α n → 0 as n → ∞. Then, | log q(β n |x) -log q(α n |x) + γ(x) log(β n /α n )| = O(log(α n /β n )ε(q(α n |x)|x)). (ii) If, moreover, lim inf β n /α n > 0, then β γ(x) n q(β n |x) α γ(x) n q(α n |x) = 1 + O(ε(q(α n |x)|x)).
The following lemma provides a control on the moments µ (τ )

x (h) for all τ > 0, the case τ = 1 being studied in [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Lemma 4.3. The proof is straightforward.

Lemma 3 Suppose (A.3) holds. For all τ > 0 and x ∈ E, 0 < C τ 1 ϕ x (h) ≤ µ (τ ) x (h) ≤ C τ 2 ϕ x (h).
The following lemma provides a geometrical interpretation of the condition nϕ x (h) F (y n |x) → ∞.

Lemma 4 Suppose (A.1), (A.2) hold and let

y n → ∞ such that h log y n → 0 as n → ∞. Consider the subset of E × R defined as R n (x) = B(x, h) × (y n , ∞) where x ∈ E is such that ϕ x (h) > 0.
Then, P(∃i ∈ {1, . . . , n},

(X i , Y i ) ∈ R n (x)) → 1 as n → ∞ if, and only if, nϕ x (h) F (y n |x) → ∞.
Proof. Since (X i , Y i ), i = 1, . . . , n are independent and identically distributed random variables,

P(∃i ∈ {1, . . . , n}, (X i , Y i ) ∈ R n (x)) = 1 -(1 -P((X, Y ) ∈ R n (x))) n (8) 
where

P((X, Y ) ∈ R n (x))) = E(I{X ∈ B(x, h) ∩ Y ≥ y n }) = E(I{X ∈ B(x, h)} F (y n |X)) = F (y n |x)ϕ x (h) + F (y n |x)E F (y n |X) F (y n |x) -1 I{X ∈ B(x, h)} .
In view of Lemma 1(i), we have

E F (y n |X) F (y n |x) -1 I{X ∈ B(x, h)} ≤ 2(κ c + κ γ + κ ε )ϕ x (h)h log y n
and therefore

P((X, Y ) ∈ R n (x)) = F (y n |x)ϕ x (h)(1 + O(h log y n )).
Clearly, this probability converges to 0 as n → ∞ and thus (8) can be rewritten as

P(∃i ∈ {1, . . . , n}, (X i , Y i ) ∈ R n (x)) = 1 -exp -nϕ x (h) F (y n |x)(1 + o(1)) ,
which converges to 1 if and only if nϕ x (h) F (y n |x) → ∞.

Let us remark that the kernel estimator (1) can be rewritten as Fn (y|x) = ψn (y, x)/ĝ n (x) with ψn (y, x) = 1

nµ (1)
x (h)

n i=1 K(d(x, X i )/h)Q((Y i -y)/λ), ĝn (x) = 1 nµ (1)
x (h)

n i=1 K(d(x, X i )/h).
Lemma 5 and Lemma 6 are respectively dedicated to the asymptotic properties of ĝn (x) and ψn (y, x).

Lemma 5 Suppose (A.3) holds and let x ∈ E such that ϕ x (h) > 0. We have:

(i) E(ĝ n (x)) = 1. (ii) If, moreover, ϕ x (h) → 0 as h → 0 then 0 < lim inf nϕ x (h) var(ĝ n (x)) ≤ lim sup nϕ x (h) var(ĝ n (x)) < ∞.
Therefore, under (A.3), if ϕ x (h) → 0 and nϕ x (h) → ∞ then ĝn (x) converges to 1 in probability.

Proof. (i) is straightforward.

(ii) Standard calculations yields

nϕ x (h)var(ĝ n (x)) = ϕ x (h) µ (2) 
x (h) (µ

(1) x (h)) 2 -1
and Lemma 3 entails

(C 1 /C 2 ) 2 ≤ ϕ x (h) µ (2) 
x (h) (µ

(1) x (h)) 2 ≤ (C 2 /C 1 ) 2 .
The condition ϕ x (h) → 0 concludes the proof. Lemma 6 Suppose (A.1) -(A.4) hold. Let x ∈ E such that ϕ x (h) > 0 and introduce y n,j = a j y n (1 + o(1)) for j = 1, . . . , J with 0 < a 1 < a 2 < • • • < a J and where J is a positive integer. If

y n → ∞ such that h log y n → 0, λ/y n → 0 and nϕ x (h) F (y n |x) → ∞ as n → ∞, then (i) E( ψn (y n,j , x)) = F (y n,j |x)(1 + O(h log y n ∨ λ/y n )), for j = 1, . . . , J.
(ii) The random vector

Λ -1 n (x) ψn (y n,j , x) -E( ψn (y n,j , x)) F (y n,j |x) j=1,...,J
is asymptotically Gaussian, centered, with covariance matrix C(x) where C j,j ′ (x) = a

1/γ(x) j∧j ′ for (j, j ′ ) ∈ {1, . . . , J} 2 .
Proof. (i) The (X i , Y i ), i = 1, . . . , n being identically distributed, we have

E( ψn (y n,j , x)) = 1 µ (1) 
x (h)

E{K(d(x, X)/h)Q((Y -y n,j )/λ)} = 1 µ (1) 
x (h)

E{K(d(x, X)/h)E(Q((Y -y n,j )/λ)|X)}
Taking account of (A.4), it follows that

E(Q((Y -y n,j )/λ)|X) = F (y n,j |X) + 1 -1 Q ′ (u)( F (y n,j + λu|X) -F (y n,j |X))du
and thus the bias can be expanded as

E( ψn (y n,j , x)) -F (y n,j |x) =: T 1,n + T 2,n , (9) 
where we have defined

T 1,n = 1 µ (1) 
x (h)

E{K(d(x, X)/h)( F (y n,j |X) -F (y n,j |x))}, T 2,n = 1 µ (1) 
x (h)

E K(d(x, X)/h) F (y n,j |X) 1 -1 Q ′ (u) F (y n,j + λu|X) F (y n,j |X) -1 du .
Focusing on T 1,n and taking account of (A.3), it follows that

T 1,n = 1 µ (1) 
x (h)

E(K(d(x, X)/h)( F (y n,j |X) -F (y n,j |x))I{d(x, X) ≤ h}) = F (y n,j |x) µ (1) 
x (h)

E K(d(x, X)/h) F (y n,j |X) F (y n,j |x) -1 I{d(x, X) ≤ h} . Lemma 1(i) implies that F (y n,j |X) F (y n,j |x) -1 I{d(x, X) ≤ h} ≤ 2(κ c + κ γ + κ ε )h log y n,j ≤ 3(κ c + κ γ + κ ε )h log y n ,
eventually and therefore

|T 1,n | = F (y n,j |x)O(h log y n ). (10) 
Let us now consider T 2,n . From Lemma 1(ii), for all u ∈ [-1, 1], we eventually have

F (y n,j + λu|X) F (y n,j |X) -1 I{d(x, X) ≤ h} ≤ 1 + λu y n,j 2/γ(x) -1 ≤ C γ(x) λ y n,j ,
since λ/y n → 0 as n → ∞ and where C γ(x) is a positive constant. As a consequence,

|T 2,n | ≤ C γ(x) λ y n,j 1 µ (1) x (h) E(K(d(x, X)/h) F (y n,j |X)) = C γ(x) λ y n,j ( F (y n,j |x) + T 1,n ) = F (y n,j |x)O(λ/y n ) (11) 
in view of [START_REF] Davison | Models for exceedances over high thresholds[END_REF]. Collecting ( 9), ( 10) and ( 11) concludes the first part of the proof.

(ii) Let β = 0 in R J and consider the random variable

Ψ n = J j=1
β j ψn (y n,j , x) -E( ψn (y n,j , x))

Λ n (x) F (y n,j |x) =: n i=1 Z i,n ,
where, for all i = 1, . . . , n, the random variable Z i,n is defined by

nΛ n (x)µ (1) x (h)Z i,n =    J j=1 β j K(d(x, X i )/h)Q((Y i -y n,j )/λ) F (y n,j |x) -E   J j=1 β j K(d(x, X i )/h)Q((Y i -y n,j )/λ) F (y n,j |x)      .
Clearly, {Z i,n , i = 1, . . . , n} is a set of centered, independent and identically distributed random variables. Let us determine an asymptotic expansion of their variance:

var(Z i,n ) = 1 n 2 (µ (1) 
x (h)) 2 Λ 2 n (x) var   J j=1 β j K(d(x, X i )/h) Q((Y i -y n,j )/λ) F (y n,j |x)   = 1 n 2 (µ (1) 
x (h)) 2 Λ 2 n (x)

β t B(x)β = F (y n |x) nµ (2) 
x (h)

β t B(x)β, (12) 
where B(x) is the J × J covariance matrix with coefficients defined for (j, j ′ ) ∈ {1, . . . , J} 2 by

B j,j ′ (x) = A j,j ′ (x) F (y n,j |x) F (y n,j ′ |x) , A j,j ′ (x) = cov {K(d(x, X)/h)Q((Y -y n,j )/λ), K(d(x, X)/h)Q((Y -y n,j ′ )/λ)} = E K 2 (d(x, X)/h)Q((Y -y n,j )/λ)Q((Y -y n,j ′ )/λ) -E{K(d(x, X)/h)Q((Y -y n,j )/λ)}E{K(d(x, X)/h)Q((Y -y n,j ′ )/λ)} =: T 3,n -T 4,n .
Let us first focus on T 3,n :

T 3,n = E{K 2 (d(x, X)/h)E(Q((Y -y n,j )/λ)Q((Y -y n,j ′ )/λ)|X)} (13) 
and remark that

E(Q((Y -y n,j )/λ)Q((Y -y ′ n,j )/λ)|X) =: Ω(y n,j , y n,j ′ ) + Ω(y n,j ′ , y n,j )
where we have defined

Ω(y, z) = 1 λ R Q ′ ((t -y)/λ)Q((t -z)/λ) F (t|X)dt = 1 -1 Q ′ (u)Q(u + (y -z)/λ) F (y + uλ|X)du.
Let us consider the case j < j ′ . We thus have a j < a j ′ and consequently (y n,jy n,j ′ )/λ → -∞ as n → ∞. Therefore, for n large enough u + (y n,jy n,j ′ )/λ < -1 and Q(u + (y n,jy n,j ′ )/λ) = 0. It follows that, eventually Ω(y n,j , y n,j ′ ) = 0. Similarly, for n large enough Q(u + (y n,j ′y n,j )/λ) = 1

and

Ω(y n,j ′ , y n,j ) = 1 -1 Q ′ (u) F (y n,j ′ + uλ|X)du.
For symmetry reasons, it follows that, for all j = j ′ ,

E(Q((Y -y n,j )/λ)Q((Y -y ′ n,j )/λ)|X) = 1 -1 Q ′ (u) F (y n,j∨j ′ +uλ|X)du = E(Q((Y -y n,j∨j ′ )/λ)|X),
and replacing in (13) yields

T 3,n = E{K 2 (d(x, X)/h)E(Q((Y -y n,j∨j ′ )/λ)|X)} = E{K 2 (d(x, X)/h)Q((Y -y n,j∨j ′ )/λ)}.
Now, since K 2 is a kernel also satisfying assumption (A.3), part (i) of the proof implies

T 3,n = µ (2) x (h) F (y n,j∨j ′ |x)(1 + O(h log y n ∨ λ/y n )), (14) 
for all j = j ′ . In the case where j = j ′ , by definition,

T 3,n = E{K 2 (d(x, X)/h)E(Q 2 ((Y -y n,j )/λ)|X)}
where K 2 is a kernel also satisfying assumption (A.3) and where the pdf associated to Q 2 satisfies assumption (A.4). Consequently, ( 14) also holds for j = j ′ . Second, part (i) of the proof implies

T 4,n = (µ (1) x (h)) 2 F (y n,j |x) F (y n,j ′ |x)(1 + O(h log y n ∨ λ/y n )).
As a consequence, (1) x (h)) 2 F (y n,j |x)

A j,j ′ (x) = µ (2) x (h) F (y n,j∨j ′ |x)(1 + O(h log y n ∨ λ/y n )) -(µ
F (y n,j ′ |x)(1 + O(h log y n ∨ λ/y n ))
leading to

B j,j ′ (x) = µ (2) x (h) F (y n,j∧j ′ |x) 1 + O(h log y n ∨ λ/y n ) - (µ (1) 
x (h)) 2 µ

(2)

x (h)

F (y n,j∧j ′ |x)(1 + O(h log y n ∨ λ/y n )) .
In view of Lemma 3, (µ

x (h)) 2 /µ

(2)

x (h) is bounded and taking account of F (y n,j∧j ′ |x) → 0 as n → ∞ yields

B j,j ′ (x) = µ (2) 
x (h) F (y n,j∧j ′ |x)

(1 + o(1)).

Now, from the regular variation property (3), it is easily seen that

F (y n,j∧j ′ |x) = a -1/γ(x) j∧j ′ F (y n |x)(1 + o(1)) entailing B j,j ′ (x) = C j,j ′ (x)µ (2) 
x (h)/ F (y n |x)(1 + o( 1)). Replacing in [START_REF] Diebolt | Bias-reduced extreme quantile estimators of Weibull tail-distributions[END_REF], it follows that

var(Z i,n ) = β t C(x)β n (1 + o(1)),
for all i = 1, . . . , n. As a preliminary conclusion, var(Ψ n ) → β t C(x)β as n → ∞. Consequently, Lyapounov criteria for the asymptotic normality of sums of triangular arrays reduces

to n i=1 E |Z i,n | 3 = nE |Z 1,n | 3 → 0 as n → ∞. Next, remark that Z 1,n is a bounded random variable: |Z 1,n | ≤ 2C 2 J j=1 |β j | nΛ n (x)µ (1) x (h) F (y n,J |x) = 2C 2 a 1/γ(x) J µ (1) x (h) µ (2) x (h) J j=1 |β j |Λ n (x)(1 + o(1)) ≤ 2(C 2 /C 1 ) 2 a 1/γ(x) J J j=1 |β j |Λ n (x)(1 + o(1));
in view of Lemma 3 and thus,

nE |Z 1,n | 3 ≤ 2(C 2 /C 1 ) 2 a 1/γ(x) J J j=1 |β j |Λ n (x)nvar(Z 1,n )(1 + o(1)) = 2(C 2 /C 1 ) 2 a 1/γ(x) J J j=1 |β j |β t C(x)βΛ n (x)(1 + o(1)) → 0
as n → ∞ in view of Lemma 3. As a conclusion, Ψ n converges in distribution to a centered Gaussian random variable with variance β t C(x)β for all β = 0 in R J . The result is proved.

Proofs of main results

Proof of Theorem 1. Keeping in mind the notations of Lemma 6, the following expansion holds

Λ -1 n (x) J j=1 β j Fn (y n,j |x) F (y n,j |x) -1 =: ∆ 1,n + ∆ 2,n -∆ 3,n ĝn (x) , (15) 
where

∆ 1,n = Λ -1 n (x) J j=1
β j ψn (y n,j , x) -E( ψn (y n,j , x)) F (y n,j |x)

∆ 2,n = Λ -1 n (x) J j=1
β j E( ψn (y n,j , x)) -F (y n,j |x) F (y n,j |x)

∆ 3,n =   J j=1 β j   Λ -1 n (x) (ĝ n (x) -1) .
Let us highlight that assumptions nh 2 ϕ x (h) log 2 (y n ) F (y n |x) → 0 and nϕ x (h) F (y n |x) → ∞ imply that h log y n → 0 as n → ∞. Thus, from Lemma 6(ii), the random term ∆ 1,n can be rewritten as

∆ 1,n = β t C(x)βξ n , (16) 
where ξ n converges to a standard Gaussian random variable. The nonrandom term ∆ 2,n is controlled with Lemma 6(i):

∆ 2,n = O(Λ -1 n (x)(h log y n ∨ λ/y n )) = o(1). (17) 
Finally, ∆ 3,n can be bounded by Lemma 5 and Lemma 3:

∆ 3,n = O P (Λ -1 n (x)(nϕ x (h)) -1/2 ) = O P ( F (y n |x)) 1/2 = o P (1). (18) 
Collecting ( 15)-( 18), it follows that ĝn (x)Λ -1 n (x) J j=1 β j Fn (y n,j |x)

F (y n,j |x) -1 = β t C(x)βξ n + o P (1).
Finally, ĝn (x) P -→ 1 concludes the proof.

Proof of Theorem 2. Introduce for j = 1, . . . , J,

α n,j = τ j α n , σ n,j (x) = q(α n,j |x)σ n (x), v n,j (x) = α -1 n,j γ(x)σ -1 n (x), W n,j (x) = v n,j (x) Fn (q(α n,j |x) + σ n,j (x)z j |x) -F (q(α n,j |x) + σ n,j (x)z j |x) , a n,j (x) = v n,j (x) α n,j -F (q(α n,j |x) + σ n,j (x)z j |x) ,
and z j ∈ R. Let us study the asymptotic behavior of J-variate function defined by

Φ n (z 1 , . . . , z J ) = P   J j=1 σ -1 n,j (x)(q n (α n,j |x) -q(α n,j |x)) ≤ z j   = P   J j=1 {W n,j (x) ≤ a n,j (x)}   .
We first focus on the nonrandom term a n,j (x). Under (A.1), F (.|x) is differentiable. Thus, for all j ∈ {1, . . . , J} there exists θ n,j ∈ (0, 1) such that F (q(α n,j |x)|x) -F (q(α n,j |x) + σ n,j (x)z j |x) = -σ n,j (x)z j F ′ (q n,j |x),

where q n,j = q(α n,j |x) + θ n,j σ n,j (x)z j . It is clear that q(α n,j |x) → ∞ and σ n,j (x)/q(α n,j |x) → 0 as n → ∞. As a consequence, q n,j → ∞ and thus (A.1) entails lim n→∞ q n,j F ′ (q n,j |x)

F (q n,j |x) = -1/γ(x). (20) 
Moreover, since q n,j = q(α n,j |x)(1 + o(1)) and F (.|x) is regularly varying at infinity, it follows that

F (q n,j |x) = F (q(α n,j |x)|x)(1 + o(1)) = α n,j (1 + o(1)
). In view of ( 19) and ( 20), we end up with

a n,j (x) = v n,j (x)σ n,j (x)α n,j z j γ(x)q(α n,j |x) (1 + o(1)) = z j (1 + o(1)). (21) 
Let us now turn to the random term W n,j (x). Defining a j = τ -γ(x) j

, y n,j = q(α n,j |x) + σ n,j (x)z j for j = 1, . . . , J and y n = q(α n |x), we have y n,j = q(α n,j |x)(1 + o(1)) = a j y n (1 + o(1)) since q(.|x) is regularly varying at 0 with index -γ(x). Using the same argument, it is easily shown that

log y n = -γ(x) log(α n )(1 + o(1)
). As a consequence, Theorem 1 applies and the random vector

σ -1 n (x) v n,j (x) F (y n,j |x) W n,j j=1,...,J = (1 + o(1)) W n,j γ(x) j=1,...,J
converges to a centered Gaussian random variable with covariance matrix C(x). Taking account of [START_REF] Gangopadhyay | A note on the asymptotic behavior of conditional extremes[END_REF], we obtain that Φ n (z 1 , . . . , z J ) converges to the cumulative distribution function of a centered Gaussian distribution with covariance matrix γ 2 (x)C(x) evaluated at (z 1 , . . . , z J ), which is the desired result.

Proof of Theorem 3. The proof is based on the following expansion:

σ -1 n (x) log(α n /β n ) (log(q W n (β n |x)) -log(q(β n |x))) = σ -1 n (x) log(α n /β n ) (Q n,1 + Q n,2 + Q n,3 )
where we have introduced

Q n,1 = σ -1 n (x)(γ n (x) -γ(x)), Q n,2 = σ -1 n (x) log(α n /β n ) log(q n (α n |x)/q(α n |x)), Q n,3 = σ -1 n (x) log(α n /β n ) (log q(α n |x) -log q(β n |x) + γ(x) log(α n /β n )). First, Q n,1 d -→ N (0, V (x)
) as a straightforward consequence of the assumptions. Second, Theorem 2 implies that qn (α n |x)/q(α n |x) P -→ 1 and

Q n,2 = σ -1 n (x) log(α n /β n ) qn (α n |x) q(α n |x) -1 (1 + o P (1)) = O P (1) log(α n /β n ) . Consequently, Q n,2 P -→ 0 as n → ∞. Finally, from Lemma 2(i), Q n,3 = O(σ -1 n (x)ε(q(α n |x)|x))
, which converges to 0 in view of the assumptions.

Proof of Theorem 4. The following expansion holds for all j = 1, . . . , J: log qn (τ j α n |x) = log q(α n |x) + log q(τ j α n |x) q(α n |x) + log qn (τ j α n |x) q(τ j α n |x) .

First, Lemma 2(ii) entails that log q(τ j α n |x) q(α n |x) = γ(x) log(1/τ j ) + O(ε(q(α n |x)|x)),

where the O(ε(q(α n |x)|x)) is not necessarily uniform in j = 1, . . . , J. Second, it follows from Theorem 2 that log qn (τ j α n |x) q(τ j α n |x) = σ n (x)ξ n,j

where (ξ n,1 , . . . , ξ n,J ) t converges to a centered Gaussian random vector with covariance matrix γ 2 (x)Σ. Replacing ( 23) and ( 24) in ( 22) yields log qn (τ j α n |x) = log q(α n |x) + γ(x) log(1/τ j ) + σ n (x)ξ n,j + O(ε(q(α n |x)|x)), for all j = 1, . . . , J and therefore, in view of the shift invariance property of φ, we have φ ({log qn (τ j α n |x)} j=1,...,J ) = φ ({γ(x) log(1/τ j ) + σ n (x)ξ n,j + O(ε(q(α n |x)|x))} j=1,...,J ) .

A first order Taylor expansion yields: Thus, under the condition σ -1 n (x)ε(q(α n |x)|x) → 0 as n → ∞, it follows that σ -1 n (x)(φ ({log qn (τ j α n |x)} j=1,...,J )φ (γ(x)v)) = J j=1 ξ n,j ∂φ ∂x j (γ(x)v) + o P (1).

Taking into account of the scale invariance property of φ, we finally obtain

σ -1 n (x)(γ φ n (x) -γ(x)) = 1 φ(v) J j=1 ξ n,j ∂φ ∂x j (γ(x)v) + o P (1)
and the conclusion follows. 

  1, . . . , N have been computed. Here, qW n (β n |X i ) (r) is the estimation computed on the rth replication and d can be either d X or d Z . Different values of α n and τ j are investigated: α n = c log(n)/n with c ∈ {5, 10, 15, 20} and τ j = (1/j) s with s ∈ {1, 2, 3, 10}. The median, 10% quantile and 90% quantile of the ∆ (r) d errors are collected in Table

φ

  ({log qn (τ j α n |x)} j=1,...,J ) = φ (γ(x)v) + J j=1 (σ n (x)ξ n,j + O(ε(q(α n |x)|x))) (x)ξ n,j + O(ε(q(α n |x)|x))) 2   .
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 234 Figure 2: Comparison of the estimated quantile qW n (β n |x) corresponding to the 10% quantile of the L 2 -errors ∆ (r) d with the true quantile function (continuous line). Horizontally: Z, vertically: quantiles. Two sets of (α n ,τ j ) are considered: (α n = 15 log(n)/n, τ j = (1/j) 3 , dashed line) and (α n = 10 log(n)/n, τ j = (1/j) 2 , dotted line). Top: semi-metric d Z , bottom: semi-metric d X .

[45] I. Weissman. Estimation of parameters and large quantiles based on the k largest observations, Journal of the American Statistical Association, 73:812-815, 1978.

[46] Q. Yao. Conditional predictive regions for stochastic processes. Technical report, University of Kent at Canterbury, 1999.