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Abstract 
 

In this paper, we propose a modified variational 

splines fitting (MVSF) algorithm for the reconstruction 

and comparison of medical surfaces. The MVSF 

algorithm presents the advantage to use high precise 

and low complex approximation of the equations of 

energy in the discrete temporal domain, compared to 

previously presented methods. It also takes into 

account the periodicity constraints encountered when 

reconstructing sphere-like shape closed surfaces. 

Moreover, it gives straightly the mean square error 

(MSE) between the original data and the reconstructed 

data, which is useful to quantify the approximation 

introduced by the reconstruction. The developed model 

has been successfully applied for real biomedical data; 

in particular for the reconstruction and comparison of 

the left ventricle of human heart, acquired by SPECT 

and ultrasound imaging modalities.  
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 1. Introduction 
 

Surface reconstruction is a step generally carried out 
before comparing or representing/ visualizing discrete 
data sets. It is essential when the two data sets to be 
compared present dissimilar numbers of samples, 
different sampling processes, or missing samples 
(sparse data). These cases are commonly encountered 
in medical imagery, and particularly in the comparison 
of data obtained from several imaging modalities [1]. 
Hence, it is necessary to carry out resamplings, using 
interpolation and/or smoothing methods. 

Surface reconstruction and smoothing methods are 
widely used in practice to best estimate the original 

surface represented by a scattered noisy point. For 
instance, the number and the distribution of the initial 
samples of an organ surface lead to incomplete meshes. 
Stacks of two-dimensional contours can also be used to 
reconstruct three-dimensional surfaces [2].  

The problem of surface reconstruction can be solved 
using a variety of techniques. The finite element 
method is one of these techniques. An example of this 
method is the use of Voronoi diagram and Delaunay 
triangulation [3] to find the topological connection of 
the sample points. Fourier-based interpolation methods 
[4], to mention a few, are also used in the domain of 
surface reconstruction. 

Another type of reconstructing smooth surfaces 
relies on the finite difference methods using 
deformable models [5] such as thin plate model [6]. 
The main idea is to create an initial mesh and deform it 
to best match the range input data. This is usually 
expressed as an energy minimization problem. There 
are two forces that formulize the final shape of the 
reconstructed surface. One attracts the surface towards 
the input data and the other tries to keep the surface 
smooth. These methods are generally computationally 
inexpensive but comparably more sensitive to number 
of missing points. The former approach was selected 
for further study in this work as it is generally more 
appropriate for smooth surfaces such as surfaces of left 
ventricle of heart. In general, methods based on 
deformable models give nice smooth surfaces but are 
computationally expensive and complex. We present in 
this work a faster and less complex algorithm 
compared to a previous algorithm proposed by Richard 
Szeliski. The reconstruction step makes it easier to 
compare medical surfaces obtained by different 
modalities or at different time or position. 

The next section concerns the description of the 
original VSF method and our proposed variant, 
required prior to local comparison of medical surfaces 
with incomplete samples. Data used in our experiments 
are described in section 3. Results are then presented 
and discussed. Finally, conclusions are given. 



 

 2. Variational Splines Fitting (VSF) 

Algorithm 
 

In [7], the author proposed to use a deformable 

model (here we call it VSF) to estimate the missing 

points. In this model, the problem is formulated as an 

optimization one. The function to be minimized is 

written. 

 )x(E)x(E)x(E sd   (1) 

Where X = [X i,j], (i = 0 : N-1, j = 0 : M-1) are the 
mesh regular points of the reconstructed surface, i and j 
indicate spatial positions. This function includes two 
constraints: the data compatibility constraint Ed(X), and 
the smoothness constraint Es(X). The above 
formulation is usually expressed as an energy 
minimisation problem where an attracting force draws 
the mesh towards the sparse data « Ed(x) » and a 
tension in the mesh keeps the surface smooth « Es(x) » 
[2].  (>0) is the regularization parameter which is 
used to adjust the closeness of the fit between the 
surface and the sparse data set. Figure 1 shows an 
example of a 2D curve construction under the effect of 
the regularisation parameter. This parameter depends 
on the sparse data set and can be estimated using a 
generalised cross validation technique. In general, as 
  increases, the reconstructed surface becomes 
smoother. However, the probability of error between 
the original sparse samples and their corresponding 
estimated ones becomes higher. For very high values of 
 ,  (  ), the fitted surface tends towards a flat 
one. As   tends to zero, this probability becomes 
smaller, but the reconstructed surfaces might no longer 
be smooth. 

 

 

1 

          

2 

 
             (a)                                            (b) 

Figure 1 : Smoothing degree of reconstructed surfaces in 

function of  : 1 (a) > 2 (b). 

 

The data compatibility constraint measures the 
distance between the original sparse points and the 
interpolated smooth surface. The energy expression 
corresponding to the data compatibility constraint can 
be written as: 
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The discrete form is: 
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where xi,j stands for the discrete values of f(ui,vi) : xi,j = 

f(ui,vi), di,j (di,j = 0 at missing points) are the sparse 

samples of the original incomplete surface and the 

weights wi,j (wi,j= 0 at missing points) are inversely 

related to the variance of the measurements.  The 

higher the weights, the better the reconstructed surface 

fits the original sparse samples. In this case, the data 

compatibility constraint over influences the overall 

energy function and the reconstructed surface become 

no longer smooth. 

Reassembling all mesh points into a vector x, one 
can rewrite equations (3) in a matrix form. The energy 
corresponding to the data compatibility constraint 
becomes: 
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where d is a zero-padded vector of data values and the 

diagonal matrix Ad has entries wi at which the data 

coincide with the sparse data points and zeros 

elsewhere. In particular, this allows treating problems 

with missing or unknown data. Using the thin plate 

model, the energy function corresponding to the 

smoothness constraint can be written in continuous 

form as: 
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where f: f(u,v) is the smoothed continuous functional 

of the interpolated surface in u and v directions; and 

the subscripts uu, vv and uv  indicate partial 

derivatives. 

 

 2.1. Original VSF algorithm 
 

In the original VSF algorithm, the discrete form of 

the above energy function is derived using a classical 

finite-difference scheme.  The resulting discrete 

function is: 
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where uhu   and vhv   are the step sizes of 

the regular mesh of the reconstructed surface in the u  

and v  directions respectively. 

 



 2.2. Modified VSF algorithm (MVSF) 
 

In this work, a more accurate derivation process is 

proposed to get the discrete energy corresponding to 

the above continuous function (5). In particular, we 

propose to take into consideration higher element 

components of the corresponding two-variable Taylor 

formula. The discrete corresponding function is 

obtained by:  
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We can see from the above expression that the first 

two terms are similar to the original formulation given 

in equation (6). They both use the so-called 5-star-

points scheme.  The main advantage of the expression 

given in equation (7) is its accuracy in using the 4 

diagonal points to approximate the crossed second-

order derivative at position (i,j), as shown in Figure 2a.  

Obviously, Szeliski’s approximation is a biased 

forward approximation, as shown in Figure 2b. The 

previous approximation is a biased approximation as 

presented in Figure 2a. 
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                          (a)                                   (b) 

Figure 2 : Point estimation using VSF (a) and MVSF (b). 

 

Reassembling all mesh points into a vector X, we 
can rewrite equations (6) and (7) in a matrix form. The 
energy corresponding to the thin plate model can also 
be written in compact form as:  
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where the stiffness matrix As is a sparse matrix block 

diagonal matrix. The matrix As has at most 13 non-zero 

entries per row, as discussed in  [7]. The rows with the 

maximum number of entries are : (n + 1)  M + (m + 

2); n = 1 : N  4 et m = 1 : M  4; N et M > 4.  

However, when periodicity is imposed upon the 

stiffness matrix As, all rows would then have 13 non-

zeros entries. Note that such periodicity constraint is 

appropriate when considering spherical coordinates 

used in describing human organs. The resulting 

stiffness matrix has a homogeneous structure and can 

be easily coded. It has been constructed following the 

method proposed by [8]. 

If hu=hv=1, by imposing the continuity constraint, the 

stiffness matrix  can be written in the following matrix 

form: 
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where  B, C and D are MN symmetric matrices. 0 is 

an MN zero matrix. 

 

 2.3. Discrete problem 
 

Using equations (4), (6) and (7), the combined 

discrete energy expression can hence be written in 

matrix form as: 

   cE TT  bxxAxx
2

1
 (10) 

where A =   As + Ad, b = Ad  d and c is a constant 

that may be omitted in the minimization process. This 

energy function has a minimum at x = x
*
, which is the 

solution of the following linear system that is obtained 

via the Euler equation: 

 bxA *   (11) 

since A is a strictly positive matrix. The above set of 

linear equations is, hence, a high dimension 

homogeneous positive definite system, that can be 

solved using the conjugate gradient method, thanks to 

the strict positivity of the matrix A. Our approximation 

is found to lead to better performance compared to that 

used in original VSF algorithm. 

 

 3. Data description 
 

In this work, data consist of two sequences of 

surfaces of the left ventricle (LV) of the heart 

reconstructed within a cardiac cycle. Examinations 

were carried out on the same patient using successively 

two medical imaging modalities within a short period 

of time, in order to assume that the LV deformations 

are reproducible and hence medical comparisons would 

be applicable. The first sequence is composed of eight 



LV surfaces obtained after automatic segmentation 

from nuclear medicine imaging (NMI), known to be a 

“gold standard” examination for cardiac observation. 

The second LV sequence is provided by a 

multidimensional ultrasound technique (US) called 

LV4D for Left Ventricle in 4 Dimensions [4] [9], 

previously proposed by the authors. The objective was 

to use the NMI examination to validate this ultrasound 

method. The closed incomplete LV surfaces are first 

developed to a rectangular domain of size (I,J), with I = 

[/2, +/2] and J = [0, 2]. The transformation 

between the two domains, spherical S(x,y,z) (Figure 3a) 

and rectangular D(, ) (Figure 3b), is obtained by 

using the following relations:  

x = cos() cos(), y = cos() sin(), z = sin(). 
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Figure 3 : Transformation of a point from spherical domain (a) 

to rectangular domain (b). 

 

The associated surface of the spherical 

representation is identical to that of the rectangular 

surface. The samples of the developed surface are 

duplicated in (,) and placed in a doubly periodic grid 

according to these two variables. When the number of 

samples is too high (or the sampling grid is of reduced 

size), several samples {ρi(i,i)} may correspond to 

the same element (i,j) in the grid. In this case, the 

average of these samples is taken at this position. By 

the same way, to reduce artefacts in  =/2, the 

average of samples available for each of these values of 

 is assigned to all values of corresponding . In fact, 

the radius at the vertices of the closed surface are the 

same whatever the values of . In contrast, a sampling 

grid of large size, or a poor distribution of the initial 

samples of the reconstructed surface generates an 

incomplete grid. 

Each missing value is then set to zero and its 

position is saved. 

 

 4. Results and discussion 
 

 4.1. Performance analysis 
 

The results displayed in Figure 4 show that the 

proposed algorithm, MVSF, outperforms the original 

VSF algorithm, e.g. when the tolerance value of the 

iterative conjugate gradient algorithm is set to 10-4, the 

modified algorithm converges about 100 iterations 

faster than the original algorithm. One can also notice 

from Figure 4 that an inappropriate choice of the values 

of  and w can induce a higher number of iterations to 

get the same value of MSE between the reference 

surface and the reconstructed one. 

 

 
Figure 4 : Number of iterations necessary for the 

convergence of the two algorithms. Rate of convergence of 

the conjugate gradient algorithm. 
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 4.2. Comparison of LV surfaces 
  

In order for the given LV surfaces to be locally 

compared, the irregularity of the data, the number of 

the available data, or even the absence of certain 

samples requires the use of an interpolation step. The 

resampling of data was implemented to visualize the 

local differences of the compared surfaces. It was 

produced by the MVSF algorithm, Figure 5c, after 



transformation of the Cartesian coordinates of the 

samples of original surfaces into spherical coordinates, 

Figure 5b. 

 
 

 

 

(a) (b) (c) 
Figure 5 : Samples of a closed surface of a LV of heart (a). 

Reconstruction of surfaces by MVSF algorithm (b). 

Corresponding closed surface (c). 

 

 4.3. Global comparison 
 

The evolution of the NMI and US LV volumes as a 
function of time provides a global comparison of the 
reconstructed surfaces, as shown on Figure 6. To 
facilitate the comparisons, each volume is normalized 
relative to a maximum volume obtained in diastole. 
From these volumes, measurements are realised: 
estimation of the telediastolic (VD) and telesystolic 
(VS) moments and volumes, then evaluation of the 
ejection fraction:  
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However, the lack of registration does not allow 
local comparisons, since the two surface absolute 
orientations are not known. The registration of the two 
sequences was performed by estimating the parameters 
of translation and rotation for each pair of 
corresponding surfaces of the two data sets using the 
CICP algorithm [10]. The sequence of surfaces 
obtained by scintigraphy served as a « reference », 
while the sequence of surfaces generated by ultrasound 
constructed the « target » data. 

 

 
Figure 6 : Evolution of the NMI and US LV volumes. 

 

It can be seen from this figure that the variation of 
evolution curves is comparable, even if a volume 
difference during diastolic phase is perceptible. This 
slight difference is probably explained by the unequal 
precise information obtained during surface estimation. 
In fact, the acquisition and reconstruction modes are 
very different for both techniques. However, the 
determination of the fraction of ejection, current 
measurement performed during the cardiac 
examination, gives results of the same order of 
magnitude, and sufficient precision to make a 
diagnosis, according to cardiologists:  

Fej (US) = 0,624  Fej (MN) = 0,706. 

In this case, the reported fractions of ejection 

indicate normal cardiac contractions (0,5  Fej 0,7). 

 

 4.4. Local comparison 
 

Figure 7c presents an NM reconstructed surface of 
the left ventricle of heart using the proposed MVSF 
algorithm. A color coding allows cartograhing the 
distances between the surfaces obtained by the two 
modalities by visually local differences between the 
two registered surfaces.  

From the medical point of view, the results presented 
in this study show that the surface provided by the 
LV4D method are close to the reference gated SPECT 
surface. Actually, for all considered surfaces, the 
coding of colors remains in average around the 
homogeneous light blue – green – yellow colors, 
indicating low radial distance between the two LV 
surfaces. These results validate the ultrasound LV4D 
method as an alternative to the reference gated SPECT 
examination. 

  

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7 : Local comparison of two LV registered surfaces 

(c), acquired from gated SPECT (in red color) and ultrasound 

(in brown color before registration (a) and in blue color after 

registration (b)).  



 5. Conclusions and perspectives 
 

The MVSF algorithm can be used to reconstruct 
closed surfaces of an organ of the human body, such as 
the left ventricle of the heart. It gives more precise 
surface reconstructions and is faster compared to its 
original VSF algorithm. However, the major drawback 
of both methods is the size of the rigidity matrices 
which increases in proportional to the square of the 
desired mesh. In fact, moving from a mesh of samples 
of 3232 to a mesh of 6464 results in moving from a 
dimension of stiffness matrix of 10241024 (~10

+6
) 

elements to 40964096 (~1610
+6

). The size of the 
handled matrices, for a relatively small number of 
samples (4096) compared to the possibilities offered 
today by the medical imaging equipment, is an obstacle 
to the use of these variational splines based methods.  

There exist already multi-scale methods to address 
this problem. Concerning the structure matrix presented 
in this work, it seems interesting to investigate whether 
a direct method, which would not require intermediate 
excessive storage, could not be developed to solve the 
linear system of equation (11). 

Another research perspective could be to develop a 
3D version of the MVSF algorithm in order to 
eliminate the step of converting Cartesian coordinates 
into spherical coordinates to convert closed surfaces 
into developed surfaces. Finally, it would be interesting 
to implement automatic methods to estimate the 
parameters of considered algorithms. 

Using a reliable extension of the classical splines 
smoothing SVF method, the work presented in this 
paper describes a comparison technique based on color 
representation of the radial distances between two 
corresponding surfaces, projected on the surface of 
reference. It has been successfully applied to highlight 
differences between corresponding LV surfaces 
obtained starting from ultrasound and gated SPECT 
examinations. Finally, it was shown that the original 
LV4D method provides reconstructions of the LV 
surfaces equivalent to the surfaces obtained from gated 
SPECT, "gold standard" examination in the field of 
dynamic cardiac reconstruction. This result has a great 
medical interest, since the new method could be used 
as a promising alternative to the gated SPECT 
examination, taking all the benefits of the ultrasound 
modality: non invasive method, no radioisotope 
exposition, no contraindication, cost less expensive, 
mobile system. 

The study presented can be extended to measure the 
differences between closed or developed corresponding 
surfaces (images). Then, it can be used to compare 
different reconstructions of a unique surface, or to 
compare a unique reconstruction of different surfaces. 
Additional work must be carried out to confirm the 

preliminary promising results. Particularly, focus 
should be done to improve the accuracy of samples that 
characterize the observed surfaces  
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