
HAL Id: hal-00608179
https://hal.science/hal-00608179v1

Submitted on 12 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pebble weighted automata and transitive closure logics
Benedikt Bollig, Paul Gastin, Benjamin Monmege, Marc Zeitoun

To cite this version:
Benedikt Bollig, Paul Gastin, Benjamin Monmege, Marc Zeitoun. Pebble weighted automata and
transitive closure logics. Proceedings of the 37th International Colloquium on Automata, Languages
and Programming (ICALP’10) - Part II, Jul 2010, Bordeaux, France. pp.587-598, �10.1007/978-3-642-
14162-1_49�. �hal-00608179�

https://hal.science/hal-00608179v1
https://hal.archives-ouvertes.fr

Pebble weighted automata and

transitive closure logics ⋆

Benedikt Bollig1, Paul Gastin1, Benjamin Monmege1, and Marc Zeitoun1,2

1 LSV, ENS Cachan, CNRS & INRIA, France
firstname.lastname@lsv.ens-cachan.fr

2 LaBRI, Univ. Bordeaux & CNRS, France

Abstract. We introduce new classes of weighted automata on words.
Equipped with pebbles and a two-way mechanism, they go beyond the
class of recognizable formal power series, but capture a weighted version
of first-order logic with bounded transitive closure. In contrast to previ-
ous work, this logic allows for unrestricted use of universal quantification.
Our main result states that pebble weighted automata, nested weighted
automata, and this weighted logic are expressively equivalent. We also
give new logical characterizations of the recognizable series.

1 Introduction

Connections between logical and state-based formalisms have always been a
fascinating research area in theoretical computer science, which produced some
fundamental theorems. The line of classical results started with the equivalence
of MSO logic and finite automata [5,8,18].

Some extensions of finite automata are of quantitative nature and include
timed automata, probabilistic systems, and transducers, which all come with
more or less natural, specialized logical characterizations. A generic concept of
adding weights to qualitative systems is provided by the theory of weighted au-
tomata [7], first introduced by Schützenberger [15]. The output of a weighted
automaton running on a word is no longer a Boolean value discriminating be-
tween accepted and rejected behaviors. A word is rather mapped to a weight
from a semiring, summing over all possible run weights, each calculated as the
product of its transition outcomes. Indeed, probabilistic automata and word
transducers appear as instances of that framework (see [7, Part IV]).

A logical characterization of weighted automata, however, was established
only recently [6], in terms of a (restricted) weighted MSO logic capturing the
recognizable formal power series (i.e., the behaviors of finite weighted automata).
The key idea is to interpret existential and universal quantification as sum and
product from a semiring. To make this definition work, however, one has to
restrict the universal first-order quantification, which, otherwise, appears to be
too powerful and goes beyond the class of recognizable series. In this paper, we

⋆ Supported by fp7 Quasimodo, anr-06-seti-003 dots, arcus Île de France-Inde.

follow a different approach. Instead of restricting the logic, we define an extended
automata model that naturally reflects it. Indeed, it turns out that universal
quantification is essentially captured by a pebble (two-way) mechanism in the
automata-theoretic counterpart. Inspired by the theory of two-way and pebble
automata on words and trees [12,9,2], we actually define weighted generalizations
that preserve their natural connections with logic.

More precisely, we introduce pebble weighted automata on words and estab-
lish expressive equivalence to weighted first-order logic with bounded transitive
closure and unrestricted use of quantification, extending the classical Boolean
case for words [10]. Our equivalence proof makes a detour via another natural
concept, named nested weighted automata, which resembles the nested tree-
walking automata of [16]. The transitive closure logic also yields alternative
characterizations of the recognizable formal power series.

Proofs omitted due to lack of space are available in [4].

2 Notation and background

In this section we set up the notation and we recall some basic results on weighted
automata and weighted logics. We refer the reader to [6,7] for details.

Throughout the paper, Σ denotes a finite alphabet and Σ+ is the free semi-
group over Σ, i.e., the set of nonempty words. The length of u ∈ Σ+ is de-
noted |u|. If |u| = n ≥ 1, we usually write u = u1 · · ·un with ui ∈ Σ and we
let Pos(u) = {1, . . . , n}. For 1 ≤ i ≤ j ≤ n, we denote by u[i..j] the factor
uiui+1 · · ·uj of u. Finally, we let Σ≤k =

⋃
1≤i≤k Σ

i.

Formal power series. A semiring is a structure K = (K,+, ·,0,1) where
(K,+,0) is a commutative monoid, (K, ·,1) is a monoid, · distributes over +,
and 0 is absorbing for ·. We say that K is commutative if so is (K, ·,1). We
shall refer in the examples to the usual Boolean semiring B = ({0,1},∨,∧,0,1)
and to the semiring (N,+, · , 0, 1) of natural numbers, denoted N. A formal power
series (or series, for short) is a mapping f : Σ+ → K. The set of series is denoted
K〈〈Σ+〉〉. We denote again by + and · the pointwise addition and multiplication
(called the Hadamard product) on K〈〈Σ+〉〉, and by 0 and 1 the constant series
with values 0 and 1, respectively. Then (K〈〈Σ+〉〉,+, ·,0,1) is itself a semiring.

Weighted automata. All automata we consider are finite. A weighted automa-
ton (wA) over K = (K,+, ·,0,1) and Σ is a tuple A = (Q,µ, λ, γ), where Q is the
set of states, µ : Σ → KQ×Q is the transition weight function and λ, γ : Q→ K

are weight functions for entering and leaving a state. The function µ gives, for
each a ∈ Σ and p, q ∈ Q, the weight µ(a)p,q of the transition p

a
−→ q. It ex-

tends uniquely to a homomorphism µ : Σ+ → KQ×Q. Viewing µ as a mapping
µ : Q×Σ+×Q→ K, we sometimes write µ(p, u, q) instead of µ(u)p,q. A run on

a word u = u1 · · ·un is a sequence of transitions ρ = p0
u1−→ p1

u2−→ · · ·
un−−→ pn.

The weight of the run ρ is weight(ρ)
def

= λ(p0) · [
∏n

i=1 µ(pi−1, ui, pi)] · γ(pn), and
the weight JAK(u) of u is the sum of all weights of runs on u, which can also be
computed as JAK(u) = λ · µ(u) · γ, viewing λ, µ(u), γ as matrices of dimension

2

1× |Q|, |Q| × |Q| and |Q| × 1, respectively. We call JAK ∈ K〈〈Σ+〉〉 the behavior,
or semantics of A. A series f ∈ K〈〈Σ+〉〉 is recognizable if it is the behavior of
some wA. We let K

rec〈〈Σ+〉〉 be the collection of all recognizable series.

Example 1. Consider (N,+, · , 0, 1) and let A be the automaton with a single
state, µ(a) = 2 for all a ∈ Σ, and λ = γ = 1. Then, JAK(u) = 2|u| for all u ∈ Σ+.

It is well-known that K
rec〈〈Σ+〉〉 is stable under + and, if K is commutative, also

under ·, making (Krec〈〈Σ+〉〉,+, ·,0,1) a subsemiring of (K〈〈Σ+〉〉,+, ·,0,1).

Weighted logics. We fix infinite supplies Var = {x, y, z, t, . . .} of first-order
variables, and VAR = {X,Y, . . .} of second-order variables. The class of weighted
monadic second-order formulas over K and Σ, denoted MSO(K, Σ) (shortly
MSO), is given by the following grammar, with k ∈ K, a ∈ Σ, x, y ∈ Var and
X ∈ VAR:

ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃Xϕ | ∀Xϕ .

For ϕ ∈ MSO(K, Σ), let Free(ϕ) denote the set of free variables of ϕ. If
Free(ϕ) = ∅, then ϕ is called a sentence. For a finite set V ⊆ Var ∪ VAR and
a word u ∈ Σ+, a (V, u)-assignment is a function σ that maps a first-order
variable in V to an element of Pos(u) and a second-order variable in V to a
subset of Pos(u). For x ∈ Var and i ∈ Pos(u), σ[x 7→ i] denotes the (V ∪ {x}, u)-
assignment that maps x to i and, otherwise, coincides with σ. For X ∈ VAR and
I ⊆ Pos(u), the (V ∪ {X}, u)-assignment σ[X 7→ I] is defined similarly.

A pair (u, σ), where σ is a (V, u)-assignment, can be encoded as a word over
the extended alphabet ΣV

def

= Σ×{0, 1}V . We write a word (u1, σ1) · · · (un, σn) ∈
Σ+

V as (u, σ) where u = u1 · · ·un and σ = σ1 · · ·σn. We call (u, σ) valid if, for
each first-order variable x ∈ V, the x-row of σ contains exactly one 1. If (u, σ) is
valid, then σ can be considered as the (V, u)-assignment that maps a first-order
variable x ∈ V to the unique position carrying 1 in the x-row, and a second-order
variable X ∈ V to the set of positions carrying 1 in the X-row.

Fix a finite set V of variables such that Free(ϕ) ⊆ V. The semantics JϕKV ∈
K〈〈Σ+

V 〉〉 of ϕ wrt. V is given as follows: if (u, σ) is not valid, we set JϕKV(u, σ) = 0,
otherwise JϕKV is given by Figure 1. Hereby, the product follows the natural order
on Pos(u) and some fixed order on the power set of Pos(u). We simply write JϕK
for JϕKFree(ϕ) and say that ϕ is recognizable if so is JϕK. We note K

MSO〈〈Σ+〉〉
the class of all series definable by a sentence of MSO(K, Σ).

Example 2. For K = B, recognizable and MSO(K, Σ)-definable languages coin-
cide. In contrast, for K = (N,+, · , 0, 1), the very definition yields J∀x∀y 2K(u) =

2|u|
2

, which is not recognizable [6]. Indeed, the function computed by a wA A
satisfies JAK(u) = 2O(|u|). Also observe that the behavior of the automaton of
Example 1 is J∀y 2K. Therefore, recognizable series are not stable under universal
first-order quantification.

Let bMSO(K, Σ) be the syntactic Boolean fragment of MSO(K, Σ) given by

ϕ ::= 0 | 1 | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀Xϕ ,

3

Jϕ1 ∨ ϕ2KV(u, σ) = Jϕ1KV(u, σ) + Jϕ2KV(u, σ)

JkKV(u, σ) = k, for k ∈ K Jϕ1 ∧ ϕ2KV(u, σ) = Jϕ1KV(u, σ) · Jϕ2KV(u, σ)

JPa(x)KV(u, σ) =

1 if uσ(x) = a

0 otherwise
J∃xϕKV(u, σ) =

X

i∈Pos(u)

JϕKV∪{x}(u, σ[x 7→ i])

Jx ∈ XKV(u, σ) =

1 if σ(x) ∈ σ(X)
0 otherwise

J∃XϕKV(u, σ) =
X

I⊆Pos(u)

JϕKV∪{X}(u, σ[X 7→ I])

Jx ≤ yKV(u, σ) =

1 if σ(x) ≤ σ(y)
0 otherwise

J∀xϕKV(u, σ) =
Y

i∈Pos(u)

JϕKV∪{x}(u, σ[x 7→ i])

J¬ϕKV(u, σ) =

1 if JϕKV(u, σ) = 0

0 otherwise
J∀XϕKV(u, σ) =

Y

I⊆Pos(u)

JϕKV∪{X}(u, σ[X 7→ I])

Fig. 1. Semantics of weighted MSO

where a ∈ Σ, x, y ∈ Var and X ∈ VAR. One can check, by induction, that the
semantics of any bMSO formula over an arbitrary semiring K assumes values in
{0,1} and coincides with the classical semantics in B.

We use macros for Boolean disjunction ϕ ∨ ψ
def

= ¬(¬ϕ ∧ ¬ψ) and Boolean
existential quantifications ∃xϕ

def

= ¬∀x¬ϕ, and ∃Xϕ
def

= ¬∀X¬ϕ. The semantics
of ∨ and ∃ coincide with the classical semantics of disjunction and existential
quantification in the Boolean semiring B. Finally, we define ϕ

+

→ ψ
def

= ¬ϕ∨(ϕ∧ψ)
so that, if ϕ is a Boolean formula (i.e., JϕK(Σ+) ⊆ {0,1}), Jϕ

+

→ ψK(u, σ) =
JψK(u, σ) if JϕK(u, σ) = 1, and Jϕ

+

→ ψK(u, σ) = 1 if JϕK(u, σ) = 0.

A common fragment of MSO(K, Σ) is the weighted first-order logic FO(K, Σ),
where no second-order quantifier appears (note that second order variables may
still appear free): ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ∨ϕ | ϕ∧ϕ | ∃xϕ | ∀xϕ.

We define similarly bFO(K, Σ) as the fragment of bMSO(K, Σ) with no
second-order quantifiers. We also let bFO+mod be the fragment of bMSO con-
sisting of bFO augmented with modulo constraints x ≡ℓ m for constants 1 ≤ m ≤
ℓ (since the positions of words start with 1, it is more convenient to compute mod-
ulo as a value between 1 and ℓ). The semantics is given by Jx ≡ℓ mK(u, σ) = 1

if σ(x) ≡ mmod ℓ and 0 otherwise: it can be defined in bMSO by

x ≡ℓ m
def

= ∀X
([

(x ∈ X) ∧
(
∀y(y ∈ X ∧ y > ℓ)

+

→ y − ℓ ∈ X
)]

+

→ m ∈ X
)
.

For L ⊆ bMSO closed under ∨, ∧ and ¬, an L-step formula is a formula obtained
from the grammar ϕ ::= k | α | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ, with k ∈ K and α ∈ L.
In particular, quantifications are only allowed in formulas α ∈ L. The following
lemma shows in particular that an L-step formula assumes a finite number of
values, each of which corresponds to an L-definable language.

Lemma 3. For every L-step formula ϕ, one can construct an equivalent formula
ψ =

∨
i(ϕi ∧ ki) with ϕi ∈ L and ki ∈ K, with the same set of free variables.

4

From now on, we freely use Lemma 3, using the special form it provides for
L-step formulas. All bMSO-step formulas are clearly recognizable. By [6], ∀xϕ is
recognizable for any bMSO-step formula ϕ. The fragment RMSO(K, Σ) of MSO
is defined by restricting universal second-order quantification to bMSO formulas
and universal first-order quantification to bMSO-step formulas.

Theorem 4 ([6]). A series is recognizable iff it is definable in RMSO(K, Σ).

3 Transitive closure logic and weighted automata

To ease notation, we write Jϕ(x, y)K(u, i, j) instead of Jϕ(x, y)K(u, [x 7→ i, y 7→ j]).
We allow constants, modulo constraints and comparisons, like e.g. x ≤ y+2. We
use first and last as abbreviations for the first and last positions of a word. All
of these shortcuts can be replaced by suitable bFO-formulas, except “x ≡ℓ m”
with 1 ≤ m ≤ ℓ, which is bMSO-definable.

Bounded transitive closure. For a formula ϕ(x, y) with at least two free
variables x and y, and an integer N > 0, we let ϕ1,N (x, y)

def

= (x ≤ y ≤ x+N)∧
ϕ(x, y) and for n ≥ 2, we define the formula ϕn,N (x, y) as

∃z0 · · · ∃zn

[
x = z0 ∧ y = zn ∧

∧

1≤ℓ≤n

(zℓ−1 < zℓ ≤ zℓ−1 +N) ∧ ϕ(zℓ−1, zℓ)
]
. (1)

We define for each N > 0 the N -TC<
xy operator by N -TC<

xyϕ =
∨

n≥1 ϕ
n,N . This

infinite disjunction is well-defined: Jϕn,N (x, y)K(u, σ) = 0 if n ≥ max(2, |u|), i.e.,
on each pair (u, σ), only finitely many disjuncts assume a nonzero value. Intu-
itively, the N -TC<

xy operator generalizes the forward transitive closure operator
from the Boolean case, but limiting it to intermediate forward steps of length
≤ N . The fragment FO+BTC<(K, Σ) is then defined by the grammar

ϕ ::= k | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | N -TC<
xyϕ ,

with N ≥ 1 and the restriction that one can apply negation only over bFO-
formulas. We denote by K

FO+BTC<

〈〈Σ+〉〉 the class of all FO+BTC<(K, Σ)-
definable series.

Example 5. Let ϕ(x, y)
def

= (y = x+1)∧∀z 2∧(x = 1
+

→ ∀z 2) over K = N. Let u =

u1 · · ·un. For any N ≥ 1, we have JN -TC<
xyϕK(u, first, last) =

∏n−1
i=1 JϕK(u, i, i+1)

due to the constraint y = x+1 in ϕ. Now, JϕK(u, 1, 2) = 22|u| and JϕK(u, i, i+1) =

2|u| if i > 1, so JN -TC<
xyϕK(u, first, last) = 2|u|

2

. This example shows in particular

that the class of recognizable series is not closed under BTC<.

Example 6. It is well-known that modulo can be expressed in bFO+BTC< by

x ≡ℓ m
def

= (x = m) ∨ [ℓ-TC<
yz(z = y + ℓ)](m,x) .

5

We now consider syntactical restrictions of FO+BTC<, inspired by normal
form formulas of [13] where only one “external” transitive closure is allowed.

For L ⊆ bMSO, BTC<
step(L) consists of formulas of the formN -TC<

xyϕ, where
ϕ(x, y) is an L-step formula with two free variables x, y. We say that f ∈ K〈〈Σ+〉〉
is BTC<

step(L)-definable if there exists an L-step formula ϕ(x, y) such that, for

all u ∈ Σ+, f(u) = JN -TC<
xyϕK(u, first, last).

For L ⊆ bMSO, let ∃∀step(L) consists of all MSO-formulas of the form
∃X∀xϕ(x,X) with ϕ an L-step formula: this defines a fragment of the logic
RMSO(K, Σ) introduced in [6]. The following result characterizes the expressive
power of weighted automata.

Theorem 7. Let K be a (possibly noncommutative) semiring and f ∈ K〈〈Σ+〉〉.
The following assertions are equivalent over K and Σ:

(1) f is recognizable.
(2) f is BTC<

step(bFO+mod)-definable.

(3) f is BTC<
step(bMSO)-definable.

(4) f is ∃∀step(bFO)-definable.
(5) f is ∃∀step(bMSO)-definable.

Proof. Fix a weighted automaton A = (Q,µ, λ, γ) with Q = {1, . . . , n}. For
d ≥ 1 and p, q ∈ Q, we use a formula ψd

p,q(x, y) to compute the weight of the
factor of length d located between positions x and y, when A goes from p to q:

ψd
p,q(x, y)

def

= (y = x+ d− 1) ∧
∨

v=v1···vd

(
µ(v)p,q ∧

∧

1≤i≤d

Pvi
(x+ i− 1)

)
.

We construct a formula ϕ(x, y) of bFO+mod allowing to define the seman-
tics of A using a BTC<: JAK(u) = J2n-TC<

xyϕK(u, first, last). The idea, inspired
by [17], consists in making the transitive closure pick positions zℓ = ℓn+qℓ, with
1 ≤ qℓ ≤ n, for successive values of ℓ, to encode runs of A going through state qℓ
just before reading the letter at position ℓn+1. To make this still work for ℓ = 0,
one can assume wlog. that λ(1) = 1 and λ(q) = 0 for q 6= 1, i.e., the only initial
state yielding a nonzero value is q0 = 1. Consider slices [ℓn+ 1, (ℓ+ 1)n] of posi-
tions in the word where we evaluate the formula (the last slice might be incom-
plete). Each position y is located in exactly one such slice. We write 〈y〉 = ℓn+1
for the first position of that slice, as well as [y]

def

= y + 1− 〈y〉 ∈ Q for the corre-
sponding “offset”. Notice that, for q ∈ Q, [y] = q can be expressed in bFO+mod
simply by y ≡n q. Hence, we will freely use [y] as well as 〈y〉 = y + 1 − [y] as
macros in formulas. Our BTC<-formula picks positions x and y marked • in Fig-
ure 2, and computes the weight of the factor of length n between the positions
〈x〉 and 〈y〉− 1, assuming states [x] and [y] just before and after these positions.
The formula ϕ distinguishes the cases where x is far or near from the last position:

ϕ(x, y) =
(
(〈x〉+ 2n ≤ last) ∧ (〈y〉 = 〈x〉+ n) ∧ ψn

[x],[y](〈x〉, 〈y〉 − 1)
)

∨
(
(〈x〉+ 2n > last) ∧ (y = last) ∧

∨

q∈Q

ψ
y−〈x〉+1
[x],q (〈x〉, y) ∧ γ(q)

)
.

6

(ℓ− 1)n+ 1 ℓn ℓn+ 1 (ℓ+ 1)n

〈x〉 〈y〉

•

x

•
y

[x] [y]

ψn
[x],[y]

Fig. 2. Positions picked by the BTC<-formula

4 Weighted nested automata

Example 2 shows that weighted automata lack closure properties to capture
FO+BTC<. We introduce a notion of nested automata making up for this gap.

For r ≥ 0, the class r-nwA(Σ) (r-nwA ifΣ is understood) of r-nested weighted
automata over Σ (and K) consists of all tuples (Q,µ, λ, γ) where Q is the set of
states, λ, γ : Q → K, and µ : Q × Σ ×Q → (r − 1)-nwA(Σ × {0, 1}). Here, we
agree that (−1)-nwA = K. In particular, a 0-nwA(Σ) is a weighted automaton
over Σ. Intuitively, the weight of a transition is computed by an automaton
of the preceding level running on the whole word, where the additional {0, 1}
component marks the letter of the transition whose weight is to be computed.

Let us formally define the behavior JAK ∈ K〈〈Σ+〉〉 of A = (Q,µ, λ, γ) ∈
r-nwA(Σ). If r = 0, then JAK is the behavior of A considered as wA over Σ. For

r ≥ 1, the weight of a run ρ = q0
u1−→ q1

u2−→ · · ·
un−−→ qn of A on u = u1 · · ·un is

weight(ρ)
def

= λ(q0) ·
[n∏

i=1

Jµ(qi−1, ui, qi)K(u, i)
]
· γ(qn) ,

where (u, i) ∈ (Σ × {0, 1})+ is the word v = v1 · · · vn with vi = (ui, 1) and
vj = (uj , 0) if j 6= i. As usual, JAK(u) is the sum of the weights of all runs of A
on u. Note that, unlike the nested automata of [16], the values given by lower
automata do not explicitly influence the possible transitions.

A series f ∈ K〈〈Σ+〉〉 is r-nwA-recognizable if f = JAK for some r-nwA A. It
is nwA-recognizable if it is r-nwA-recognizable for some r. We let K

r-nwA〈〈Σ+〉〉
(resp., K

nwA〈〈Σ+〉〉) be the class of r-nwA-recognizable (resp., nwA-recognizable)
series over K and Σ.

Example 8. A 1-nwA recognizing the series u 7→ 2|u|
2

over N is A = ({p}, µ,1,1)
where, for every a ∈ Σ, µ(p, a, p) is the weighted automaton of Example 1.

We can generalize the proof of (1) ⇒ (2) in Theorem 7 in order to get the
following result. The converse will be obtained in Section 5.

Proposition 9. Every nwA-recognizable series is FO+BTC<-definable.

5 Pebble weighted automata

We now consider pebble weighted automata (pwA). A pwA has a read-only tape.
At each step, it can move its head one position to the left or to the right (within

7

the boundaries of the input tape), or either drop or lift a pebble at the current
head position. Applicable transitions and weights depend on the current letter,
current state, and the pebbles carried by the current position. Pebbles are han-
dled using a stack policy: if the automaton has r pebbles and pebbles ℓ, . . . , r
have already been dropped, it can either lift pebble ℓ (if ℓ ≤ r), drop pebble
ℓ − 1 (if ℓ ≥ 2), or move. As these automata can go in either direction, we add
two fresh symbols ⊲ and ⊳ to mark the beginning and the end of an input word.
Let Σ̃ = Σ ⊎ {⊲,⊳}. To compute the value of w = w1 · · ·wn ∈ Σ

+, a pwA will
work on a tape holding w̃ = ⊲w⊳. For convenience, we number the letters of w̃
from 0, setting w̃0 = ⊲, w̃n+1 = ⊳, and w̃i = wi for 1 ≤ i ≤ n.

Let r ≥ 0. Formally, an r-pebble weighted automaton (r-pwA) over K and Σ is
a pair A = (Q,µ) where Q is a finite set of states and µ : Q×Σ̃×2r×D×Q→ K

is the transition weight function, with D = {←,→,drop, lift}.
A configuration of a r-pwA A on a word w ∈ Σ+ of length n is a triple

(p, i, ζ) ∈ Q×{0, . . . , n+2}×{1, . . . , n}≤r. The word w itself will be understood.
Informally, p denotes the current state of A and i is the head position in w̃, i.e
positions 0 and n+1 point to ⊲ and ⊳, respectively, position 1 ≤ i ≤ n points to
w̃i ∈ Σ, and position n+ 2 is outside w̃. Finally, ζ = ζℓ · · · ζr with 1 ≤ ℓ ≤ r+ 1
encodes the locations of pebbles ℓ, . . . , r (ζm ∈ {1, . . . , n} is the position of pebble
m) while pebbles 1, . . . , ℓ−1 are currently not on the tape. For i ∈ {0, . . . , n+1},
we set ζ−1(i) =

{
m ∈ {ℓ, . . . , r} | ζm = i

}
(viewing ζ as a partial function from

{1, . . . , r} to {0, . . . , n+ 1}). Note that ζ−1(0) = ζ−1(n+ 1) = ∅.
There is a step of weight k from configuration (p, i, ζ) to configuration (q, j, η)

if i ≤ n+ 1, k = µ(p, w̃i, ζ
−1(i), d, q), and

j = i− 1 if d =←

j = i+ 1 if d =→

j = i otherwise

and

η = iζ if d = drop

ζ = iη if d = lift

η = ζ otherwise.

A run ρ of A is a sequence of steps from a configuration (p, 0, ε) to a config-
uration (q, n + 2, ε) (at the end, no pebble is left on the tape). We denote by
weight(ρ) the product of weights of the steps of run ρ (from left to right, but
we will mainly work with a commutative semiring in this section). The run ρ is
simple if whenever two configurations α and β appear in ρ, we have α 6= β.

The series JAK ∈ K〈〈Σ+〉〉 is defined by JAK(w) =
∑

ρ simple run on w weight(ρ).

We denote by K
r-pwA〈〈Σ+〉〉 the collection of formal power series definable by a

r-pwA, and we let K
pwA〈〈Σ+〉〉 =

⋃
r≥0 K

r-pwA〈〈Σ+〉〉. Note that a 0-pwA is in
fact a 2-way weighted automaton. It follows from Theorem 11 that 2-way wA
have the same expressive power as classical (1-way) wA.

Example 10. Let us sketch a 1-pwA A recognizing the series u 7→ 2|u|
2

over N.
The idea is that A drops its pebble successively on every position of the input
word. Transitions for reallocating the pebble have weight 1. When a pebble is
dropped, A scans the whole word from left to right where every transition has
weight 2. As this scan happens |u| times, we obtain JAK(u) = 2|u|

2

.

8

Theorem 11. For every commutative semiring K, and every r ≥ 0, we have
(1) K

r-pwA〈〈Σ+〉〉 ⊆ K
r-nwA〈〈Σ+〉〉

(2) K
FO+BTC<

〈〈Σ+〉〉 = K
pwA〈〈Σ+〉〉 = K

nwA〈〈Σ+〉〉.

(3) K
FO+BTC<

〈〈Σ+〉〉 ⊆ K
pwA〈〈Σ+〉〉 holds even for noncommutative semirings.

Proof. (1) We provide a translation of a generalized version of r-pwA to r-
nwA. That generalized notion equips an r-pwA A = (P, µ) with an equivalence
relation ∼ ⊆ P × P , which is canonically extended to configurations of A: we
write (p, i, u) ∼ (p′, i′, u′) if p ∼ p′, i = i′, and u = u′.

The semantics JAK∼ is then de-

⊲ . . . a b . . . ⊳

p0

→ p1

p2

←p3

p4

drop

p5

p̂5

lift

p6

p7

drop

p8

p̂8

lift

p9

→p10

p11

q q′

(a)

⊲ . . . (a, 1) . . . ⊳

(p5, 1)

(p̂5, 1)

(p8, 2)

(p̂8, 2)

final

(b)

Fig. 3. (a) Runs of r-pwA A and r-nwA
〈A〉∼; (b) run of (r − 1)-pwA Aq

fined by replacing equality of con-
figurations with ∼ in the definition
of simple run. To stress this fact,
we henceforth say that a run is ∼-
simple. So let r ≥ 0, A = (P, µ) be
an r-pwA over K and Σ, and ∼ ⊆
P × P be an equivalence relation.
We assume wlog. that all runs in
which a pebble is dropped and im-
mediately lifted have weight 0. We
build an r-nwA 〈A〉∼ = (Q, ν, λ, γ)
over Σ such that J〈A〉∼K = JAK∼.

The construction of 〈A〉∼ pro-
ceeds inductively on the number of
pebbles r. It involves two alternat-
ing transformations, as illustrated in
Figure 3. The left-hand side depicts
a ∼-simple run of A on some word
w with factor ab. To simulate such a
run, 〈A〉∼ scans w from left to right
and guesses, at each position i, the
sequence of those states and directions that are encountered at i while pebble r
has not, or just, been dropped. The state of 〈A〉∼ taken before reading the a at
position i is q = p0→ p3← p4 drop p5 p̂5 lift p6← p7 drop p8 p̂8 lift p9→ (which is
enriched by the input letter a, as will be explained below). As the micro-states
p0, p3, . . . form a segment of a ∼-simple run, p0, p3, p4, p6, p7, p9 are pairwise dis-
tinct (wrt. ∼) and so are p5, p̂5, p8, p̂8. Segments when pebble r is dropped on
position i are defered to a (r−1)-nwA Bq, which is called at position i and com-
putes the run segments from p5 to p̂5 and from p8 to p̂8 that both start in i. To
this aim, Bq works on an extension of w where position i is marked, indicating
that pebble r is considered to be at i.

We define the r-nwA 〈A〉∼. Let Π = (P{→,←}∪P{drop}PP{lift})∗P{→}.
Sequences from Π keep track of states and directions that are taken at one
given position. As aforementioned, they must meet the requirements of ∼-simple
runs so that only some of them can be considered as states. Formally, given

9

π ∈ Π, we define projections pr1(π) ∈ P+ and pr2(π) ∈ (PP)∗ inductively by
pr1(ε) = pr2(ε) = ε and

pr1(p→π) = pr1(p←π) = p pr1(π) pr1(p drop p1 p̂1 liftπ) = p pr1(π)

pr2(p→π) = pr2(p←π) = pr2(π) pr2(p drop p1 p̂1 liftπ) = p1 p̂1 pr2(π).

Let Π∼ denote the set of sequences π ∈ Π such that pr1(π) consists of pairwise
distinct states wrt. ∼ and so does pr2(π) (there might be states that occur in
both pr1(π) and pr2(π)). With this, we set Q = (Σ̃ ⊎ {✷}) × Π∼. The letter
a ∈ Σ̃ ⊎{✷} of a state (a, π) ∈ Q will denote the symbol that is to be read next.
Symbol ✷ means that there is no letter left so that the automaton is beyond the
scope of ⊲w⊳ when w is the input word.

Next, we explain how the weight of the run segments of A with lifted pebble
r is computed in 〈A〉∼. Two neighboring states of 〈A〉∼ need to match each
other, which can be checked locally by means of transitions. To determine a
corresponding weight, we first count weights of those transitions that move from
the current position i to i+ 1 or from i+ 1 to i. This is the reason why a state
of 〈A〉∼ also maintains the letter that is to be read next. In Figure 3(a), the
7 micro-transitions that we count in the step from q to q′ are highlighted in
gray. Assuming q = (a, π0) and q′ = (b, π1), we obtain a value weighta,b(π0 |π1)
as the product µ(p0, a, ∅,→, p1) · µ(p2, b, ∅,←, p3) · · · · · µ(p̂8, a, {r}, lift, p9) ·
µ(p9, a, ∅,→, p10). The formal definition of weighta,b(π0 |π1) ∈ K is omitted.

We are now prepared to define the components ν, λ, γ of 〈A〉∼. For q0 =
(a0, π0) and q1 = (a1, π1) states in Q, we set

λ(q0) =
∑

(⊲,π)∈Q weight
⊲,a0

(π |π0)

γ(q0) =
∑

(✷,π)∈Q weight
⊳,✷(π0 |π) if a0 = ⊳

ν(a0)q0,q1
= weighta0,a1

(π0 |π1) · Bq0
.

Here, Bq is the constant 1 if r = 0. Otherwise, Bq = 〈Aq〉∼q
is an (r − 1)-nwA

over ∆ = Σ × {0, 1} obtained inductively from the (r − 1)-pwA Aq which is
defined below together with its equivalence relation ∼q. Notice that k · Bq is
obtained from Bq by multiplying its input weights by k.

Let us define the (r − 1)-pwA Aq = (P ′, µ′) over ∆ as well as ∼q ⊆ P
′ × P ′.

Suppose q = (a, π) and pr2(π) = p1 p̂1 · · · pN p̂N . The behavior of Aq is split
into N + 2 phases. In phase 0, it scans the input word from left to right until it
finds the (unique) letter of the form (a, 1) with a ∈ Σ. At that position, call it
i, Aq enters state (p1, 1) (the second component indicating the current phase).
All these transitions are performed with weight 1. Then, Aq starts simulating
A, considering pebble r at position i. Back at position i in state (p̂1, 1), weight-1
transitions will allow Aq to enter the next phase, starting in (p2, 2) and again
considering pebble r at position i. The simulation of A ends when (p̂N , N) is
reached in position i. In the final phase (N+1) weight-1 transitions guides Aq to
the end of the tape where it stops. The relation ∼q will consider states (p, j) and
(p′, j′) equivalent iff p ∼ p′, i.e., it ignores the phase number. This explains the
purpose of the equivalence relation: in order for the automaton Aq to simulate

10

the dashed part of the run of A, we use phase numbers, so that, during the
simulation two different states (p, j) and (p, j′) of Aq may correspond to the
same original state p of A. Now, only simple runs are considered to compute
JAK. Therefore, for the simulation to be faithful, we want to rule out runs of
Aq containing two configurations which only differ by the phase number, that
is, containing two ∼q-equivalent configurations, which is done by keeping only
∼q-simple runs. A run of Aq is illustrated in Figure 3(b) (with N = 2). Note
that, if N = 0, then Aq simply scans the word from left to right, outputting
weight 1. Finally, we sketch the proof of (3).

We proceed by induction on the structure of the formula and suppose that a
valuation of free variables is given in terms of pebbles that are already placed on
the word and cannot be lifted. Disjunction, conjunction, and first-order quan-
tifications are easy to simulate. To evaluate [N -TC<

xyϕ](z, t) for some formula
ϕ(x, y), we either evaluate ϕ(x, y), with pebbles being placed on z and t such
that z ≤ t ≤ z + N , or choose non-deterministically (and with weight 1) po-
sitions z = z0 < z1 < · · · < zn−1 < zn = t with n ≥ 2, using two additional
pebbles, 2 and 1. We drop pebble 2 on position z0 and pebble 1 on some guessed
position z1 with z0 < z1 ≤ min(t, z0 +N). We then run the subroutine to eval-
uate ϕ(z0, z1). Next we move to position z1 and lift pebble 1. We move left to
position z0 remembering the distance z1 − z0. We lift pebble 2 and move right
to z1 using the stored distance z1 − z0. We drop pebble 2 on z1 and iterate this
procedure until t is reached. ⊓⊔

Conclusion and perspectives

We have introduced pebble weighted automata and characterized their expressive
power in terms of first-order logic with a bounded transitive closure operator. It
follows that satisfiability is decidable over commutative positive semirings. Here,
a sentence ϕ ∈ FO+BTC< is said satisfiable if there is a word w ∈ Σ+ such
that JϕK(w) 6= 0. From Theorem 11, satisfiability reduces to non-emptiness of
the support of a series recognized by a pwA. For positive semirings, the latter
problem, in turn, can be reduced to the decidable emptiness problem for classical
pebble automata over the Boolean semiring. We leave it as an open problem to
determine for which semirings the satisfiability problem is decidable.

Unbounded transitive closure. We do not know if allowing unbounded steps
in the transitive closure leads beyond the power of (weak) pebble automata.
We already know that allowing unbounded steps is harmless for bMSO-step
formulas. It is also easy to show that such an unbounded transitive closure can
be captured with strong pebble automata, i.e., that can lift the last dropped
pebble even when not scanning its position. Therefore, we aim at studying the
expressive power of strong pebble automata and unbounded transitive closure.

Tree-walking automata. Our results are not only of theoretical interest. They
also lay the basis for quantitative extensions of database query languages such as
XPath, and may provide tracks to evaluate quantitative aspects of the structure

11

of XML documents. The framework of weighted tree (walking) automata [1,11]
is natural for answering questions such as “How many nodes are selected by a
request?”, or “How difficult is it to answer a query?”. The navigational mechanism
of pebble tree-walking automata [3,14,2] is also well-suited in this context. For
these reasons, we would like to adapt our results to tree languages.

We thank the anonymous referees for their valuable comments.

References

1. J. Berstel and C. Reutenauer. Recognizable formal power series on trees. TCS,
18(2):115 – 148, 1982.

2. M. Bojańczyk. Tree-walking automata. In LATA’08, volume 5196 of LNCS, pages
1–17. Springer, 2008.

3. M. Bojańczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive power
of pebble automata. In ICALP’06, volume 4051 of LNCS, pages 157–168. Springer,
2006.

4. B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebble weighted automata and
transitive closure logics. Available at: http://www.lsv.ens-cachan.fr/Publis/
RAPPORTS_LSV/rapports.

5. J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik

Grundlagen Math., 6:66–92, 1960.
6. M. Droste and P. Gastin. Weighted automata and weighted logics. Theoretical

Computer Science, 380(1-2):69–86, 2007. Special issue of ICALP’05.
7. M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata.

EATCS Monographs in Theoret. Comput. Sci. Springer, 2009.
8. C. C. Elgot. Decision problems of finite automata design and related arithmetics.

Trans. Amer. Math. Soc., 98:21–52, 1961.
9. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels Are

Forever, Contributions to Theoretical Computer Science in Honor of Arto Salomaa,
pages 72–83. Springer, 1999.

10. J. Engelfriet and H. J. Hoogeboom. Automata with nested pebbles capture first-
order logic with transitive closure. Log. Meth. in Comput. Sci., 3, 2007.

11. Z. Fülöp and L. Muzamel. Weighted Tree-Walking Automata. Acta Cybernetica,
19(2):275 – 293, 2009.

12. N. Globerman and D. Harel. Complexity results for two-way and multi-pebble
automata and their logics. Theoretical Computer Science, 169(2):161–184, 1996.

13. F. Neven and T. Schwentick. On the power of tree-walking automata. In Springer,
editor, ICALP, volume 1853 of LNCS, pages 547–560, 2000.

14. M. Samuelides and L. Segoufin. Complexity of pebble tree-walking automata. In
FCT, pages 458–469, 2007.

15. M. P. Schützenberger. On the definition of a family of automata. Information and

Control, 4:245–270, 1961.
16. B. ten Cate and L. Segoufin. Transitive closure logic, nested tree walking automata,

and XPath. J. ACM, 2010. To appear. Short version in PODS’08.
17. W. Thomas. Classifying regular events in symbolic logic. Journal of Computer

and System Sciences, 25(3):360–376, 1982.
18. B. A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady

Akademii Nauk SSSR, 149:326–329, 1961. In Russian.

12

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports

	Pebble weighted automata and transitive closure logics
	Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun

