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ABSTRACT 

 The paper proposes improved analytical 
expressions of the torque on cuboidal permanent 
magnets. Expressions are valid for any relative 
magnet position and for any polarization direction. 
The analytical calculation is made by replacing 
polarizations by distributions of magnetic charges on 
the magnet poles (Coulombian approach). The torque 
exerted on the second magnet is calculated by Lorentz 
force formulas for any arbitrary position. The three 
components of the torque are written with functions 
based on logarithm and arc-tangent. Results have 
been verified and validated by comparison with finite-
element calculation. Further, the torque can be 
obtained with respect to any reference point. 
Although these equations seem rather complicated, 
they enable an extremely fast and accurate calculation 
of the torque exerted between two permanent 
magnets.  
 

1 INTRODUCTION 
 Analytical expressions are very powerful, giving a very 
fast method to calculate magnetic interactions. It is why 
the analytical expressions of all the interactions, energy, 
forces, and torques between two cuboidal magnets are 
very important results. Many problems can be solved by 
the addition of element interactions. 

Up to now, for the torque components, the calculations 
were first realized for a system of two magnets with 
parallel polarization direction by Allag [1] and Janssen 
[2]. For the perpendicular case the results have been 
recently published [3]. 
 In this paper we develop the calculation for the system 
of two magnets with inclined polarization direction. The 
torque expressions are valid for any given point in the 
space, not only around the center of the moving magnet. 
The expressions of the torque components are obtained 
by using the Lorentz force method [4]. A comparison 
with numerical models using Flux3D software validates 
our analytical calculation of the torque exerted between 
two permanent magnets.  

2 MATHEMATICAL MODEL 
We study the interaction between two parallelepiped 

magnets, as presented in Figure 1. The polarizations J 
and J’ are supposed to be rigid and uniform in each 
magnet. The difference is that J’ are arbitrary oriented in 
YZ plane. The model can be replaced by distributions of 
magnetic charges on the poles, generally called 
coulombian approach. For simplifying calculation, the 
polarization J’ will be decomposed into parallel 
component J’// and perpendicular one J’┴ (Figure 2). 
 

  
Figure 1: System of two magnets  

 
 
 
 
 

 
Figure 2: Polarization decomposition  

2.1 Parallel polarizations  

 The first 3-D fully analytical expressions of the energy 
and force were presented at the 1984 INTERMAG 
Conference, Hamburg, Germany [5]. The forces were 
analytically calculated for two cuboidal magnets with 
parallel polarization directions (Figure 3). 
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The energy expressions are: 
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The obtained expressions of the interaction energy are: 
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From the interaction energy, the force components 
can be obtained by  EdagrF

rr
−= .  

Consequently the force components are: 
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Figure 3: Parallel polarizations 

 
For the torque calculation, the first magnet is 

supposed to be fixed and the second magnet is free to 
move in any direction. The torque is calculated for a 
movement around the point OT. The OT position is 
defined by its coordinates (Dx, Dy, Dz) in the reference 
axes of the second magnet OXYZ. View from O, the 
centre of the fixed permanent magnet, the OT position is 
defined by (Dx+a, Dy,+b, Dz+g). 

 The torque exerted in the second magnet at OT is 
calculated by Lorentz formulas [2, 3, 4]: 
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The torque can be also written as: 
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The distance r is always the same (see equation (2)), 
and DX, DY and DY, are the projections of the distance 
between the centre of the moving magnet and the point of 
torque calculation OT. 

After the analytical integrations, the torque is given by: 
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And the functions t are respectively:  
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It is easy to identify the link between the expressions 
of the torque (12) and the force components f//X , f//Y, f//Z 
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2.2 Perpendicular polarizations  

 

 
Figure 4: System with perpendicular polarizations 

 
For the perpendicular polarization case, the chosen 

system is presented on Figure 4, in which the polarization 
of a second magnet is collinear with the Y axis. 

The analytical expressions of the interaction energy 
and the forces components for this system were 
previously developed [6, 7, 8]. The difference is in the Z 
integration: 
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The distance r is given by:                          
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After analytical integration, the energy is given by: 
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The y┴ function depends on the geometrical 
parameters (U, V, W, r) 
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The variables U, V, W are identical (equation (5)).  
The force components can be calculated from the 

gradient of energy: 
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For Fx, the function f┴x is given by: 
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Similarly to the parallel polarization case, the torque 
exerted on the second magnet at OT (Figure 4) is 
expressed by: 
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The torque can be also written as: 
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The final result is given by: 
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For the torque component G┴x, parallely oriented to 
the Ox axis, the t┴x function is given by: 
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Function t┴Z for the torque component G┴Z: 
( )( ) ( )( )

( ) ( ) ( )

( )

( )
























⋅+






⋅++

+−+

++−+−

+

−−−⋅−−−⋅=

−

⊥⊥⊥

rWU
Vr

UW
tg

UVV

rU
WU

rU
VWW

rW
U

UDADB X

j

YY

l

Xz

12

1

6

3

ln
2

ln
12

3
ln

3

11

1
22

2

223

φφτ
(24) 

The torque components in perpendicular case are also 
function of the force ones (f┴X, f┴Y and f┴Z). 

3 TORQUE CALCULATION FOR INCLINED 
POLARIZATION DIRECTION 

For an inclined polarization J’ as presented on Figure 
1 and Figure 2. It can be represented as:  

( ) ( )θθ cos'sin'' // ⊥+= JJJ                                     (25) 

Therefore the total torque will be:  
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Using equations (11) and (23), final expressions of 
the torque are: 



 4 

( )

( )
∑∑∑∑∑∑

∑∑∑∑∑∑

= = = = = =
⊥

+++++⊥

= = = = = =

+++++

−⋅

−⋅=Γ

1

0

1

0

1

0

1

0

1

0

1

00

1

0

1

0

1

0

1

0

1

0

1

0
//

0

//

),,,(.)1(
4

cos'

),,,(.)1(
4

sin'

i j k l p q
pqklij

qplkji

i j k l p q
pqklij

qplkji

rWVU
JJ

rWVU
JJ

τ
πµ

θ

τ
πµ

θ (27) 

The components of //τ  and ⊥τ  are given by equations 

(12), (13) and (24). 
Expressions of the torque components: 
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-  And finally, For GZ 
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4 EXAMPLES OF APPLICATION 
The following example presents the torque 

calculation between two magnets. These magnets are 
identical: two cubes of 1cm edge. The lower magnet has 
a vertical polarization (oriented in Z direction). For the 
second magnet, its polarization is inclined in the YZ 
plane (Fig. 5). The intensity of polarization is 1 Tesla for 

the two magnets. The upper magnet moves in translation 
along the Ox axis above the lower fixed one. The vertical 
distance between them (airgap when the upper magnet is 
above the fixed magnet) is 0.01 m (β=0 m and γ=0.02 
m).. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5: Geometrical disposition of the magnets 
 

 For the first application, the second magnet 
polarization is inclined (θ = 45°). The torque is calculated 
in the centre of the second magnet (Dx, Dy and Dz are 
equal to zeros). The results from analytical and numerical 
model using Flux3D are given in Figure 6, proving a 
good accuracy of our approach. 

 

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025
-6

-4

-2

0

2

4

6

8

10

12
x 10

-3

alpha [m]

 

 

Tx (analytic)
Ty (analytic)
Tz (analytic)
Tx (Flux3D)
Ty (Flux3D)
Tz (Flux3D)

Torque
[Nm]

 
Figure 6: Torque components for 45° inclined polarization 

of PM2 
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Figure 7: Torque components for 30° inclined polarization 

of PM2 (second magnet) 
 
We let the same physical and geometrical parameters 

as in previous example, except for the degree of 
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 5 

inclination which is changed to θ = 30°. In this case also, 
the results are compared with Flux3D finite element 
software (Fig. 7). 

 
In the second application, the second magnet are fixed 

at α = 0.0025 m, β = 0 m, γ = 0.02 m. We simulate and 
calculate the torque for one complete rotation of 
polarization (Figure 8). The torque is computed at the 
centre of the magnet and their three components are 
presented on Figure 9. 

 
 
 
 
 
 
 

Figure 8: Magnet position and polarization directions 
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Figure 9: Torque components calculation for one rotation of 

inclined polarization of PM2  
 (α = 0.0025 m, β = 0 m, γ = 0.02 m). 

 
We can also calculate the torque components at any 

position of OT, the next results concern the calculation of 
the torque at the position shown in Figure 10, 
corresponding to Dx = -2 α, Dy = 0 and Dz = 0. The 
dimensions α, β and γ are the same as the last application 
(α = 0.0025 m, β = 0 m, γ = 0.02 m). 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: Localization of the torque calculation point 
 

The result in this case is presented as a function of a 
rotation angle θ on Figure 11. 
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Fig. 11: Torque calculation at Dx = -0.005 m, Dy = 0m and 

Dz = 0 m, as function of rotation angle θ 

5 CONCLUSION 
 This paper presents a new contribution in analytical 
torque calculations for cuboidal permanent magnets with 
inclined polarizations from any position. These 
investigations allow the direct calculation of many 
systems working by the forces or the torques between 
magnetized cuboidal elements (magnetic bearings, 
Halbach arrays….). These results can also be used for 
many other calculations, like complex shapes of magnets 
which can be replaced by a combination of several 
parallelogram ones.  
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