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Abstract A Robust Set Inversion via Interval Analysis method in a bounded error 

framework is used to compute three-dimensional location zones in real time, at a given 

confidence level. This approach differs significantly from the usual Gaussian error model 

paradigm, since the satellite positions and the pseudorange measurements are represented 

by intervals encompassing the true value with a particular level of confidence. The 

method computes a location zone recursively, using contractions and bisections of an 

arbitrarily large initial location box. Such an approach can also handle an arbitrary 

number of erroneous measurements using a q-relaxed solver, and allows the integration of 

geographic and cartographic information such as digital elevation models or 3-

dimensional maps. With enough data redundancy, inconsistent measurements can be 

detected and even rejected. The integrity risk of the location zone comes only from the 

measurement bounds settings, since the solver is guaranteed. A method for setting these 

bounds for a particular location zone confidence level is proposed. An experimental 

validation using real L1 code measurements and a digital elevation model is also reported 

in order to illustrate the performance of the method on real data.  

 

Keywords: GPS; Interval Analysis; Robust positioning; Elevation model; Land 

vehicles 
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Introduction 

Positioning services are becoming more frequently used in safety- and reliability-

critical applications for land vehicles, where not only an estimate of a user's 

location is required, but also confidence indicators and means of ensuring 

integrity. 

 

Fig. 1 Experimental intelligent vehicles: Carmen and Strada 

In the context of urban navigation with Global Navigation Satellite Systems 

(GNSS), the main source of erroneous measurements is multipath propagation and 

more specifically non-line-of-sight propagation, when the direct signal is blocked 

by buildings and only reflected signals are observed. Furthermore, several 

multipath altered measurements can be observed at the same epoch (Le Marchand 

et al. 2009). Satellite-Based Augmentation Systems (SBAS) have little effect in 

these conditions since they provide integrity information to protect the user 

against signal-in-space malfunction, but not against local effects of multipath. 

Moreover, satellite outages due to signal blocking by surrounding buildings have 

other significant effects such as reducing data redundancy, degrading the 

geometrical configuration, and decreasing SBAS availability. Other sources of 

information are necessary to increase information redundancy and improve 

localization in such difficult environment. The usual approach is to use 

proprioceptive sensors that enable dead reckoning, the drift of which is 

compensated by the available GNSS measurements. For land vehicles, an 

alternative approach is to make use of geographical information to constrain the 

location on mapped roads (Fouque and Bonnifait 2008). Another source of 

information can be a Digital Elevation Model (DEM), which is very useful for 

constraining the altitude (Li et al. 2005). 

In practice, the knowledge of positioning accuracy is crucial. Localization can 

thus be directly addressed as a set-membership problem that consists in finding 

the zone in which the user is located, with a given level of confidence. Set-

theoretical methods have successfully been employed in robotics to address 

localization problems (Jaulin et al. 2002; Meizel et al. 2002). These methods have 

interesting properties, such as the ability to handle several hypotheses in cases of 

ambiguous solutions simply by computing disconnected solution sets. Moreover, 

when measurement errors are bounded, guaranteed solutions can be computed — 

i.e. location zones in which the user is guaranteed to be located. In practice, 
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finding absolute bounds for the error is not always possible, and is often an 

excessively conservative approach that fails to yield informative solutions. We 

use a relaxed set-membership approach, which allows a given number of 

measurements to be treated as outliers without affecting the consistency of the 

solution set. This enables dealing with erroneous measurements, while avoiding 

empty solutions. The solution-set integrity risk is bounded by the risk taken when 

setting measurement error bounds and the number of tolerated outliers. No risk is 

added by the employed set inversion algorithm, which solves the problem in a 

guaranteed way. This makes the method particularly attractive in comparison with 

existing solvers. Another advantage of a set-membership approach is that it allows 

geographical information to be incorporated easily. Spatial inequality constraints 

can be introduced into the computation without biasing the estimation process. 

After a brief overview of current GPS integrity approaches, we introduce the 

concept of set-membership positioning with a simple two-dimensional 

pedagogical example. Guaranteed solvers for set-inversion based on interval 

analysis and constraint propagation are then presented. A robust solver is also 

introduced, and a method for setting measurement error bounds in relation to a 

specified risk is explained. Finally, experimental results using real L1 GPS 

pseudorange measurements and a DEM are presented and analyzed. 

Current approaches 

Punctual GNSS positioning using pseudoranges is typically handled as a nonlinear 

Least-Squares problem using a Gauss-like method (Leick 2004; Kaplan and 

Hegarty 2006). Other methods have been proposed to provide a non-iterative 

computation (Bancroft 1985) or to allow positioning in situations with fewer than 

four good measurements (Chang et al. 2009). In practice, some means of 

computing an upper bound of the positioning error, linked to an integrity risk, is 

required to determine whether the navigation system is usable for a given task. 

When dealing with safety applications, the system should be able to handle 

erroneous measurements. The concepts of internal and external reliability (Baarda 

1968) enable to quantify the system‘s response in the presence of an unmodeled 

error.  

Internal reliability is characterized by the Minimal Detectable Bias (MDB), which 

represents the size of the errors that can be detected by a given test statistics 

(Salzmann 1991). The null hypothesis H0 represents the fault free case, where 

model errors are absent. The alternative hypothesis Ha considers the existence of a 

bias in one of the measurements. The MDB depends not only on the level of 

confidence and on the detection power of the test statistics, but also on the 

geometry of the problem, the noise model and the alternate hypothesis considered. 

External reliability characterizes the effect in the position domain of an undetected 

error model. Several external reliability metrics have been defined, such as the 

Bias to Noise Ratio, which represents the significance of such an unobserved error 

in a normalized way, and the Horizontal and Vertical Protection Levels 

(HPL/VPL). 

The Detection, Identification and Adaptation (DIA) scheme proposed in 

Teunissen (1990) enables quality control of the position solution, in parallel to a 
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Kalman filter. Error detection is first performed by testing H0 against Ha. Then, if 

a fault is detected, a second test statistics is used to identify the alternate 

hypothesis, if possible. Upon success, an adaptation procedure is done to take into 

account the detection. The chosen alternative hypotheses Ha are often limited to 

errors on single measurements. The processing of simultaneous faults is 

performed by iteratively applying DIA until H0 is validated. 

Aviation receivers need to provide HPL and VPL that define, within an integrity 

risk, the statistical upper bounds of position errors that will not be exceeded 

without being detected in a given time to alert. This is achieved by Receiver 

Autonomous Integrity Monitoring (RAIM) (Brown 1992; Walter and Enge 1995; 

Feng et al. 2006), which implements a local version of the DIA scheme on single 

epochs, called Fault Detection and Exclusion (FDE). The thresholds of the test 

statistics used are set to meet the required navigation performance specifications 

on integrity and availability. RAIM can be improved by the use of a dynamic 

model (Hewitson 2007). 

Other methods to compute navigation solutions in the presence of erroneous 

measurements are based on robust estimation, like Huber‘s robust M-estimator 

(Huber 1964). Range Consensus (Schroth et al. 2008) is an approach which 

computes solutions on random four-satellite subsets and retains the solution which 

is compatible with the most measurements, while rejecting the other 

measurements as outliers. Solution separation is another method, which consists 

in computing a solution with all available measurements, and all the sub-solutions 

excluding one measurement (Schubert 2006). 

A way to reduce the Minimal Detectable Biases, and as a consequence improving 

integrity, is to add external information like a barometric pressure sensor for 

instance (Gutmann et al. 2009). For ground vehicles, altitude information can be 

provided to the system by using a DEM. This information is often added as a 

virtual range from the center of the earth. In our approach, the altitude information 

is easily introduced as a constraint coming from a DEM. 

Set-membership positioning 

In a bounded-error context, determining the user location zone consists in finding 

the set of positions compatible with the measurements and their associated error 

bounds. Positioning as a set-membership problem is introduced here with a simple 

2D localization example, also showing the effects of wrong measurements on the 

solution-set. In the presence of outliers, a relaxed approach enables robust set-

membership positioning. 

Motivation  

Algorithms that compute position from measurements for snapshot problems are 

often based on punctual iterative methods that can be made robust to erroneous 

measurements. Their main drawback is the risk to fall into a local minimum if the 

initial guess is too far from the solution, or if erroneous measurements are not 

properly handled. 
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Set-inversion methods guarantee that no solution will be missed inside an 

arbitrarily big initial box, even if the equations are nonlinear. Relaxed-set 

inversion is an extension that can also compute a guaranteed solution in the 

presence of several outliers. When considering single faults, 1-relaxed set-

inversion provides external reliability information by computing the solution set 

assuming the hypothesis of at most one erroneous measurement. In other words, 

the solution set computed with the 1-relaxed solver covers the hypotheses H0 and 

Ha.  

For the DIA method, H0 is tested by a statistical test on the residuals. 

Identification is then done using individual tests on each Ha. Transition from 

internal integrity to external reliability assumes a linear(ized) model and usually 

one fault at a time. A set-inversion method can handle nonlinear models without 

adding any risk of invalid linearization. Such an approach can also be robust to an 

arbitrary number of outliers, under the hypothesis that there is enough 

redundancy. Therefore, robust set-inversion allows specifying alternate 

hypotheses Ha with several simultaneous faults without explicitly testing every 

fault combination. 

Finally, when the problem is under-constrained, a set-inversion method can 

compute all the location sets, even if there is a manifold of solutions. This is 

particularly difficult to achieve using the approaches mentioned above. For 

instance, with only 4 satellites in view, a location zone robust to one erroneous 

measurement can still be computed. 

Illustrative example with static beacons 

Let us consider a time-of-flight positioning example having similarities with 

GNSS even if, thanks to the longer ranges involved, nonlinearity is not a difficult 

problem for GNSS positioning. One robot and three beacons communicate via a 

radio link, as in Röhrig and Müller (2009). This radio link not only allows 

communication, but also precision ranging with 1m accuracy. 

To perform set-membership positioning, each measurement has to be represented 

as the set of possible values given uncertainty. Intervals are commonly used to 

express measurement inaccuracy. The maximum expected ranging error is added 

to the measured value to represent measurements as intervals  

],[=][ max

i

max

ii ededd  (1) 

Each measurement acts as a constraint on the robot's location, setting bounds on 

the distance between the robot and the beacon. Since the robot and the beacons lie 

on the same horizontal plane, we have the membership relation: 

][)()( 22 i

iBRiBR dyyxx  (2) 

Given (2), each measurement constrains the robot location inside a ring, whose 

inner and outer radii are respectively the lower and upper bounds of the 

measurement interval ][ id . 
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Fig. 2 Localization using 3 beacons. Solution set in black. 1-relaxed solution set in black and grey. 

The actual solution is shown as a red cross. 

As there are three beacons, the measurement equation must be satisfied for the 

three measurements. The robot is thus located within the intersection of the three 

rings (the black area in Fig. 2a). 

It is important to bear in mind that as long as the measurements are consistent 

with the chosen bounded error model, the solution set will include the true user 

location. 

Effect of wrong measurements 

Beacon ranging can be affected by multipath propagation or faulty beacons, so 

that a measured range may be inconsistent with the error bounds. This kind of 

measurement is often referred to as an ―outlier‖ or a ―fault‖. When using standard 

set inversion, there are two possible consequences: 

 The solution is the empty set (Fig. 2b). This occurs when the erroneous 

measurement is inconsistent with the other measurements, so that there is 

no common intersection. One may therefore immediately conclude that 

there is something wrong with the measurements or with the model.  

 The solution is not empty, but does not contain the actual robot location 

(Fig. 2c and 2d). The set-membership method is then unable to detect the 

presence of an erroneous measurement, and the solution set is inconsistent 

with the truth.  

To deal with erroneous measurements, a robust set-membership method must be 

used. This is done by relaxing the number of constraints to be satisfied. In this 

example, allowing at most one erroneous measurement is achieved by considering 
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the set of solutions compatible with at least two measurements (the gray and black 

surfaces in Fig. 2). In the general case, an arbitrary number q  of erroneous 

measurements can be tolerated, using the q -relaxed intersection of the constraints 

(Jaulin 2009). 

Set inversion via interval analysis 

In the previous example, the solution sets for each constraint were easy to 

represent as rings, and we assumed that any set could be computed with an exact 

representation. In real localization problems, the constraints are given by the 

measurements and an observation function, but they may also reflect prior 

information like the terrain profile, which can lead to arbitrary sets of solutions. 

We therefore use interval analysis (Moore 1966) to perform a guaranteed set 

inversion. 

Interval analysis 

Since an exact representation of sets is not tractable in the general case, an 

efficient and easily implemented representation is to consider intervals, and their 

multidimensional extension: interval vectors, also called boxes. Let IR be the set 

of real intervals, and n
IR  the set of n-dimensional boxes. 

Computations can easily be performed on intervals, thanks to interval arithmetic. 

Inclusion functions ][f  are defined such that the image of ][x  by ][f  includes the 

image of ][x  by f  : 

]).]([[])([,][ xfxfIRx
n

 

To approximate compact sets in a guaranteed way, subpavings are used. A 

subpaving of a box ][x  is the union of nonempty and non-overlapping subboxes 

of ][x . A guaranteed approximation of a compact set X  can be made by 

bracketing it between an inner subpaving X  and an outer subpaving X  such as 

XXX  (Fig. 3). 

 

Fig. 3 Bracketing of the hatched set between two subpavings. Red boxes: inner subpaving X , Red 

and yellow: outer subpaving ΔXXX =  
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Set inversion 

The set inversion problem consists in determining the set X  such as YXf =)(  

when Y  is known. A box ][x  of n
IR  is said to be feasible if Xx][  (all 

elements of the box are solutions of the problem) and unfeasible if =][ Xx  

(none of the elements of the box is a solution of the problem), otherwise ][x  is 

ambiguous. We can characterize the feasibility of boxes by using an inclusion 

function ][f  of the function f  to be inverted, 

 If Yxf ])]([[  then ][x  is feasible  

 If =])]([[ Yxf  then ][x  is unfeasible  

 Else ][x  is indeterminate, meaning it can be feasible, unfeasible or 

ambiguous.  

Starting from an arbitrarily large prior searching box ][ 0x , the Set Inversion Via 

Interval Analysis (SIVIA) algorithm (Jaulin and Walter 1993) works by testing 

the feasibility of boxes. Feasible boxes are added to the inner subpaving X  of 

solutions. Unfeasible boxes are discarded, since they contain no solution. Finally, 

indeterminate boxes are bisected into two subboxes, which are enqueued in the 

list L  of boxes waiting to be examined. Algorithm termination is ensured by 

adding indeterminate boxes whose width is less than  to the subpaving of 

indeterminate boxes ΔX . Thus the outer subpaving is ΔXXX = . 

The number of bisections required gets exponentially larger as the dimension of 

the problem increases, and the computational burden quickly becomes intractable. 

To counteract the curse of dimensionality, contractors have to be used (Jaulin et 

al. 2001b). A contractor is a function that shrinks a box without losing any 

solutions. It can speed up computation without sacrificing the guarantee of a 

solution. A simple way to build a contractor is to use a constraint propagation 

algorithm (Jaulin et al. 2001b). 

q-relaxed set inversion 

Robustness can be implemented by relaxing a given number q  of constraints 

involving outliers. The solver will then compute a subpaving of the state space 

consistent with at least qm  measurements, where m  is the length of the 

observation vector. This is done using the so called q -relaxed intersection. 

Considering m  sets m1 ,, XX   of n
R , the q -relaxed intersection 

}{q

iX  is the set 

of n
Rx  which belong to at least qm  of the iX 's. The Robust Set Inverter via 

Interval Analysis (RSIVIA) solver (Jaulin et al. 2001b) guarantees the 

computation of a q -relaxed solution set (see Algorithm 1). 
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Algorithm 1 RSIVIA (in: ][ 0x , f , Y , q )  

Robust Set Inverter via Interval Analysis 

)],([push L0x  

while L  do 

 )(pull=][ Lx  

 repeat 

  for mi 1=  do 

    )]([ ix  = contract ][x  with if  and ][ iy  

  end for 

  


}{

},{1,

)]([=][
q

mi

ixx  

  // hull of the q -relaxed intersection of m  boxes  

 until no more contraction can be done on ][x  

 if ][x  then 

  ])([bisect=])[],([ xxx 21  

  )],([push);],([push LL 21 xx  

 end if 

end while 

return L  

 

 

Fig. 4 Steps of RSIVIA on a 3 beacon localization problem 

Fig. 4 shows the main steps of RSIVIA, applied to a fixed beacon localization 

problem. The prior box is first contracted independently with each measurement 

to get three boxes approximating the intersection of each constraint with the prior 

box (Fig. 4a). The grayed zones in Fig. 4b represent the 1-relaxed intersections of 
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the three boxes. The hatched box, which is the box union of the grayed boxes, 

becomes a new initial box. We have thus contracted the initial box without losing 

any solutions. Contraction with each measurement is repeated, starting with the 

new box (Fig. 4c), following which the initial box is reduced again so as to 

enclose the q -relaxed intersection of contracted boxes. These steps are repeated 

(Fig. 4d and 4e) until no further contractions can be performed (Fig. 4f). A 

bisection is then carried out, and the contraction process is applied to the two 

subboxes (Fig. 4g). 

Setting measurement error bounds as a function of a given level of 
confidence 

When using a q-relaxed guaranteed solver such as RSIVIA, the probability of the 

true solution being inside the computed solution set can be computed, given a 

prior measurement error distribution and a maximum number of outliers (denoted 

q ) (Drevelle and Bonnifait 2009b). The risk is taken when setting measurement 

error bounds and the maximum number of outliers. The bounds are then 

propagated in a guaranteed way, such that no risk is added by the solver when set-

inversion is performed. 

Knowing the probability density function 
y

ef  of the measurement error ye  and 

the error bounds ],[ ba , a measurement measy  is represented by the interval 

],[=][ byayy measmeasmeas . The probability ])[(= measyyPp  of the true y  

being inside ][ measy  can be computed.  

dfyyPp
y

e

b

a
meas )(=])[(=  (3) 

Let okn  be the number of measurements that respect the error bounds. Given the 

assumption of independence, the probability of having exactly k  correct 

measurements out of m  is given by the binomial law:  

kmk

ok pp
kmk

m
knP )(1

)!(!

!
=)=(   (4) 

Thus, by summing (4) over successive k  values, the probability of having at least 

qm  correct measurements is  

kmk
m

qmk

ok pp
kmk

m
qmnP )(1

)!(!

!
=)(

=

 (5) 

A guaranteed algorithm like RSIVIA computes a conservative approximation X  

of the solution set X . Moreover, if the hypotheses made on the measurements are 

confirmed, the solution set is consistent with the truth. Thus,  

XX xxqmnok  

which leads to  
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)()()( qmnPxPxP okXX  (6) 

Setting )( qmnP ok  to a confidence level confP  will ensure at least this 

confidence level for the computed solution. Since the number of measurements m  

and the number of tolerated outliers q  are known, p  can be determined from  (5) 

for a given )( qmnP ok . Measurement bounds can then be chosen to satisfy (3). 

There is one degree of freedom left for choosing the lower and upper bounds a  

and b  of the measurement error interval. Consequently, they may be chosen to 

minimize the width of ],[ ba , i.e. minimize ab . 

 

Fig. 5 Setting bounds on a Gaussian measurement error 

In the case of a centered Gaussian measurement error )(0,~ yy Ne , which is the 

usual model in GPS positioning, with  representing the cumulative distribution 

function of the standard normal distribution, the measurement interval should be 

set to  

],[=][ ymeasymeasmeas KyKyy  (7) 

In this case, K is simply given by  

2

1
= 1 p

K  (8) 

This way, the same amount of risk is taken on each tail of the Gaussian 

distribution of error (Fig. 5). 

Computation of GPS location zones 

The set-inversion methods presented above are applied to GPS pseudorange 

measurements in this section. It enables computing location zones in real time, 

and performing fault detection and identification. 

Set-membership GPS localization 

GPS positioning with pseudoranges is a four-dimensional problem: along with the 

Cartesian coordinates ),,( zyx  of the user, the user's clock offset udt  has to be 
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estimated. With i  being the corrected pseudoranges, the GPS code observation 

model in Earth Centered Earth Fixed (ECEF) coordinates is (for simplification, 

the time index is omitted in the following equations): 

ummm

u

u

m cdtzzyyxx

cdtzzyyxx

cdtzzyyxx

2s2s2s

2s

2

2s

2

2s

2

2s

1

2s

1

2s

1

2

1

)()()(

)()()(

)()()(

=


 

Satellite positions at the emission time ),,( sss

iii zyx  are known only with 

uncertainty, owing to the inaccuracy of the broadcast ephemeris information. 

Using interval analysis, it is easy to take this inaccuracy into account. For each 

satellite, we consider a box ])[],[],([=][ ssss

iiii zyxx  whose bounds are chosen to 

contain the true satellite position at a given confidence level. 

Pseudorange corrections are imprecise because of model and parameter errors. 

Moreover, the receiver is also subject to measurement errors. We therefore model 

the corrected pseudorange measurements as intervals ][ i  whose bounds are 

determined given an integrity risk. 

The location zone computation consists in characterizing the set X  of all 

locations compatible with the measurements and the satellite position intervals:  

})()()(=

],[),,(],[

,1=|),,,{(=

2s2s2s

ssss

4

uiiii

iiiiii

u

cdtyxyyxx

zyx

micdtzyx

x

RX 

 

The solution set is the set of locations for which a pseudorange and a satellite 

position can be found inside the measurement and satellite position intervals for 

every satellite. 

To add robustness, the location zone is computed assuming at least 1m  good 

measurements. RSIVIA is used to solve the relaxed set inversion problem. By 

recursively contracting and bisecting an arbitrarily large initial box, this algorithm 

returns a subpaving of the state-space (user position and clock offset) guaranteed 

to include the solution set, i.e. an outer approximation of the solution set by a set 

of boxes. As long as the initial hypothesis is valid, i.e. as long as only at most one 

measurement exceeds the error bounds, the true receiver position is guaranteed to 

be inside the computed localization zone. The bounds are chosen so that the risk 

of more than one wrong measurement, i.e. the risk that at least two measurements 

do not respect the error bounds, is 10
-7

. 

The constraint induced by the thi  pseudorange measurement is represented by the 

natural inclusion function of the observation function:  

][])[]([])[]([])[]([=])]([[ 2s2s2s

uiiii dtczzyyxxf x  (9) 
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A constraint propagation contractor for  (9) is built using the Fall-Climb algorithm 

(Jaulin et al. 2001a), which allows constraints to be propagated in an optimal 

order.  

GPS-only location zone computation 

 

Fig. 6 Experimental setup. Left: Septentrio PolaRx GPS Receiver. Right: Experimental vehicle 

running the real-time set-membership positioning application, GPS antenna on the roof. 

Test data were recorded using a Septentrio PolaRx receiver and the experimental 

vehicle shown in Fig. 6. The ground truth solution is provided by a post-processed 

Trimble 5700 receiver with a local base. The sequence covers 1800 m of road 

network near the lab in Compiègne, and lasts about 170 seconds. During this test, 

the number of used L1-pseudoranges was between 4 and 6. Figure 7 shows the 

bounding boxes of solutions for each measurement epoch. These solutions are 

computed using a nonrobust SIVIA. 

The EGNOS augmentation system has been used to get corrected pseudoranges 

with associated measurement error variances, assuming an overbounding 

Gaussian distribution. 
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Fig. 7 Bird's eye view of the trajectory. Boxes are bounding boxes of nonrobust solution sets. 

Reference trajectory is in black. 

 

Fig. 8 Location zone bounds with respect to ground truth. An increasing bias is applied to the first 

pseudorange. Ground truth is at zero ordinate. Non-robust set inversion in thick blue, robust set 

inversion in red 

When using a nonrobust solver, inconsistencies between measurements can be 

detected when the solution set is empty. However, the measurement error may be 

too small to be detected, while nevertheless being large enough to make the 
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computed location zone inconsistent with ground truth. This will be illustrated 

below. 

In Fig. 8, a bias ramp is added to the first pseudorange of the set of six available 

pseudoranges. The nonrobust solution set (thick blue lines) remains consistent 

with ground truth until the bias reaches 18 m (a). With a measurement bias 

ranging from 18 to 23 m (b), ground truth is no longer consistent with the solution 

set, but there is no way of detecting this. This is the weakness of the nonrobust 

solver. Starting from a 24m bias, the solution set becomes empty (c), which 

proves that there is inconsistency between the measurements and the model. 

 

Fig. 9 Horizontal projection of the 1-relaxed solution with one biased measurement. Red dot is 

ground truth. 

Using a robust 1-relaxed solver, the presence of one wrong measurement does not 

compromise the integrity of the computed location zone. Changes in location zone 

bounds with respect to the pseudorange bias in Fig. 8 (thin red lines) can be 

explained in three phases. Up to a 19 m bias, a nonempty six-satellite solution can 

be computed. Since the solver is robust to one faulty measurement, all the five-

satellite solutions are also included (Fig. 9a). The location zone gets tighter as the 

inconsistency grows. Starting from a 19 m bias, the presence of an erroneous 

measurement can be detected, as the six-satellite solution is the empty set. The 

solution set is thus composed only of five-satellite solutions. Figure 9b shows two 

nonempty five-satellite solutions. Finally, when the bias exceeds 50 m, only one 

five-satellite solution is nonempty, thus excluding the faulty measurement from 

the location zone computation (Fig. 9c). If necessary, the wrong measurement can 

be identified by testing the compatibility of the solution set with each 

measurement. 

 

Fig. 10 MDB and fault detection and identification performance of the set-inversion method for 

each satellite at t=10s. Values for satellite 23 have been truncated. 
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The faults detected with the set-inversion method are consistent with minimal 

detectable biases. Results at a particular epoch are shown in Fig. 10. To allow 

comparison, we matched the error bounds choice with a 5·10
-5

 false alarm 

probability and 10
-3

 probability of misdetection. MDB computations were done 

with standard analytical expression presented in Teunissen (1998). 

Use of altitude information 

When using a robust set inversion algorithm, the computed location zones tend to 

get wider. This is a direct consequence of considering the union of poorly-

conditioned satellite-subset solutions. To counteract this phenomenon, more 

redundancy is needed. Since the visibility of GPS satellites may be reduced, 

especially in urban environments, other sources of information have to be used. 

Altitude measurements can easily be obtained by the use of Digital Elevation 

Models (DEM) for land applications, analogous to altimeters used in avionics. 

DEM fusion with GNSS pseudorange measurements can be done either by setting 

the prior searching box according to the measured altitude and its uncertainty, or 

by implementing a new constraint in the set inversion (Drevelle and Bonnifait 

2009a). 

We use a 25m horizontal grid resolution DEM with a 1m altitude precision 

covering the neighborhood of the lab (BD Topo charted by the French Institut 

Géographique National - IGN). An altitude contractor is applied to each box in 

the set inversion algorithm to enforce the altitude constraint. 

 

 

Fig. 11 1-relaxed location zone radius with (thick green line) and without (blue line) DEM 

information  
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In this trial. with the immunity to one erroneous measurement (RSIVIA with 

1=q ), the altitude information from the DEM reduces the horizontal location 

zone radius by a factor 5 on the y  axis (Fig. 11). 

The benefits of altitude information in reducing horizontal uncertainty are 

especially noticeable when few satellites are visible, or when robustness to a large 

number of faulty measurements is required. The altitude constraint provided by 

the DEM enables robust snapshot localization with as few as four satellites. 

 

 

Fig. 12 Location zone bounds with respect to ground truth, using DEM information. An increasing 

bias is applied on the first pseudorange. 

 

Figure 12 shows the influence of a biased measurement on the horizontal position 

bounds, when merging DEM information with GPS pseudorange measurements. 

It is the same six-satellite dataset as in Fig. 10, allowing us to compare results 

with and without the use of a DEM. The nonrobust approach is little improved by 

the use of a DEM: Integrity is lost between 17 m and 21 m bias, while it was lost 

between 18 m and 23 m without the DEM information. Location zone is also a 

few meters tighter. A great improvement can be seen in the 1-relaxed solver 

behavior. The location zone always remains consistent with ground truth, since 

there is only one erroneous measurement, but it is tighter thanks to the added 

constraint, especially on the y-axis. The presence of an outlier is detected earlier, 

starting from a 16 m bias (19 meters without DEM). Moreover, the erroneous 
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measurement is totally excluded from the solution after a 25m bias, where 50 m 

were necessary without DEM altitude information. 

An experiment has also been conducted to compare the 1m resolution IGN DEM 

with a coarser DEM from the NASA‘s Shuttle Radar Topography Mission, with a 

14m vertical accuracy. A ramp error was successively applied to each satellite in 

view, and the bias values for which error detection and identification occurred 

were recorded. Higher precision DEM not only allows detection of smaller biases 

(Fig. 13a), but it also significantly reduces the size of error needed to identify the 

faulty measurement (Fig. 13b). 

 

Fig. 13 Influence of DEM precision on fault detection and identification 

Maximum number of tolerated outliers 

The maximum number of tolerated outliers has to be set before set-inversion. 

Several choices are available. If only satellite failures are considered, a reasonable 

approach is to set the maximum number of outliers to one. This approach can be 

used in an open sky environment, and it corresponds to the ‗one fault at a time‘ 

hypothesis. 

In urban areas, the risk of receiving simultaneous non-line-of-sight measurements 

is not negligible. Moreover, the number of visible satellites can be low. In this 

case, the number q of tolerated outliers can be set as a tradeoff between precision 

and integrity. The quality of the receiver and the antenna and their ability to reject 

reflected signals play a prominent part in the setting of q. For the Septentrio 

PolaRx and its polarized antenna, setting q=1 is a reasonable choice. With a low-

end receiver with a patch antenna, it is common to receive three simultaneous 

wrong measurements in urban areas (Le Marchand et al. 2009). Setting q=3 

ensures that a nonempty solution will exist most of the time. 

Another approach can be based on the Guaranteed Outlier Minimal Number 

Estimator (Kieffer et al. 2000). The idea is to compute q-relaxed solutions with 

increasing values of q, until a nonempty solution is found. Robustness to 

undetectable errors can then be provided by adding a number of tolerated 

undetected errors to the value of q previously found. 
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Conclusion 

A new method to characterize a location zone has been presented. It is based on 

robust set inversion using interval analysis. Bounds are set on measurements, 

taking error and risk into account. These bounded-error measurements translate 

into constraints in the location domain. Using interval analysis, the constraint 

satisfaction problem can then be solved, and a defined number of constraints can 

be relaxed in order to maintain solution integrity in the presence of outliers. 

An experimental validation to compute location zones was carried out, using GPS 

pseudorange measurements corrected with EGNOS, and a Digital Elevation 

Model. It was implemented in real time as a parallelized C++ program. Results 

show that additional altitude information from the DEM enabled more precise 

positioning while tolerating GPS outliers, especially with a small number of 

visible satellites. Since each box in a subpaving can be processed independently 

of the others, the interval methods employed can be easily and efficiently 

parallelized to take advantage of the additional power of multi-core processors. 

The presented snapshot GPS-DEM robust location zone computation algorithm 

fails to provide a useful location zone when the number of pseudorange 

measurements becomes too low (with respect to the number of tolerated outliers). 

Future work will be focused on dynamic car positioning, using a kinematic 

vehicle model and embedded proprioceptive sensors. This will constrain the 

location zone, especially during GPS outages in difficult environments like urban 

canyons. 
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