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Abstract. In this paper, we presents a research work based on formal
concept analysis and interest measures associated with formal concepts.
This work focuses on the ability of concept lattices to discover and rep-
resent special groups of individuals, called social communities. Concept
lattices are very useful for the task of knowledge discovery in databases,
but they are hard to analyze when their size become too large. We rely
on concept stability and support measures to reduce the size of large con-
cept lattices. We propose an example from real medical use cases and we
discuss the meaning and the interest of concept stability for extracting
and explaining social communities within a healthcare network.

1 Introduction

Knowledge Discovery in Databases (KDD) is an iterative and interactive process
for identifying valid, novel, and potentially useful patterns in data [1]. It is usually
divided into three main steps: data preparation, data mining, and interpretation
of the extracted units. Data mining is often considered as the central step in the
KDD process. However, interpretation of data-mining results is also an important
step within the KDD process. Indeed, one of the the success keys in KDD practice
relies on the ability of easily producing units understandable as knowledge units.
One way of achieving such a goal is to provide an adapted organization and
representation of the extracted units, especially when the KDD system has to
be used by novice users.

In parallel, Formal Concept Analysis (FCA) is a theory of data analysis in-
troduced in [2], that is tightly connected with KDD [3, 4], particularly regarding
the search of frequent itemsets and the extraction of association rules [5]. Many
algorithms relying on FCA central property of closure have been proposed to
extract frequent closed itemsets: e.g. CLOSE [6], CLOSET [7], CHARM [8], TI-
TANIC [9], and ZART [10]. The set of frequent closed itemsets may be used to
determine the set of all frequent itemsets: closed itemsets are a loss less repre-
sentation of frequent itemsets, while the set of closed itemsets can be orders of
magnitude smaller than the set of all frequent itemsets.
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FCA organizes information into a concept lattice representing inherent struc-
tures existing in data. A concept lattice can be visualized for analysis using
graphical tools, e.g. TOSCANA [11], GALICIA [12]. FCA forms also the basis
of a knowledge processing paradigm known as “Conceptual Landscapes” [13].
Furthermore, Stumme [9] has introduced the so-called iceberg lattices, which
are concept lattices of frequent closed itemsets. Iceberg lattices serve as a sup-
port for visualization of association rules mined in large database. They can help
analysts in selecting interesting patterns and organizing these patterns into un-
derstandable and reusable knowledge units. However, iceberg lattices may hide
non frequent but still relevant concepts.

Following the idea of compact, reduced (loss less), and concise representa-
tion of extracted units (i.e. itemsets, association rules, or concepts), a number
of numerical measures used for pruning itemsets, association rules, and in a
certain sense concepts, have been proposed [14]. In this way, Kuznetsov has in-
troduced stability as a new interest measure for concepts [15, 16]. Stability has
been successfully used for pruning concept lattices, e.g. in the field of social net-
works [17–19]. Accordingly, in this article, we address the problem of exploring
“social communities”. By “social communities”, we intend sets of agents or orga-
nizations whose members are linked by a common interest or objective [20]. One
of our goals is to study the basis and to design a decision support system for as-
sisting experts identifying social communities. The selection, organization, and
discrimination of relevant units of knowledge, help to understand how agents
interact in a social community and how they gather on specific topics. More-
over, we show in this paper that combining concept frequency together with
concept stability provides a very efficient means for discovering and analyzing
social communities.

The paper is organized as follows. Following the present first section, the
second section introduces the definitions and the properties of FCA, of support
and stability measures. The third section presents a qualitative discussion on
stability and shows how stability enlighten concept with a high internal cohesion,
i.e. stable and without exceptional individuals. Then, the fourth section gives
details on an example of social community discovery within a healthcare network.
A discussion on the example and on the knowledge units that can be extracted
is proposed and precedes the conclusion of the paper.

2 Support and Stability: Interest Measures of Formal
Concepts

2.1 Formal Concept Analysis

We describe here the FCA basics. FCA starts with a formal context K = (G, M, I)
where G is a set of objects, M is a set of attributes, and the binary relation
I = G × M specifies which objects have which attributes. Two operators, both
denoted by ′, connect the power sets of objects 2G and attributes 2M as follows:

′ : 2G → 2M, X′ = {m ∈ M|∀g ∈ X, gIm}
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The operator ′ is dually defined on attributes. The pair of ′ operators induces
a Galois connection between 2G and 2M. The composition operators ′′ are closure
operators: they are idempotent, extensive and monotonous. For any A ⊆ G and
B ⊆ M, A′′ and B′′ are closed sets whenever A = A′′ and B = B′′.

A formal concept of the context K = (G, M, I) is a pair (A, B) ⊆ G × M where
A′ = B and B′ = A. A is called the extent and B is called the intent. A concept
(A1, B1) is a subconcept of a concept (A2, B2) if A1 ⊆ A2 (which is equivalent to
B2 ⊆ B1) and we write (A1, B1) ≤ (A2, B2). The set B of all concepts of a formal
context K together with the partial order relation ≤ forms a lattice and is called
concept lattice of K.

2.2 Iceberg Concept Lattices

This paragraph is based on [9] and introduces basics of iceberg lattices.

Definition 1. Let B ⊆ M. The support count of the attribute set B in K is

σ(B) =
|B′|
|G| (1)

Let minsupp be a threshold ∈ [0, 1], then B is said to be a frequent itemset if
σ(B) � minsupp.

A concept is called frequent concept if its intent is frequent.

Definition 2. The set of all frequent concepts of a context K is called iceberg
lattice of the context K.

The support function is monotonously decreasing: given two attribute sets B1
and B2, B1 ⊆ B2 ⇒ σ(B1) ≥ σ(B2). Thus an iceberg lattice is an order filter of the
whole concept lattice and in general only a join-semi-lattice. Meanwhile, adding
a bottom element makes it a lattice again.

Iceberg Lattices can be used to discover and visualize association rules. Within
a formal context K = (G, M, I), the task of mining association rules is to determine
all pairs X → Y of M such that σ(X → Y) = σ(X ∪ Y) � minsupp, and the confidence
conf(X → Y) = σ(X∪Y)

σ(X) is above a given threshold minconf ∈ [0, 1].
Mining associations rules with FCA has two major advantages [21]. First,

frequent closed itemsets are sufficient to deduce all frequent itemsets. Thus,
algorithms can benefit from this property to reduce the search space. Second,
iceberg lattices offer a reduced and lossless representation of association rules.
They allow to directly read Luxenbourger basis for approximate association rules
[22] from a line diagram.

2.3 Stability

Stability has been introduced (probably for the first time) in [15] and then
revisited [16, 19]. Here, we rely on the definition given in [19].
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Definition 3. Let (A, B) a formal concept of B(K). Stability of (A, B) is

γ(A, B) =
|{C ⊆ A|C′ = A′ = B}|

2|A|
(2)

The stability index of a concept indicates how much the concept intent depends
on particular objects of the extent. Given a concept (A, B), the stability index
measures the number of elements of G that are in the same equivalence class of
A, where an equivalence class is defined as follows.

Definition 4. Let X ⊆ G, we denote by 〈X〉 the equivalence class of X where:

〈X〉 = {Y ⊆ G|Y′ = X′} (3)

Note that when X is closed, any Y in 〈X〉 is a subset of X. Thus, considering a
formal concept (A, B), definition 3 can be rewritten as:

γ(A, B) =
|〈A〉|
2|A| (4)

Then, the larger the equivalence class of an extent is (wrt to extent size), the
more stable the concept is. The idea behind stability is that a stable concept
is likely to have a real world interpretation even if the description of some its
objects (i.e. elements in the extent) is “noisy”. Figure 1 shows an example of
stability in a concept lattice. Each concept is labelled by its extent, intent and
stability. For example, for the concept ({1, 5, 6}, {a}), we have:

∅′ = {a, b, c, d} = {a}
{1}′ = {a}
{5}′ = {a}

{6}′ = {a, b, c} = {a}
{1, 5}′ = {a}
{1, 6}′ = {a}
{5, 6}′ = {a}

{1, 5, 6}′ = {a}

Thus γ({1, 5, 6}, {a}) = 6
8 = 0.75. It can be noticed that stability is (by def-

inition) always between 0 and 1. It can be still noticed that γ(⊥) = 1. This is
always true, since for any subset X from the extent of ⊥, X′ is included in the
intent of ⊥.

Computing stability has been shown to be a #P-complete problem [16]. Mean-
while, once the concept lattice has been computed, a bottom-up traversal algo-
rithm can efficiently compute stability [18]. Actually, a concept stability depends
on the stability of its subconcepts. This can be shown as follows:
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Fig. 1. Stability example

Proposition 1. Let (A, B) a formal concept of B(K).

γ(A, B) = 1 −
∑

X⊂A,X=X′′

γ(X, X′)2|X|−|A| (5)

Proof. For a formal concept (A, B), from (4), we have:

γ(A,B) =
|〈A〉|
2|A|

Let IA be the set of subintents of A: IA = {X ⊆ A|X = X′′}. The set of equivalent
classes {〈X〉|X ∈ IA} forms a partition of 2A. Thus |2A| =

∑
X∈IA|〈X〉|, which gives:

|〈A〉| = |2A| −
∑

X∈IA,X 	=A

|〈X〉|

Dividing by |2A| we obtain:

|〈A〉|
|2A| = 1 −

∑

X∈IA,X 	=A

|〈X〉|
|2A|

γ(A,B) = 1 −
∑

X⊂A,X=X′′

γ(X, X′)2|X|−|A|

3 A Qualitative Analysis of Stability

3.1 Stability and Cohesion

As stated in [19], a concept is stable if its intent does not depend much Âon
each particular object of the extent. Stability is aimed at measuring how much a
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concept extent depends on some of its individual members. This may be useful
in analyzing a dataset with a concept lattice, having a special attention to social
communities. Here, a social community can be thought as a group of agents
–human, software, or resource agents– sharing the same interests, or ideas, or
needs [17]. For example, patients visiting the same hospitals with similar medi-
cal problems can be identified as a special social community. In the associated
formal context, objects correspond to patients and hospital stays correspond to
attributes (see hereafter). Always following the line of [19], an actual community
has to be “internally cohesive” enough: a stable concept continues to be a con-
cept even if a few members stop being members. This means also that a stable
concept is resistant to noise and will not collapse when some members will be
removed from its extent.

In this way, a stable concept is a meaningful concept, in the sense that it
covers a group of objects, that considered together, have a high internal cohesion.
The most stable concepts determine the most interesting groups of objects, that
constitute their extents.

3.2 Stable Concepts Are of High Interest

FCA provides a powerful framework for identifying social communities [17, 23,
24]. Relations between agents and common interests can be modeled within a
formal context. The associated concept lattice will allow to discover and identify
which agents do share common interests and what are these interests. How-
ever, as the size of a formal context increases, the number of formal concepts
in the lattice may grow dramatically. In this case, interest measures such as
stability and support can reduce the complexity of the analysis of the con-
cept lattice. Filtering concepts by support relies on the assumption that use-
ful knowledge is represented by frequent patterns. But, this is not always true
as pointed out in studies on rare itemsets, as in e.g. in [25], where it is shown
that association rules with a low support but a high confidence may be of high
interest.

Stability gives an alternative point of view on formal concepts. It indicates
the probability of preserving a concept intent while removing some objects of
its extent. Considering social communities, stability helps to identify groups of
commons interest that dot not entirely depend on some specific agents. As sta-
bility is somewhat independent from support, it can be used to discriminate
low-support concepts and detect small communities of strongly related agents.
Moreover, stability also detects frequent concepts only depending on a small
number of objects. For example, considering a lattice composed of the two fol-
lowing concepts C1 = ({g1, ..., gn−1, gn}, {m1}) and C2 = ({g1, ..., gn−1}, {m1, m2})
with n high, then it can be noticed that C1 depends solely on the object gn.
Although C1 and C2 have both a support close to 1, stability of C2 is 1 while
stability of C1 is 1

2 . In terms of social communities, the group of individuals
{g1, ..., gn} has not a sufficient “internal cohesion” or has not a “real existence”.

Hence, stability, together with support, are a convenient means for identifying
two types of concepts:
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– rare stable concepts : concepts with a low support and a high stability,
– frequent unstable concepts : concepts with a high support and low stability.

In section 4, this point of view is discussed and illustrated within a real-world
application aimed at detecting communities of patients, i.e. groups of patients
being treated in the same groups of hospitals.

3.3 Stable Concepts Are Monothetic Rather Than Polythetic

As introduced above, stability can also be linked with exceptions, and, further-
more, with the so-called monothetic and polythetic characters of a class of indi-
viduals [26–28]. When building a concept lattice and analyzing groups of indi-
viduals through the extents of concepts, one problem is to recognize and explain
exceptions. A subsequent question is to understand whether exceptions are linked
to monothetic or polythetic classes.

A class of individuals C is said to be monothetic if and only if there exists a set
of attributes Att that determines the membership of an individual to the class
C (Att is a set of necessary and sufficient membership conditions). By contrast,
given a set of attributes Att = {a1, ..., an}, a class of individuals C is said to be
polythetic if and only if:

– Every object that is an instance of the class C has an “important” –not
necessarily fixed– number of attributes of Att.

– Every attribute of Att belongs to an “important” –not necessarily fixed–
number of instances of C.

– There is not necessarily an attribute of Att belonging to every instance of C.

Relying on the fact that a stable concept has a high “internal cohesion”, is
resistant to noise, and does not collapse when some members stop being mem-
bers of its extent, the more a concept is stable, the more it does not represent
exceptional individuals, and, accordingly, the more the concept is able to rep-
resent cohesive groups of individuals, such as social communities. This means
that stable concepts are rather monothetic and that unstable concepts are rather
“exceptional” or polythetic, i.e. they include some exceptional character, shared
by only a few individuals. For illustrating this view, let us consider the following
example.

A B C D E

1 x x x x
2 x x
3 x x x x
4 x x x
5 x x x x

Here, attribute D can be considered as a “necessary and sufficient condition”
for the membership of an individual to the class including individual 1. Indeed,
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the concept lattice includes the concept (A, B) = (1, abde). However, this concept
has a very low stability ( 4

16 ) and also a low support for its intent ( 15 when
abde is considered as an itemset). This is in agreement with the view that a
stable concept appears to be monothetic while an unstable concept tends to be
polythetic.

4 Social Communities in a Regional Healthcare System

4.1 Motivations

Healthcare management and planning play a key role for improving the over-
all health level of the population. From a population point of view, even the
best and state-of-the-art therapy is not effective if it cannot be delivered in the
right conditions. Actually, many determinants influence the effective delivery of
healthcare services: availability of trained personnel, availability of equipments,
security constraints, costs, proximity. . . All of these should meet economics, de-
mographics, and epidemiological needs in a given area. This issue is especially
acute in the field of cancer care where many institutions and professionals must
cooperate to deliver high level, long term, and costly care. Therefore, it is crucial
for healthcare managers and decisions makers to be assisted by decision support
systems that give strategic insights about the intrinsic behavior of the healthcare
system.

On the one hand, healthcare systems can be considered as ”data rich” as they
produce massive amounts of data such as electronic medical records, clinical
trial data, hospital records, administrative data, and so on. On the other hand,
they can be regarded as ”knowledge poor” as these data are rarely embedded
into a strategic decision-support resource [29]. In France, the PMSI database
is a national information system used to describe hospital activity with both
an economical and medical point of view. In a previous work, we used this
system together with iceberg lattices to discover how several institutions organize
themselves into an implicit network to provide coordinated care at a regional
level [30]. Our method has been used in real world by healthcare managers. It
appeared that support based pruning had some limits, for example in analysing
small institutions interactions.

4.2 The Difficulty of Choosing the Good Support Threshold

In this section we present an example of an iceberg lattice showing cooperations
between hospitals in the field of cancer. We then discuss the choice of minsupp
by studying concept support distribution. In our approach, we build a context
in which objects are patients suffering from cancer and attributes are hospitals.
A patient and a hospital are related if the hospital has delivered cancer care to
this patient. In our experiment, the resulting context has 6036 patients and 170
hospitals. While the whole concept lattice holds 865 concepts, an iceberg lattice
built with a minsupp of 0.0033 (20 patients) gives 93 frequent concepts. A small
excerpt of this iceberg is shown in figure 2.
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Fig. 2. Iceberg of cancer treatment cooperations

For the sake of clarity, ⊥ was removed. Although its right and leftmost parts
are not drawn, the iceberg lattice is much more wide than deep because the
context is sparse and data are poorly correlated. This means that cooperations
are most of the time tightly partitioned, and that patients are rarely hospitalized
in more than two hospitals. The intent of co-atoms, i.e. immediate descendants
of �, is always a singleton, indicating that a hospital never shares all of its
patients with another one, or if it is so, less than 20 patients are involved in the
interaction. The intent of atoms, i.e. the immediate ascendant of ⊥, is always
a pair. The extent of atoms gives an idea of the strength of the cooperation
between the two hospitals lying in the intent: the larger is the cardinal of the
extent, the higher is the strength of the cooperation (i.e. the more patients
are shared between the two hospitals). The examination of the iceberg brings
different types of knowledge:

– some concepts that are both atoms and co-atoms (for example : CL-SELI-
THIO). They represent institutions that share a few patients with others. This
is that either they treat a few patients, or they work in a relative autonomy,
or cooperation is split with many other hospitals.

– other concepts have at least a sub-concept (different from ⊥). They repre-
sent a hospital receiving a significant number of patients, and having col-
laborations with at least another establishment. For example MAT-REG and
CLCC-AV-VAN share 28 patients.

– The concept representing the CLCC-AV-VAN hospital has a high support and
many sub-concepts. This hospital is a specialized anti-cancer center. It em-
ploys highly skilled and specialized personnel. Treatments given there rely on
state-of-art technology. Furthermore, It actively participates in anti-cancer
research programs and thus can be considered as a reference institution.

The choice of the minimum support strongly influences the interpretation of
the iceberg. It must be sufficiently low to convey meaningful knowledge and
sufficiently high to keep this knowledge readable for a human expert. Here, the
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Table 1. Concept support count and intent size

��������������Number of patients
Intent size

0 1 2 3 > 4

< 10 0 40 285 297 76
[10, 20[ 0 13 52 7 0
[20, 30[ 0 10 20 0 0
[30, 40[ 0 6 2 0 0
> 40 1 34 20 0 0

whole lattice holds 865 concepts. Table 1 shows the distribution of their support
according to the size of their intent. By choosing a minsupp of corresponding to
20 patients, we see we can miss interesting knowledge:

– 13 hospitals treat at least 10 patients,
– 52 cooperations of two hospitals involve at least 10 patients,
– 7 concepts represent cooperations between three hospitals and involve at

least 10 patients.

In our case, support is a weak mean for discriminating ”not-so-frequent” con-
cepts. Some concepts not appearing in the iceberg may be of interest for different
reasons:

– They illustrate a cooperation of one hospital sharing almost all of its patients
with another one.

– They concern a hospital treating few patients but not sharing them with any
other one.

– They concern a 3-hospitals interaction.

Lowering the support threshold can let these concepts appear in the ice-
berg, but at the expense of readability. Moreover support measure is not specific
enough to discriminate concepts with the above characteristics.

4.3 Stability Analysis

In this section, we study stability of concepts within the whole concept lattice.
Figure 3 shows the histogram of concept stability.

Most of the concepts hold only one object in their extent. As ⊥ extent is empty,
they have a stability of 0.5. The next important group consists of concepts having
stability very close to 1. It corresponds generally to the most frequent concepts.
Indeed, 93% of the concepts having support greater than 10 have stability greater
than 0.99. Figure 4 is a scatter-plot of stability and support, also featuring intent
size.

Values are presented on a log-scale for better visualization of both support
and stability ranges. Moreover, we prefer to use the stability odds defined as
follows:



268 N. Jay, F. Kohler, and A. Napoli

Fig. 3. Concept stability histogram

Fig. 4. Concept stability and support

Definition 5. Given a concept (A, B) = ⊥, we call stability odds of (A, B):

oγ(A, B) =
γ(A, B)

1 − γ(A, B)
(6)

Stability odds are the ratio between the number of subsets of an extent A which
belong to the equivalence class of A, and of those which do not.

Stability odds illustrate more clearly the distribution of stability for values close
to 1 and show that stability has a better discriminant power than support. The
whole set of concepts has 87 distinct support values and 152 distinct stability
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values. For concept having support between 10 and 19, we observe 57 distinct
stability values. Figure 4 displays thresholds for the 10% most frequent concepts
and 10% most stable concepts. In the next sections we discuss the differences
between those two thresholds.

4.4 Frequent Unstable Concepts

The upper left quarter of figure 4 shows the 9 concepts having support greater
than the 10% most frequent threshold and stability less than the 10% most stable
threshold, i.e. frequent unstable concepts. They represent institutions playing a
significant role in cancer care as secondary or tertiary care1 centers. They share
most of their patients with other hospitals. This gives rise to cooperations of 2
kinds.

Figure 5 shows the order ideals of two frequent unstable concepts. Two hospi-
tals have tight interaction each with another tertiary care center, i.e. MAT-REG-
NANCY with CRLCC-AV-VAN, CL-ARCENCIEL with CH-EPINAL. These two institu-
tions are secondary care centers usually delivering surgery and referring patients
to a tertiary care center for radiotherapy. Their activity can be almost entirely
explained by an exclusive cooperation. This induces a form of dependency with
the tertiary care center. Patient not concerned by the cooperation can be con-
sidered as exceptions, i.e. patients not following the usual care pathway for some
reason (for example because they suffer from a very specific pathology). After
pruning according to stability, only the concepts in grey on figure 5 will remain.

One center, as shown on Figure 6, is a highly specialized anti-cancer insti-
tution. IGR-PARIS is an international well-known anti-cancer center located in
Paris. Many Lorraine local hospitals refer patients to IGR for rare tumors. If we
apply stability pruning here, the whole sub-lattice will disappear, which may be
desirable for readability. Meanwhile, its suggests that searching for this type of
unstable frequent concept can also be an interesting knowledge mining task.

4.5 Rare Stable Concepts

Three concepts are located in the right lower corner of figure 4.
Two have an intent of size 2 and illustrate thus cooperations between two

hospitals sharing 18 patients. These cooperations differ from others of the same
support in that they are not split themselves in cooperations involving a third
institution. Thus, similarity of concerned patients is entirely explained by those
cooperations. The last concept has a size 3 intent and illustrates the cooperation
between three large specialized hospitals located in the same city of Nancy. This
is the most frequent and most stable concept of that type.

Stability allows to distinguish rare concepts that cannot be separated from
others by support. Rare stable concepts differ from other rare concepts in that
their attributes suffice to explain the similarity of their objects.
1 Secondary care is delivered by a broadly skilled specialist (e.g. a general surgeon, a

general internist, or an obstetrician). Tertiary care is provided by a sub-specialist(e.g.
an orthopedic surgeon, a neurologist, or neonatologist).
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Fig. 5. Frequent unstable concepts: exclusive cooperations

Fig. 6. Frequent unstable concepts : IGR-PARIS as a national referred care center

5 Synthesis

Our system is used in real world by healthcare managers. First, at the individ-
ual level, it helps healthcare professionals to assess their activity in the regional
landscape. While physicians are able to cite the names of people they are used
to cooperate with, they cannot measure the strength of these cooperations. And
it is even harder for hospital managers to count patients shared with other insti-
tutions due to the gaps and lacks of adapted processes in information systems.
Second, at the regional level, it provides for the administrative staff a decision
support to reorganize care resources according to the implicit behavior of the
healthcare system. Actually, French law establishes activity thresholds in the
field of cancer: e.g. an hospital must treat at least 30 patients a year to be au-
thorized for digestive cancer surgery. Our system has allowed to enlighten and
accordingly to promote cooperations between institutions that could not reach
the thresholds alone. It has also demonstrated how administrative decisions could
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impact the social healthcare network, given the existence of many dependencies
between structures.

6 Conclusion

Our main objective is to build a system allowing for visualization of a social
healthcare network in the field of cancer care. This system is used today by
healthcare managers. Things must be kept simple while conveying enough infor-
mation for assisting strategic decisions. The use of concept interest measures has
a strong impact both on readability and semantics of discovered knowledge. To-
gether with support, stability can successfully identify two kind of concepts: fre-
quent unstable concepts and rare stable concepts. In our experiment, the formal
context is sparse and we need to mine concepts with very low support. Stability
brings additional knowledge that helps to discover interesting rare concepts that
can not be discriminated by support. We believe that it could have significant
implications in the field of rare itemsets mining [25]. Furthermore, stability en-
hances lattice visualization when pruning frequent unstable concepts. Besides,
frequent unstable concepts may also be a subject of interest.
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