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Abstract. We show a new and constructive proof of the following
language-theoretic result: for every context-free language L, there is a
bounded context-free language L′ ⊆ L which has the same Parikh (com-
mutative) image as L. Bounded languages, introduced by Ginsburg and
Spanier, are subsets of regular languages of the form w∗1w

∗
2 · · ·w∗k for some

w1, . . . , wk ∈ Σ∗. In particular bounded context-free languages have nice
structural and decidability properties. Our proof proceeds in two parts.
First, using Newton’s iterations on the language semiring, we construct
a context-free subset LN of L that can be represented as a sequence of
substitutions on a linear language and has the same Parikh image as L.
Second, we inductively construct a Parikh-equivalent bounded context-
free subset of LN .
As an application of this result in model checking, we show how to un-
derapproximate the reachable state space of multithreaded procedural
programs. The bounded language constructed above provides a decidable
underapproximation for the original problem. By iterating the construc-
tion, we get a semi-algorithm for the original problems that constructs a
sequence of underapproximations such that no two underapproximations
of the sequence can be compared. This provides a progress guarantee:
every word w ∈ L is in some underapproximation of the sequence, and
hence, a program bug is guaranteed to be found. In particular, we show
that verification with bounded languages generalizes context-bounded
reachability for multithreaded programs.

1 Introduction

Many problems in program analysis reduce to undecidable problems about
context-free languages. For example, checking safety properties of multithreaded
recursive programs reduces to checking emptiness of the intersection of context-
free languages [16,2].

We study underapproximations of these problems, with the intent of building
tools to find bugs in systems. In particular, we study underapproximations in
which one or more context-free languages arising in the analysis are replaced by
their subsets in a way that (P1) the resulting problem after the replacement be-
comes decidable and (P2) the subset preserves “many” strings from the original
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language. Condition (P1) ensures that we have an algorithmic check for the un-
derapproximation. Condition (P2) ensures that we are likely to retain behaviors
that would cause a bug in the original analysis.

We show in this paper an underapproximation scheme using bounded lan-
guages [9,8]. A language L is bounded if there exist k ∈ N and finite words
w1, w2, . . . , wk such that L is a subset of the regular language w∗1 · · ·w∗k. In par-
ticular, context-free bounded languages (hereunder bounded languages for short)
have stronger properties than general context-free languages: for example, it is
decidable to check if the intersection of a context-free language and a bounded
language is non-empty [9]. For our application to verification, these decidability
results ensure condition (P1) above.

The key to condition (P2) is the following Parikh-boundedness property: for
every context-free language L, there is a bounded language L′ ⊆ L such that
the Parikh images of L and L′ coincide. (The Parikh image of a word w maps
each symbol of the alphabet to the number of times it appears in w, the Parikh
image of a language is the set of Parikh images of all words in the language.) A
language L′ meeting the above conditions is called a Parikh-equivalent bounded
subset of L. Intuitively, L′ preserves “many” behaviors as for every string in L,
there is a permutation of its symbols that matches a string in L′.

The Parikh-boundedness property was first proved in [13,1], however, the
chain of reasoning used in these papers made it difficult to see how to explicitly
construct the Parikh-equivalent bounded subset. Our paper gives a direct and
constructive proof of the theorem. We identify two contributions in this paper.

Explicit construction of Parikh-equivalent bounded subsets. Our con-
structive proof has two parts. First, using Newton’s iteration [5] on the semiring
of languages, we construct, for a given context-free language L, a finite sequence
of linear substitutions which denotes a Parikh-equivalent (but not necessarily
bounded) subset of L. (A linear substitution maps a symbol to a language de-
fined by a linear grammar, that is, a context-free grammar where each rule has at
most one non-terminal on the right-hand side.) The Parikh equivalence follows
from a convergence property of Newton’s iteration on the related commutative
semiring.

Second, we provide a direct constructive proof that takes as input such a
sequence of linear substitutions, and constructs by induction a Parikh-equivalent
bounded subset of the language denoted by the sequence.

Reachability analysis of multithreaded programs with procedures. Us-
ing the above construction, we obtain a semi-algorithm for reachability analysis
of multithreaded programs with the intent of finding bugs. To check if configu-
ration (c1, c2) of a recursive 2-threaded program is reachable, we construct the
context-free languages L0

1 = L(c1) and L0
2 = L(c2) respectively given by the ex-

ecution paths whose last configurations are c1 and c2, and check if either L′1∩L0
2

or L0
1 ∩ L′2 is non-empty, where L′1 = L0

1 ∩ w∗1 · · ·w∗k and L′2 = L0
2 ∩ v∗1 · · · v∗l

are two Parikh-equivalent bounded subsets of L0
1 and L0

2, respectively. If either
intersection is non-empty, we have found a witness trace. Otherwise, we con-
struct L1

1 = L0
1 ∩w∗1 · · ·w∗k and L1

2 = L0
2 ∩ v∗1 · · · v∗l in order to exclude, from the



subsequent analyses, the execution paths we already inspected. We continue by
rerunning the above analysis on L1

1 and L1
2. If (c1, c2) is reachable, the iteration

is guaranteed to terminate; if not, it could potentially run forever. Moreover, we
show our technique subsumes and generalizes context-bounded reachability [15].

We omit proofs for space reasons. Detailed proofs, as well as one more appli-
cation of our result, can be found in [7].

Related Work. Bounded languages were introduced and studied by Ginsburg
and Spanier [9] (see also [8]). The existence of a bounded, Parikh-equivalent
subset for a context-free language was shown in [1] using previous results on
languages in the Greibach hierarchy [13]. The existence of a language repre-
sentable as a sequence of linear transformations of a linear language which is
Parikh-equivalent to a context-free language was independently shown in [6].

Bounded languages have been recently proposed by Kahlon for tractable
reachability analysis of multithreaded programs [11]. His observation is that in
many practical instances of multithreaded reachability, the languages are actu-
ally bounded. If this is true, his algorithm checks the emptiness of the intersection
(using the algorithm in [9]). In contrast, our results are applicable even if the
boundedness property does not hold.

For multithreaded reachability, context-bounded reachability [15,17] is a pop-
ular underapproximation technique which tackles the undecidability by limiting
the search to those runs where the active thread changes at most k times. Our
algorithm using bounded languages subsumes context-bounded reachability, and
can capture unboundedly many synchronizations in one analysis. We leave the
empirical evaluation of our algorithms for future work.

2 Preliminaries

We assume the reader is familiar with the basics of language theory (see [10]).
An alphabet Σ is a finite non-empty set of symbols. The concatenation L · L′
of two languages L,L′ ⊆ Σ∗ is defined using word concatenation as L · L′ =
{l · l′ | l ∈ L ∧ l′ ∈ L′}.

An elementary bounded language over Σ is a language of the form w∗1 · · ·w∗k
for some fixed w1, . . . , wk ∈ Σ∗.
Vectors. For p ∈ N, we write Zp and Np for the set of p-dim vectors (or
simply vectors) of integers and naturals, respectively. We write 0 for the vec-
tor (0, . . . , 0) and ei the vector (z1, . . . , zp) ∈ Np such that zj = 1 if j = i
and zj = 0 otherwise. Addition on p-dim vectors is the componentwise ex-
tension of its scalar counterpart, that is, given (x1, . . . , xp), (y1, . . . , yp) ∈ Zp
(x1, . . . , xp) + (y1, . . . , yp) = (x1 + y1, . . . , xp + yp). Using vector addition, we
define the operation u on sets of vectors as follows: given Z,Z ′ ⊆ Np, let
Z u Z ′ = {z + z′ | z ∈ Z ∧ z′ ∈ Z ′}.
Parikh Image. Give Σ a fixed linear order: Σ = {a1, . . . , ap}. The Parikh
image of a symbol ai ∈ Σ, written ΠΣ(ai), is ei. The Parikh image is extended
to words of Σ∗ as follows: ΠΣ(ε) = 0 and ΠΣ(u · v) = ΠΣ(u) +ΠΣ(v). Finally,



the Parikh image of a language on Σ∗ is the set of Parikh images of its words.
Thus, the Parikh image maps 2Σ

∗
to 2N

p

. We also define the inverse of the Parikh
image Π−1Σ : 2N

p → 2Σ
∗

as follows: given a subset M of Np, Π−1Σ (M) is the set
{y ∈ Σ∗ | ∃m ∈M : m = ΠΣ(y)}. When it is clear from the context we generally
omit the subscript in ΠΣ and Π−1Σ .

Context-free Languages. A context-free grammar G is a tuple (X , Σ, δ) where
X is a finite non-empty set of variables (non-terminal letters), Σ is an alphabet of
terminal letters and δ ⊆ X ×(Σ∪X )∗ a finite set of productions (the production
(X,w) may also be noted X → w). Given two strings u, v ∈ (Σ ∪X )∗ we define
the relation u ⇒ v, if there exists a production (X,w) ∈ δ and some words
y, z ∈ (Σ ∪ X )∗ such that u = yXz and v = ywz. We use ⇒∗ for the reflexive
transitive closure of ⇒. A word w ∈ Σ∗ is recognized by the grammar G from
the state X ∈ X if X ⇒∗ w. Given X ∈ X , the language LX(G) is given by
{w ∈ Σ∗ | X ⇒∗ w}. A language L is context-free (written CFL) if there exists
a context-free grammar G = (X , Σ, δ) and an initial variable X ∈ X such that
is L = LX(G). A linear grammar G is a context-free grammar where each
production is in X × Σ∗(X ∪ {ε})Σ∗. A language L is linear if L = LX(G) for
some linear grammar G and initial variable X of G. A CFL L is bounded if it is
a subset of some elementary bounded language.
Proof Plan. The main result of the paper is the following.

Theorem 1. For every CFL L, there is an effectively computable CFL L′ such
that (i) L′ ⊆ L, (ii) Π(L) = Π(L′), and (iii) L′ is bounded.

We actually solve the following related problem in our proof.

Problem 1. Given a CFL L, compute an elementary bounded language B such
that Π(L ∩B) = Π(L).

If we can compute such a B, then we can compute the CFL L′ = B ∩ L
which satisfies conditions (i) to (iii) of the Th. 1. Thus, solving Pb. 1 proves the
theorem constructively.

We solve Pb. 1 for a language L as follows: (1) we find an L′ such that
L′ ⊆ L, Π(L′) = Π(L), and L′ has a “simple” structure (Sect. 3) and (2) then
show how to find an elementary bounded B with Π(L′ ∩B) = Π(L′), assuming
this structure (Sect. 4). Observe that if L′ ⊆ L and Π(L) = Π(L′), then for every
elementary bounded B, we have Π(L′ ∩B) = Π(L′) implies Π(L ∩B) = Π(L)
as well. So the solution B for L′ in step (2) is a solution for L as well. Section 5
provides an application of the result for multithreaded program analysis and
compares it with an existing technique.

3 A Parikh-Equivalent Representation

Our proof to compute the above L′ relies on a fixpoint characterization of CFLs
and their Parikh image. Accordingly, we introduce the necessary mathematical
notions to define and study properties of those fixpoints.



Semiring. A semiring S is a tuple 〈S,⊕,�, 0̄, 1̄〉, where S is a set with 0̄, 1̄ ∈ S,
〈S,⊕, 0̄〉 is a commutative monoid with neutral element 0̄, 〈S,�, 1̄〉 is a monoid
with neutral element 1̄, 0̄ is an annihilator w.r.t. �, i.e. 0̄ � a = a � 0̄ = 0̄ for
all a ∈ S, and � distributes over ⊕, i.e. a � (b ⊕ c) = (a � b) ⊕ (a � c), and
(a ⊕ b) � c = (a � c) ⊕ (b � c). We call ⊕ the combine operation and � the
extend operation. The natural order relation v on a semiring S is defined by
a v b⇔ ∃d ∈ S : a⊕ d = b. The semiring S is naturally ordered if v is a partial
order on S. The semiring S is commutative if a � b = b � a for all a, b ∈ S,
idempotent if a⊕ a = a for all a ∈ S, complete if it is naturally ordered and v is
such that ω-chains a0 v a1 v · · · v an v · · · have least upper bounds. Finally,
the semiring S is ω-continuous if it is naturally ordered, complete and for all
sequences (ai)i∈N with ai ∈ S, sup {

⊕n
i=0 ai | n ∈ N} =

⊕
i∈N ai. We define two

semirings we shall use subsequently.

Language Semiring. Let L =
〈
2Σ
∗
,∪, ·, ∅, {ε}

〉
denote the idempotent ω-

continuous semiring of languages. The natural order on L is given by set
inclusion (viz. ⊆).

Parikh Semiring. The tuple P =
〈

2N
p

,∪,u, ∅, {0}
〉

is the idempotent ω-

continuous commutative semiring of Parikh vectors. The natural order is
again given by ⊆.

Valuation, polynomial. In what follows, let X be a finite set of variables and
S = 〈S,⊕,�, 0̄, 1̄〉 be an ω-continuous semiring.

A valuation v is a mapping X → S. We denote by SX the set of all valuations
and by 0̈ the valuation which maps each variable to 0̄. We define

.
v ⊆ SX ×SX

as the order given by v
.
v v′ if and only if v(X) v v′(X) for every X ∈ X . A

monomial is a mapping SX → S given by a finite expression m = a1 � X1 �
a2 · · · ak �Xk � ak+1 where k ≥ 0, a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X such
that m(v) = a1 � v(X1)� a2 · · · ak � v(Xk)� ak+1 for v ∈ SX .
A polynomial is a finite combination of monomials: f = m1 ⊕ · · · ⊕mk where
k ≥ 0 and m1, . . . ,mk are monomials. The set of polynomials w.r.t. S and X
will be denoted by S[X ]. Finally, a polynomial transformation F is a mapping
SX → SX described by the set {FX ∈ S[X ] | X ∈ X} of polynomials: hence, for
every vector v ∈ SX , F (v) is a valuation of each variable X ∈ X to FX(v).
Least Fixpoint. Recall that a mapping f : S → S is monotone if a v b im-
plies f(a) v f(b), and continuous if for any infinite chain a0, a1, a2, . . . we
have sup{f(ai)} = f(sup{ai}). The definition can be extended to mappings
F : SX → SX in the obvious way (using

.
v). Then we may formulate the follow-

ing proposition (cf. [12]).

Proposition 1. Let F be a polynomial transformation. The mapping induced
by F is monotone and continuous and F has a unique least fixpoint µF .

Fixpoints of polynomial transformations relates to CFLs as follows. Given
a grammar G = (X , Σ, δ), let L(G) be the valuation which maps each variable
X ∈ X to the language LX(G). We first characterize the valuation L(G) as the



least fixpoint of a polynomial transformation F defined as follows: each FX of
F is given by the combination of α’s for (X,α) ∈ δ where α is interpreted as a
monomial on the semiring L. From [3] we know that L(G) = µF .

Example 1. Let G = ({X0, X1}, {a, b}, δ) where δ = {(X0 → aX1|a), (X1 →
X0b|aX1bX0)}. It defines the polynomial transformation F on LX such that
FX0 = a ·X1 ∪ a and FX1 = X0 · b∪ a ·X1 · b ·X0, and L(G) is the least fixpoint
of F in the language semiring. ut

3.1 Relating the Language and Parikh Semirings

Given a polynomial transformation F , we now characterize the relationship be-
tween the least fixpoints µF taken over the language and the Parikh semiring,
respectively. Either fixpoint is given by the limit of a sequence of iterates which
is defined by Newton’s iteration scheme [4,5]. Our characterization operates at
the level of those iterates: we inductively relate the iterates of each iteration
sequence (over the Parikh and language semirings). We use Newton’s iteration
instead of the usual Kleene’s iteration sequence because Newton’s iteration is
guaranteed to converge on the Parikh semiring in a finite number of steps, a
property that we shall exploit. Kleene’s iteration sequence, on the other hand,
may not converge. Due to lack of space, we refer the reader to [4,5] for the
definition of Newton’s iteration scheme.

We first extend the definition of the Parikh image to a valuation v ∈ LX
as the valuation of PX defined for each variable X by: Π(v)(X) = Π(v(X)).
Then, given FL : LX → LX , a polynomial transformation, we define a polynomial
transformation FP : PX → PX such that: for every X ∈ X we have FPX = Π ◦

FLX ◦ Π
−1. Lemma. 1 relates the iterates for µFL and µFP using the Parikh

image mapping.

Lemma 1. Let (νi)i∈N and (κi)i∈N be Newton’s iteration sequences associated
with FL and FP , respectively. For every i ∈ N, we have Π(νi) = κi.

In [5], the authors show that Newton’s iterates converges after a finite number
of steps when defined over a commutative ω-continuous semiring. This shows, in
our setting, that (κi)i∈N stabilizes after a finite number of steps.

Lemma 2. Let (κi)i∈N be Newton’s iteration sequence associated to FP and let
n be the number of variables in X . For every k ≥ n, we have κk = Π(µFL).
Hence, for every k ≥ n, Π(νk) = Π(µFL).

We know Newton’s iteration sequence (νi)i∈N, whose limit is µFL, may not
converge after a finite number of iterations. However, using Lem. 2, we know
that the Parikh image of the iterates stabilizes after a finite number of steps.
Precisely, if n is the number of variables in X , then the language given by νn is
such that Π(νn) = Π(L(G)). Moreover because (νi)i∈N is an ascending chain,
for each variable X ∈ X , we have that νn(X) is a sublanguage of LX(G) such
that Π(νn(X)) = Π(LX(G)).



3.2 Representation of Iterates

We now show that Newton’s iterates can be effectively represented as a combi-
nation of linear grammars and homomorphisms.

A substitution σ from alphabet Σ1 to alphabet Σ2 is a function which maps
every word over Σ1 to a set of words of Σ∗2 such that σ(ε) = {ε} and σ(u · v) =
σ(u) ·σ(v). A homomorphism h is a substitution such that for each word u, h(u)
is a singleton. We define the substitution σ[a/b] : Σ1 ∪ {a} → Σ1 ∪ {b} which
maps a to b and leaves all other symbols unchanged.
We show below that the iterates (νk)k≤n have a “nice” representation.
k-fold composition. We effectively compute and represent each iterate as the
valuation which maps each variable X to the language generated by a k-fold
composition of a substitution. Since the substitution maps each symbol onto
a language which is linear, it is effectively represented and manipulated as a
linear grammar. To formally define the representation we need to introduce the
following definitions.

Let G̃ = (X , Σ ∪{vX | X ∈ X}, δ̃) be a linear grammar and let k ∈ N, define
vkX to be the set of symbols

{
vkX | X ∈ X

}
. Given a language L on alphabet

Σ ∪ {vX | X ∈ X}, we define L[vkX ] to be σ[vX/vkX ]X∈X (L) that is the language

where each occurence of vX is replaced by vkX .
For k ∈ {1, . . . , n}, we define σk : Σ ∪ vkX → Σ ∪ vk−1X as the substitution

which maps each vkX onto LX(G̃)[vk−1X ] and leaves Σ unchanged. For k = 0 the
substitution σ0 maps each v0X on F (0̈)(X) and leaves Σ unchanged. σ0 basically
applies the terminal rules of the grammar. Let k, ` be such that 0 ≤ k ≤ ` ≤ n
we define σ`k to be σk ◦ · · · ◦ σ`. Hence, σk0 is such that: (Σ ∪ vkX )∗

σk−→ (Σ ∪
vk−1X )∗ · · · (Σ ∪ v1X )∗

σ1−→ (Σ ∪ v0X )∗
σ0−→ Σ∗.

Finally, the k-fold composition of a linear grammar G̃ and initial variable X
is given by σk0 (vkX). Lemma 3 relates k-fold compositions with (νk)k∈N. Moreover
we characterize the complexity of computing G̃ given a polynomial transforma-
tion F the size of which is defined to be the number of bits needed to write the
set {FX}X∈X where each FX is a string of symbols.

Lemma 3. Given a polynomial transformation F , there is a polynomial time
algorithm to compute a linear grammar G̃ such that for every k ≥ 0, every
X ∈ X we have νk(X) = σk0 (vkX).

We refer the reader to our technical report [7] for the polynomial time construc-
tion of G̃ given F . However, let us give a sample output of the construction.

Example 2. Let F be a polynomial transformation on LX where FX0
=

aX1 ∪ a and FX1
= X0b ∪ aX1bX0. The construction outputs G̃ =

({X0, X1}, {a, b, vX0 , vX1}, δ̃) where δ̃ is given by:

X0 → aX1 | avX1
| a

X1 → X0b | aX1bvX0
| avX1

bX0 | vX0
b | avX1

bvX0
.

We have that ν1(X0) = σ0 ◦ σ1(v1X0
) and ν1(X1) = σ0 ◦ σ1(v1X1

).



Lem. 3 completes our goal to define a procedure to effectively compute and
represent the iterates (νk)k∈N. This sequence is of interest since, given a CFL L
and νn the n-th iterate (where n equals the number of variables in the grammar
of L so that Π(νn) = Π(L)), if B is a solution to Pb. 1 for the instance νn, B is
also a solution to Pb. 1 for L. Notice that k-fold compositions relate to indexed
grammars used to represent Newton iterates in [6].

4 Constructing a Parikh Equivalent Bounded Subset

We now show how, given a k-fold composition L′, to compute an elementary
bounded language B such that Π(L′ ∩ B) = Π(B), that is we give an effective
procedure to solve Pb. 1 for the instance L′. This will complete the solution to
Pb. 1, hence the proof of Th. 1. In this section, we give an effective construction
of elementary bounded languages that solve Pb. 1 first for regular languages,
then for linear languages, and finally for a linear substitution.

First we need to introduce the notion of semilinear sets. A set A ⊆ Nn
is a linear set if there exist c ∈ Nn and p1, . . . , pk ∈ Nn such that A ={
c+

∑k
i=1 λjpj | λj ∈ N

}
: c is called the constant of A and p1, . . . , pk the peri-

ods of A. A semilinear set S is a finite union of linear sets: S =
⋃`
i=1Ai where

each Ai is a linear set. Parikh’s theorem (cf. [8]) shows that the Parikh image of
every CFL is a semilinear set that is effectively computable.

Lemma 4. Let L and B be respectively a CFL and an elementary bounded lan-
guage over Σ such that Π(L ∩ B) = Π(L). There is an effectively computable
elementary bounded language B′ such that Π(Lt ∩B′) = Π(Lt) for all t ∈ N.

Proof. By Parikh’s theorem, we know that ΠΣ(L) is a computable semilinear
set. Let us consider u1, . . . , u` ∈ L such that ΠΣ(ui) = ci for i ∈ {1, . . . , `}.

Let B′ = u∗1 · · ·u∗`B`, we see that B′ is an elementary bounded language. Let
t > 0 be a natural integer. We have to prove that Π(Lt) ⊆ Π(Lt ∩B′).
case t ≤ `. By property of Π and Π(L) = Π(L ∩B) we find that:

Π(Lt) = Π((L ∩B)t)

⊆ Π(Lt ∩Bt) monotonicity of Π

⊆ Π(Lt ∩B`) Bt ⊆ B` since ε ∈ B
⊆ Π(Lt ∩B′) def. of B′

case t > `. Let us consider w ∈ Lt. For every i ∈ {1, . . . , `} and j ∈ {1, . . . , ki},
there exist some positive integers λij and µi, with

∑`
i=1 µi = t such that

Π(w) =
∑̀
i=1

µici +
∑̀
i=1

ki∑
j=1

λijpij .



We define a new variable for each i ∈ {1, . . . , `}: αi =

{
µi − 1 if µi > 0

0 otherwise.
.

For each i ∈ {1, . . . , `}, we also consider zi a word of L ∪ {ε} such that zi = ε if

µi = 0 and Π(zi) = ci +
∑ki
j=1 λijpij else.

Let w′ = uα1
1 . . . uα`

` z1 . . . z`. Clearly, Π(w′) = Π(w) and w′ ∈ u∗1 · · ·u∗` (L ∪
{ε})`. For each i ∈ {1, . . . , `}, Π(L ∩ B) = Π(L) shows that there is z′i ∈
(L ∩ B) ∪ {ε} such that Π(z′i) = Π(zi). Let w′′ = uα1

1 . . . uα`

` z
′
1 . . . z

′
`. We find

that Π(w′′) = Π(w), w′′ ∈ B′ and we can easily verify that w′′ ∈ Lt. ut

Regular Languages. The construction of an elementary bounded language
that solves Pb. 1 for a regular language L is known from [13] (see also [14],
Lem. 4.1). The construction is carried out by induction on the structure of a
regular expression for L. Assuming L 6= ∅, the base case (i.e. a symbol or ε) is
trivially solved. Note that if L = ∅ then every elementary bounded language B
is such that Π(L ∩B) = Π(L) = ∅.

The inductive case decomposes into three constructs. Let R1 and R2 be reg-
ular languages, and B1 and B2 the inductively constructed elementary bounded
languages such that Π(R1 ∩B1) = Π(R1) and Π(R2 ∩B2) = Π(R2).

concatenation For the instance R1 · R2, the elementary bounded language
B1 ·B2 is such that Π((R1 ·R2) ∩ (B1 ·B2)) = Π(R1 ·R2);

union For R1 ∪R2, the elementary bounded language B1 ·B2 suffices;
Kleene star Let us consider R1 and B1, Lem. 4 shows how to effectively

compute an elementary bounded language B′ such that for every t ∈ N,
Π(Rt1 ∩B′) = Π(Rt1). Let us prove that B′ solves Pb. 1 for the instance R∗1.
In fact, if w is a word of R∗1, there exists a t ∈ N such that w ∈ Rt1. Then,
we can find a word w′ in Rt1 ∩ B′ with the same Parikh image as w. This
proves that Π(R∗1) ⊆ Π(R∗1 ∩B′). The other inclusion holds trivially.

Proposition 2. For every regular language R, there is an effective procedure to
compute an elementary bounded language B such that Π(R ∩B) = Π(R).

Linear Languages. We now extend the previous construction to the case of
linear languages. Recall that linear languages are used to represent the iterates
(νk)k∈N. Lemma 5 gives a characterization of linear languages based on regular
languages, homomorphism, and some additional structures.

Lemma 5. (from [10]) For every linear language L over Σ, there exist an al-

phabet A and its distinct copy Ã, an homomorphism h : (A ∪ Ã)∗ → Σ∗ and a

regular language R over A such that L = h(RÃ∗∩S) where S = {ww̃r | w ∈ A∗}
and wr denotes the reverse image of the word w. Moreover there is an effective
procedure to construct h, A, and R.

The next result shows that an elementary bounded language that solves Pb. 1
can be effectively constructed for every linear language L that is given by h and
R such that L = h(RÃ∗ ∩ S).



Proposition 3. For every linear language L = h(RÃ∗ ∩ S) where h and R are
given, there is an effective procedure which solves Pb. 1 for the instance L, that
is a procedure returning an elementary bounded B such that Π(L∩B) = Π(L).

Linear languages with Substitutions. Our goal is to solve Pb. 1 for k-fold
compositions, i.e. for languages of the form σkj (vkX). Prop. 3 gives an effective

procedure for the case j = k since σkk(vkX) is a linear language. Prop. 4 generalizes
to the case j < k: given a solution to Pb. 1 for the instance σkj+1(vkX), there is

an effective procedure for Pb. 1 for the instance σj ◦ σ
k
j+1(vkX) = σkj (vkX).

Proposition 4. Let

1. L be a CFL over Σ;
2. B an elementary bounded language such that Π(L ∩B) = Π(L);
3. σ and τ be two substitutions over Σ such that for each a ∈ Σ, (i) σ(a) and

τ(a) are respectively a CFL and an elementary bounded and (ii) Π(σ(a) ∩
τ(a)) = Π(σ(a)).

Then, there is an effective procedure that solves Pb. 1 for the instance σ(L), by
returning an elementary bounded language B′ such that Π(σ(L)∩B′) = Π(σ(L)).

We use the above result inductively to solve Pb. 1 for k-fold composition as
follows: fix L to be σkj+1(vkX), B to be the solution of Pb. 1 for the instance L, σ

to be σj and τ a substitution which maps every vjX to the solution of Pb. 1 for

the instance σj(v
j
X). Then B′ is the solution of Pb. 1 for the instance σkj (vkX).

Due to lack of space we refer to reader to [7] for details.
We thus have an effective construction of an elementary bounded language

that solves Pb. 1 for k-fold composition, hence a constructive proof for Th. 1.

Iterative Algorithm. We conclude this section by showing a result related to
the notion of progress if the result of Th. 1 is applied repeatedly.

Lemma 6. Given a CFL L, define two sequences (Li)i∈N, (Bi)i∈N such that (1)
L0 = L, (2) Bi is elementary bounded and Π(Li ∩ Bi) = Π(Li), (3) Li+1 =
Li ∩ Bi. For every w ∈ L, there exists i ∈ N such that w /∈ Li. Moreover, given
L0, there is an effective procedure to compute Li for every i > 0.

Proof. Let w ∈ L and let v = Π(w) be its Parikh image. We conclude from
Π(L0∩B0) = Π(L0) that there exists a word w′ ∈ B0 such that Π(w′) = v. Two
cases arise: either w′ = w and we are done; or w′ 6= w. In that case L1 = L0∩B0

shows that w′ /∈ L1. Intuitively, at least one word with the same Parikh image
as w has been selected by B0 and then removed from L0 by definition of L1.
Repeatedly applying the above reasoning shows that at each iteration there exists
a word w′′ such that Π(w′′) = v, w′′ ∈ Bi and w′′ /∈ Li+1 since Li+1 = Li ∩Bi.
Because there are only finitely many words with Parikh image v we conclude that
there exists j ∈ N, such that w /∈ Lj . The effectiveness result follows from the
following arguments: (1) as we have shown above (our solution to Pb. 1), given



a CFL L there is an effective procedure that computes an elementary bounded
language B such that Π(L ∩ B) = Π(L); (2) the complement of B is a regular
language effectively computable; and (3) the intersection of a CFL with a regular
language is again a CFL that can be effectively constructed (see [10]). ut

Intuitively this result shows that given a context-free language L, if we repeatedly
compute and remove a Parikh-equivalent bounded subset of L (L∩B is effectively
computable since B is a regular language), then each word w of L is eventually
removed from it.

5 Application to Multithreaded Procedural Programs

We now give an application of our construction that gives a semi-algorithm for
checking reachability of multithreaded procedural programs [16,11,2]. A common
programming model consists of multiple recursive threads communicating via
shared memory. Formally, we model such systems as pushdown networks [17].
Let k be a positive integer, a pushdown network is a triple N = (G,Γ, (∆i)1≤i≤k)
where G is a finite non-empty set of globals, Γ is the stack alphabet, and for each
1 ≤ i ≤ k, ∆i is a finite set of transition rules of the form 〈g, γ〉 ↪→ 〈g′, α〉 for
g, g′ ∈ G, γ ∈ Γ , α ∈ Γ ∗.

A local configuration of N is a pair (g, α) ∈ G×Γ ∗ and a global configuration
of N is a tuple (g, α1, . . . , αk), where g ∈ G and α1, . . . , αk ∈ Γ ∗ are individual
stack content for each thread. Intuitively, the system consists of k threads, each
of which with its own stack, and the threads can communicate by reading and
manipulating the global storage represented by g.

We define the local transition relation of the i-th thread, written →i, as
follows: (g, γβ) →i (g′, αβ) iff 〈g, γ〉 ↪→ 〈g′, α〉 in ∆i and β ∈ Γ ∗. The transi-
tion relation of N , denoted →, is defined as follows: (g, α1, . . . , αi, . . . , αk) →
(g′, α1, . . . , α

′
i, . . . , αk) iff (g, αi)→i (g′, α′i) for some i ∈ {1, . . . , k}. By→∗i ,→∗,

we denote the reflexive and transitive closure of these relations. Let C0 and C
be two global configurations, the reachability problem asks whether C0 →∗ C
holds. An instance of the reachability problem is denoted by a triple (N , C0, C).

A pushdown system is a pushdown network where k = 1, namely (G,Γ,∆). A
pushdown acceptor is a pushdown system extended with an initial configuration

c0 ∈ G × Γ ∗, labeled transition rules of the form 〈g, γ〉 λ
↪→ 〈g′α〉 for g, g′, γ, α

defined as above and λ ∈ Σ ∪ {ε}. A pushdown acceptor is given by a tuple
(G,Γ,Σ,∆, c0). The language of a pushdown acceptor is defined as expected
where the acceptance condition is given by the empty stack.

In what follows, we reduce the reachability problem for a pushdown network
of k threads to a language problem for k pushdown acceptors. The pushdown
acceptors obtained by reduction from the pushdown network settings have a
special global ⊥ that intuitively models an inactive state. The reduction also
turns the globals into input symbols which label transitions. The firing of a
transition labeled with a global models a context switch. When such transition
fires, every pushdown acceptor synchronizes on the label. The effect of such a



synchronization is that exactly one acceptor will change its state from inactive
to active by updating the value of its global (i.e. from ⊥ to some g ∈ G) and
exactly one acceptor will change from active to inactive by updating its global
from some g to ⊥. All the others acceptors will synchronize and stay inactive.

Given an instance of the reachability problem, that is a pushdown network
(G,Γ, (∆i)1≤i≤k) with k threads, two global configurations C0 and C (assume
wlog that C is of the form (g, ε, . . . , ε)), we define a family of pushdown acceptors{

(G′, Γ,Σ,∆′i, c
i
0)
}
1≤i≤k, where:

– G′ = G ∪ {⊥}, Γ is given as above, and Σ = G× {1, . . . , k},
– ∆′i is the smallest set such that:

• 〈g, γ〉 ε
↪→ 〈g′, α〉 in ∆′i if 〈g, γ〉 ↪→ 〈g′, α〉 in ∆i;

• 〈g, γ〉
(g,j)
↪→ 〈⊥, γ〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

• 〈⊥, γ〉
(g,j)
↪→ 〈⊥, γ〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

• 〈⊥, γ〉
(g,i)
↪→ 〈g, γ〉 for g ∈ G, γ ∈ Γ .

– let C0 = (g, α1, . . . , αi, . . . , αk), ci0 is given by (⊥, αi) if i > 1; (g, α1) else.

Proposition 5. Let k be a positive integer, and (N , C0, C) be an instance
of the reachability problem with k threads, one can effectively construct CFLs
(L1, . . . , Lk) (as pushdown acceptors) such that C0 →∗ C iff L1 ∩ · · · ∩ Lk 6= ∅.

The converse of the proposition is also true, and since the emptiness prob-
lem for intersection of CFLs is undecidable [10], so is the reachability problem.
We will now compare two underapproximation techniques for the reachability
problem: context-bounded switches [15] and bounded languages, which we first
detail below.

Let L1, . . . , Lk be context-free languages, and consider the problem to decide
if
⋂

1≤i≤k Li 6= ∅. We give a decidable sufficient condition: given an elementary
bounded language B, we define the intersection modulo B of the languages {Li}i
as
⋂(B)
i Li =

(⋂
i Li
)
∩B. Clearly,

⋂(B)
i Li 6= ∅ implies

⋂
i Li 6= ∅. Below we show

that the problem
⋂(B)
i Li 6= ∅ is decidable .

Lemma 7. Given an elementary bounded language B = w∗1 · · ·w∗n and CFLs

L1, . . . , Lk, it is decidable to check if
⋂(B)

1≤i≤k Li 6= ∅.

Proof. Define the alphabet A = {a1, . . . , an} disjoint from Σ. Let h be the ho-
momorphism that maps the symbols a1, . . . , an to the words w1, . . . , wn, respec-

tively. We show that
⋂

1≤i≤kΠA

(
h−1(Li ∩B)∩ a∗1 · · · a∗n

)
6= ∅ iff

⋂(B)
1≤i≤k Li 6= ∅.

We conclude from w ∈
⋂(B)

1≤i≤k Li that w ∈ B and w ∈ Li for every 1 ≤ i ≤ k,

hence there exist t1, . . . , tn ∈ N such that w = wt11 . . . wtnn by definition of B.
Then, we find that (t1, . . . , tn) ∈ ΠA(h−1(w)∩a∗1 · · · a∗n), hence that (t1, . . . , tn) ∈
ΠA(h−1(Li ∩ B) ∩ a∗1 · · · a∗n) for every 1 ≤ i ≤ k by above and finally that
(t1, . . . , tn) ∈

⋂
1≤i≤kΠA

(
h−1(Li ∩B) ∩ a∗1 · · · a∗n

)
.

For the other implication, consider (t1, . . . , tn) a vector of⋂
1≤i≤kΠA

(
h−1(Li∩B)∩a∗1 · · · a∗n

)
and let w = wt11 . . . wtnn . For every 1 ≤ i ≤ k,



we will show that w ∈ Li∩B. As (t1, . . . , tn) ∈ ΠA

(
h−1(Li∩B)∩a∗1 · · · a∗n

)
, there

exists a word w′ ∈ a∗1 · · · a∗n such that ΠA(w′) = (t1, . . . , tn) and h(w′) ∈ Li ∩B.
We conclude from ΠA(w′) = (t1, . . . , tn), that w′ = at11 . . . atnn and finally that,
h(w′) = w belongs to Li ∩B.

The class of CFLs is effectively closed under inverse homomorphism and in-
tersection with a regular language [10]. Moreover, given a CFL, we can compute
its Parikh image which is a semilinear set. Finally, we can compute the semi-
linear sets ΠA

(
h−1(Li ∩B) ∩ a∗1 · · · a∗n

)
and the emptiness of the intersection of

semilinear sets is decidable [8]. ut

While Lem. 7 shows decidability for every elementary bounded language, in
practice, we want to select B “as large as possible”. We select B using Th. 1.
We first compute for each language Li the elementary bounded language Bi =

w
(i)
1

∗
· · ·w(i)

ni

∗
such that Π(Li ∩Bi) = Π(Li). Finally, we choose B = B1 · · ·Bk.

By repeatedly selecting and removing a bounded language B from each Li
where 1 ≤ i ≤ k we obtain a sequence {Lji}j≥0 of languages such that Li =
L0
i ⊇ L1

i ⊇ . . . The result of Lem. 6 shows that for each word w ∈ Li, there is

some j such that w /∈ Lji , hence that the above sequence is strictly decreasing,
that is Li = L0

i ) L1
i ) . . . , and finally that if

⋂
1≤i≤k Li 6= ∅ then the iteration

is guaranteed to terminate.

Comparison with Context-Bounded Reachability. A well-studied under-
approximation for multithreaded reachability is given by context-bounded reach-
ability [15]. We need a few preliminary definitions. We define the global reachabil-
ity relation ; as a reachability relation where all the moves are made by a single
thread: (g, α1, . . . , αi, . . . , αn) ; (g′, α1, . . . , α

′
i, . . . , αn) iff (g, αi)→∗i (g′, α′i) for

some 1 ≤ i ≤ n. The relation ; holds between global configurations reachable
from each other in a single context. Furthermore we denote by ;j , where j ≥ 0,
the reachability relation within j contexts: ;0 is the identity relation on global
configurations, and ;i+1= ;i ◦;.

Given a pushdown network, global configurations C0 and C, and a number
k ≥ 1, the context-bounded reachability problem asks whether C0 ;k C holds,
i.e. if C can be reached from C0 in k context switches. This problem is decidable
[15]. Context-bounded reachability has been successfully used in practice for bug
finding. We show that underapproximations using bounded languages (Lem. 7)
subsumes the technique of context-bounded reachability in the following sense.

Proposition 6. Let N be a pushdown network, C0, C global configurations of
N , and (L1, . . . , Ln) CFLs over alphabet Σ such that C0 →∗ C iff ∩iLi 6= ∅.
For each k ≥ 1, there is an elementary bounded language Bk such that C0 ;k C

only if
⋂(Bk)
i Li 6= ∅. Also,

⋂(Bk)
i Li 6= ∅ only if C0 →∗ C.

Proof. Consider all sequences C0 ; C1 · · ·Ck−1 ; Ck of k or fewer switches.
By the CFL encoding (Prop. 5) each of these sequences corresponds to a word
in Σk. If C0 ;k C, then there is a word w ∈

⋂
i Li and w ∈ Σk. Define Bk to be

w∗1 · · ·w∗m where w1, . . . , wm is an enumeration of all strings in Σk. We conclude

from w ∈ Σk and the definition of Bk that w ∈ Bk, hence that
⋂(Bk)
i Li 6= ∅



since w ∈
⋂
i Li. For the other direction we conclude from

⋂(Bk)
i Li 6= ∅ that⋂

i Li 6= ∅, hence that C0 →∗ C. ut

However, underapproximation using bounded languages can be more pow-
erful than context-bounded reachability in the following sense. There is a fam-
ily {(Nk, C0k, Ck)}k∈N of pushdown network reachability problems such that
C0k ;k Ck but C0k 6;k−1 Ck for each k, but there is a single elementary

bounded B such that
⋂(B)
i Lik 6= ∅ for each k, where again (L1k, . . . , Lnk) are

CFLs such that C0k ; Ck iff ∩iLik 6= ∅ (as in Prop. 5).
For clarity, we describe the family of pushdown networks as a family of two-

threaded programs whose code is shown in Fig. 1. The programs in the family
differs from each other by the value to which k is instantiated: k = 0, 1, . . . Each
program has two threads. Thread one maintains a local counter c starting at 0.
Before each increment to c, thread one sets a global bit. Thread two resets bit.
The target configuration Ck is given by the exit point of p1. We conclude from
the program code that hitting the exit point of p1 requires c ≥ k to hold. For
every instance, Ck is reachable, but it requires at least k context switches. Thus,
there is no fixed context bound that is sufficient to check reachability for every
instance in the family. In contrast, the elementary bounded language given by(
(bit == true, 2) · (bit == false, 1)

)∗
is sufficient to show reachability of the

target for every instance in the family.

thread p1() {

int c=0;

L:bit=true;

if bit == false { ++c; }

if c<k { goto L; }

}

thread p2() {

L1:bit = false;

goto L1;

}

Fig. 1: The family of pushdown network with global bit.
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