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Abstract

In this paper, we consider the minimization of a convex objective function defined on a
Hilbert space, which is only available through unbiased estimates of its gradients. This problem
includes standard machine learning algorithms such as kernel logistic regression and least-squares
regression, and is commonly referred to as a stochastic approximation problem in the operations
research community. We provide a non-asymptotic analysis of the convergence of two well-
known algorithms, stochastic gradient descent (a.k.a. Robbins-Monro algorithm) as well as a
simple modification where iterates are averaged (a.k.a. Polyak-Ruppert averaging). Our analysis
suggests that a learning rate proportional to the inverse of the number of iterations, while leading
to the optimal convergence rate in the strongly convex case, is not robust to the lack of strong
convexity or the setting of the proportionality constant. This situation is remedied when using
slower decays together with averaging, robustly leading to the optimal rate of convergence. We
illustrate our theoretical results with simulations on synthetic and standard datasets.

1 Introduction

The minimization of an objective function which is only available through unbiased estimates of the
function values or its gradients is a key methodological problem in many disciplines. Its analysis
has been attacked mainly in three communities: stochastic approximation [1, 2, 3, 4, 5, 6], optimiza-
tion [7, 8], and machine learning [9, 10, 11, 12, 13, 14, 15]. The main algorithms which have emerged
are stochastic gradient descent (a.k.a. Robbins-Monro algorithm), as well as a simple modification
where iterates are averaged (a.k.a. Polyak-Ruppert averaging).

Traditional results from stochastic approximation rely on strong convexity and asymptotic analysis,
but have made clear that a learning rate proportional to the inverse of the number of iterations, while
leading to the optimal convergence rate in the strongly convex case, is not robust to the wrong setting
of the proportionality constant. On the other hand, using slower decays together with averaging
robustly leads to optimal convergence behavior (both in terms of rates and constants) [4, 5].

The analysis from the convex optimization and machine learning literatures however has focused
on differences between strongly convex and non-strongly convex objectives, with learning rates and
roles of averaging being different in these two cases [11, 12, 13, 14, 15].
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A key desirable behavior of an optimization method is to be adaptive to the hardness of the problem,
and thus one would like a single algorithm to work in all situations, favorable ones such as strongly
convex functions and unfavorable ones such as non-strongly convex functions. In this paper, we
unify the two types of analysis and show that (1) a learning rate proportional to the inverse of the
number of iterations is not suitable because it is not robust to the setting of the proportionality
constant and the lack of strong convexity, (2) the use of averaging with slower decays allows (close
to) optimal rates in all situations.

More precisely, we make the following contributions:

− We provide a direct non-asymptotic analysis of stochastic gradient descent in a machine learn-
ing context (observations of real random functions defined on a Hilbert space) that includes
kernel least-squares regression and logistic regression (see Section 2), with strong convexity
assumptions (Section 3) and without (Section 4).

− We provide a non-asymptotic analysis of Polyak-Ruppert averaging [4, 5], with and without
strong convexity (Sections 3.3 and 4.2). In particular, we show that slower decays of the
learning rate, together with averaging, are crucial to robustly obtain fast convergence rates.

− We illustrate our theoretical results through experiments on synthetic and non-synthetic ex-
amples in Section 5.

Notation. We consider a Hilbert space H with a scalar product 〈·, ·〉. We denote by ‖ · ‖ the
associated norm and use the same notation for the operator norm on bounded linear operators from
H to H, defined as ‖A‖ = sup‖x‖61 ‖Ax‖ (if H is a Euclidean space, then ‖A‖ is the largest singular
value of A). We also use the notation “w.p.1” to mean “with probability one”. We denote by E the
expectation or conditional expectation with respect to the underlying probability space.

2 Problem set-up

We consider a sequence of convex differentiable random functions (fn)n>1 from H to R. We consider
the following recursion, starting from θ0 ∈ H:

∀n > 1, θn = θn−1 − γnf
′
n(θn−1), (1)

where (γn)n>1 is a deterministic sequence of positive scalars, which we refer to as the learning rate
sequence. The function fn is assumed to be differentiable (see, e.g., [16] for definitions and properties
of differentiability for functions defined on Hilbert spaces), and its gradient is an unbiased estimate
of the gradient of a certain function f we wish to minimize:

(H1) Let (Fn)n>0 be an increasing family of σ-fields. θ0 is F0-measurable, and for each θ ∈ H, the
random variable f ′

n(θ) is square-integrable, Fn-measurable and

∀θ ∈ H, ∀n > 1, E(f ′
n(θ)|Fn−1) = f ′(θ), w.p.1. (2)

For an introduction to martingales, σ-fields, and conditional expectations, see, e.g., [17]. Note that
depending whether F0 is a trivial σ-field or not, θ0 may be random or not. Moreover, we could
restrict Eq. (2) to be satisfied only for θn−1 and θ∗ (which is a global minimizer of f).

Given only the noisy gradients f ′
n(θn−1), the goal of stochastic approximation is to minimize the

function f with respect to θ. Our assumptions include two usual situations, but also include many
others (e.g., active learning):
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− Stochastic approximation: in the so-called Robbins-Monro setting, for all θ ∈ H and
n > 1, fn(θ) may be expressed as fn(θ) = f(θ) + 〈εn, θ〉, where (εn)n>1 is a square-integrable
martingale difference (i.e., such that E(εn|Fn−1) = 0), which corresponds to a noisy observation
f ′(θn−1) + εn of the gradient f ′(θn−1).

− Learning from i.i.d. observations: for all θ ∈ H and n > 1, fn(θ) = ℓ(θ, zn) where zn is an
i.i.d. sequence of observations in a measurable space Z and ℓ : H×Z is a loss function. Then
f(θ) is the generalization error of the predictor defined by θ. Classical examples are least-
squares or logistic regression (linear or non-linear through kernel methods [18, 19]), where
fn(θ) = 1

2 (〈xn, θ〉 − yn)
2, or fn(θ) = log[1 + exp(−yn 〈xn, θ〉)], for xn ∈ H, and yn ∈ R (or

{−1, 1} for logistic regression).

Throughout this paper, we assume that each function fn is convex and smooth, following the tra-
ditional definition of smoothness from the optimization literature, i.e., Lipschitz-continuity of the
gradients (see, e.g., [20]). However, we make two slightly different assumptions: (H2) where the
function θ 7→ E(f ′

n(θ)|Fn−1) is Lipschitz-continuous in quadratic mean and a strengthening of this
assumption, (H2’) in which θ 7→ f ′

n(θ) is almost surely Lipschitz-continuous.

(H2) For each n > 1, the function fn is almost surely convex, differentiable, and:

∀n > 1, ∀θ1, θ2 ∈ H, E(‖f ′
n(θ1)− f ′

n(θ2)‖2|Fn−1) 6 L2‖θ1 − θ2‖2 , w.p.1. (3)

(H2’) For each n > 1, the function fn is almost surely convex, differentiable with Lipschitz-continuous
gradient f ′

n, with constant L, that is:

∀n > 1, ∀θ1, θ2 ∈ H, ‖f ′
n(θ1)− f ′

n(θ2)‖ 6 L‖θ1 − θ2‖ , w.p.1. (4)

If fn is twice differentiable, this corresponds to having the operator norm of the Hessian operator of
fn bounded by L. For least-squares or logistic regression, if we assume that (E‖xn‖4)1/4 6 R for all
n ∈ N, then we may take L = R2 (or even L = R2/4 for logistic regression) for assumption (H2),
while for assumption (H2’), we need to have an almost sure bound ‖xn‖ 6 R.

3 Strongly convex objectives

In this section, following [21], we make the additional assumption of strong convexity of f , but not
of all functions fn (see [20] for definitions and properties of such functions):

(H3) The function f is strongly convex with respect to the norm ‖·‖, with convexity constant µ > 0.
That is, for all θ1, θ2 ∈ H, f(θ1) > f(θ2) + 〈f ′(θ2), θ1 − θ2〉+ µ

2 ‖θ1 − θ2‖2.

Note that (H3) simply needs to be satisfied for θ2 = θ∗ being the unique global minimizer of f (such
that f ′(θ∗) = 0). In the context of machine learning (least-squares or logistic regression), assumption
(H3) is satisfied as soon as µ

2 ‖θ‖2 is used as an additional regularizer. For all strongly convex losses
(e.g., least-squares), it is also satisfied as soon as the expectation E(xn⊗xn) is invertible. Note that
this implies that the problem is finite-dimensional, otherwise, the expectation is a compact covariance
operator, and hence non-invertible (see, e.g., [22] for an introduction to covariance operators). For
non-strongly convex losses such as the logistic loss, f can never be strongly convex unless we restrict
the domain of θ (which we do in Section 3.2). Alternatively to restricting the domain, replacing the
logistic loss u 7→ log(1 + e−u) by u 7→ log(1 + e−u) + εu2/2, for some small ε > 0, makes it strongly
convex in low-dimensional settings.
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By strong convexity of f , if we assume (H3), then f attains its global minimum at a unique vector
θ∗ ∈ H such that f ′(θ∗) = 0. Moreover, we make the following assumption (in the context of
stochastic approximation, it corresponds to E(‖εn‖2|Fn−1) 6 σ2):

(H4) There exists σ2 ∈ R+ such that for all n > 1, E(‖f ′
n(θ

∗)‖2|Fn−1) 6 σ2, w.p.1.

3.1 Stochastic gradient descent

Before stating our first theorem (see proof in the appendix), we introduce the following family of
functions: ϕβ : R+ \ {0} → R given by:

ϕβ(t) =

{
tβ−1
β if β 6= 0,

log t if β = 0.

The function β 7→ ϕβ(t) is continuous for all t > 0. Moreover, for β > 0, ϕβ(t) < tβ

β , while for

β < 0, we have ϕβ(t) <
1

−β (both with asymptotic equality when t is large).

Theorem 1 (Stochastic gradient descent, strong convexity) Assume (H1,H2,H3,H4). De-
note by δn = E‖θn − θ∗‖2, where θn ∈ H is the n-th iterate of the recursion in Eq. (1), with
γn = Cn−α. We have, for α ∈ [0, 1]:

δn 6




2 exp

(
4L2C2ϕ1−2α(n)

)
exp

(
−µC

4 n1−α
)(

δ0 +
σ2

L2

)
+ 4Cσ2

µnα , if 0 6 α < 1,

exp(2L2C2)
nµC

(
δ0 +

σ2

L2

)
+ 2σ2C2 ϕµC/2−1(n)

nµC/2 , if α = 1.
(5)

Sketch of proof. Under our assumptions, it can be shown that (δn) satisfies the following recursion:

δn 6 (1− 2µγn + 2L2γ2
n)δn−1 + 2σ2γ2

n. (6)

Note that it also appears in [3, Eq. (2)] under different assumptions. Using this recursion, we then
derive bounds using classical techniques from stochastic approximation [2], but in a non-asymptotic
way, by deriving explicit upper-bounds.

Related work. To the best of our knowledge, this non-asymptotic bound, which depends explicitly
upon the parameters of the problem, is novel (see [1, Theorem 1, Electronic companion paper] for a
simpler bound with no such explicit dependence). It shows in particular that there is convergence
in quadratic mean for any α ∈ (0, 1]. Previous results from the stochastic approximation literature
have focused mainly on almost sure convergence of the sequence of iterates. Almost-sure convergence
requires that α > 1/2, with counter-examples for α < 1/2 (see, e.g., [2] and references therein).

Bound on function values. The bounds above imply a corresponding a bound on the functions
values. Indeed, under assumption (H2), it may be shown that E[f(θn)− f(θ∗)] 6 L

2 δn (see proof in
the appendix).

Tightness for quadratic functions. Since the deterministic recursion in Eq. (6) is an equality
for quadratic functions fn, the result in Eq. (5) is optimal (up to constants). Moreover, our results
are consistent with the asymptotic results from [6].

Forgetting initial conditions. Bounds depend on the initial condition δ0 = E
[
‖θ0 − θ∗‖2

]

and the variance σ2 of the noise term. The initial condition is forgotten sub-exponentially fast for

α ∈ (0, 1), but not for α = 1. For α < 1, the asymptotic term in the bound is 4Cσ2

µnα .

Behavior for α = 1. For α = 1, we have
ϕµC/2−1(n)

nµC/2 6 1
µC/2−1

1
n if Cµ > 2,

ϕµC/2−1(n)

nµC/2 = logn
n if

Cµ = 2 and
ϕµC/2−1(n)

nµC/2 6
1

1−µC/2
1

nµC/2 if Cµ > 2. Therefore, for α = 1, the choice of C is critical,
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as already noticed by [8]: too small C leads to convergence at arbitrarily small rate of the form
n−µC/2, while too large C leads to explosion due to the initial condition. This behavior is confirmed
in simulations in Section 5.

Setting C too large. There is a potentially catastrophic term when C is chosen too large, i.e.,
exp

(
4L2C2ϕ1−2α(n)

)
, which leads to an increasing bound when n is small. Note that for α < 1,

this catastrophic term is in front of a sub-exponentially decaying factor, so its effect is mitigated
once the term in n1−α takes over ϕ1−2α(n), and the transient term stops increasing. Moreover, the
asymptotic term is not involved in it (which is also observed in simulations in Section 5).

Minimax rate. Note finally, that the asymptotic convergence rate in O(n−1) matches optimal
asymptotic minimax rate for stochastic approximation [23].

3.2 Bounded gradients

In some cases such as logistic regression, we also have a uniform upper-bound on the gradients, i.e.,
we assume (note that in Theorem 2, this assumption replaces both (H2) and (H4)).

(H5) For each n > 1, almost surely, the function fn if convex, differentiable and has gradients
uniformly bounded by B on the ball of center 0 and radius D, i.e., for all θ ∈ H and all n > 0,
‖θ‖ 6 D ⇒ ‖f ′

n(θ)‖ 6 B.

Note that no function may be strongly convex and Lipschitz-continuous (i.e., with uniformly bounded
gradients) over the entire Hilbert space H. Indeed, if the function is µ-strongly convex and ‖θ∗‖ 6

D/2, then (H5) implies that B > µD/2 (straightforward consequence of [20, Eq. (2.1.22)]). More-
over, if (H2’) is satisfied, then we may take D = ‖θ∗‖ and B = LD. The next theorem shows that
with a slight modification of the recursion in Eq. (1), we get simpler bounds than the ones obtained
in Theorem 1, obtaining a result which already appeared in a simplified form [8] (see proof in the
appendix):

Theorem 2 (Stochastic gradient descent, strong convexity, bounded gradients)
Assume (H1,H3,H5). Denote δn = E

[
‖θn − θ∗‖2

]
, where θn ∈ H is the n-th iterate of the following

recursion:
∀n > 1, θn = ΠD[θn−1 − γnf

′
n(θn−1)], (7)

where ΠD is the orthogonal projection operator on the ball {θ : ‖θ‖ 6 D}. Assume ‖θ∗‖ 6 D. If
γn = Cn−α, we have, for α ∈ [0, 1]:

δn 6

{(
δ0 +B2C2ϕ1−2α(n)

)
exp

(
−µC

2 n1−α
)
+ 2B2C2

µnα , if α ∈ [0, 1) ;

δ0n
−µC + 2B2C2n−µCϕµC−1(n), if α = 1 .

(8)

The proof follows the same lines than for Theorem 1, but with the deterministic recursion δn 6

(1 − 2µγn)δn−1 + B2γ2
n. Note that we obtain the same asymptotic terms than for Theorem 1 (but

B replaces σ). Moreover, the bound is simpler (no explosive multiplicative factors), but it requires
to know D in advance, while Theorem 1 does not.

3.3 Polyak-Ruppert averaging

We now consider θ̄n = 1
n

∑n−1
k=0 θk and, following [4, 5], we make extra assumptions regarding the

smoothness of each fn and the fourth-order moment of the driving noise:
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(H7) For each n > 1, the function fn is almost surely twice differentiable with Lipschitz-continuous
Hessian operator f ′′

n , with Lipschitz constant M . That is, for all θ1, θ2 ∈ H and for all n > 1,
‖f ′′

n(θ1)− f ′′
n (θ2)‖ 6 M‖θ1 − θ2‖, where ‖ · ‖ is the operator norm.

Note that (H7) needs only to be satisfied for θ2 = θ∗. For least-square regression, we have M = 0,
while for logistic regression, we have M = R3/4. Note that it may be possible to use recent results
in self-concordance analysis to link M and µ [24].

(H8) There exists τ ∈ R+, such that for each n > 1, E(‖f ′
n(θ

∗)‖4|Fn−1) 6 τ4 almost surely.
Moreover, there exists a nonnegative self-adjoint operator Σ such that for all n, E(f ′

n(θ
∗) ⊗

f ′
n(θ

∗)|Fn−1) 4 Σ almost-surely.

The operator Σ (which always exists as soon as τ is finite) is here to characterize precisely the
variance term, which will be invariant of the learning rate sequence (γn), as we now show:

Theorem 3 (Averaging, strong convexity) Assume (H1, H2’, H3, H4, H7, H8). Then, for

θ̄n = 1
n

∑n−1
k=0 θk and α ∈ (0, 1), we have:

(
E‖θ̄n − θ∗‖2

)1/2
6

[
tr f ′′(θ∗)−1Σf ′′(θ∗)−1

]1/2
√
n

+
6σ

µC1/2

1

n1−α/2
+

MCτ2

2µ3/2
(1+(µC)1/2)

ϕ1−α(n)

n

+
4LC1/2

µ

ϕ1−α(n)
1/2

n
+

8A

nµ1/2

( 1

C
+ L

)(
δ0 +

σ2

L2

)1/2

+
5MC1/2τ

2nµ
A exp

(
24L4C4

)(
δ0 +

µE
[
‖θ0 − θ∗‖4

]

20Cτ2
+ 2τ2C3µ+ 8τ2C2

)1/2
, (9)

where A is a constant that depends only on µ, C, L and α.

Sketch of proof. Following [4], we start from Eq. (1), write it as f ′
n(θn−1) = 1

γn
(θn−1 − θn),

and notice that (a) f ′
n(θn−1) ≈ f ′

n(θ
∗) + f ′′(θ∗)(θn−1 − θ∗), (b) f ′

n(θ
∗) has zero mean and behaves

like an i.i.d. sequence, and (c) 1
n

∑n
k=1

1
γk
(θk−1 − θk) turns out to be negligible owing to a sum-

mation by parts and to the bound obtained in Theorem 1. This implies that θ̄n − θ∗ behaves like
− 1

n

∑n
k=1 f

′′(θ∗)−1f ′
k(θ

∗). Note that we obtain a bound on the root mean square error.

Forgetting initial conditions. There is no sub-exponential forgetting of initial conditions, but
rather a decay at rate O(n−2) (last two lines in Eq. (9)). This is a known problem which may
slow down the convergence, a common practice being to start averaging after a certain number of
iterations [2]. Moreover, the constant A may be large when LC is large, thus the catastrophic terms
are more problematic than for stochastic gradient descent, because they do not appear in front of
sub-exponentially decaying terms (see appendix). This suggests to take CL small.

Asymptotically leading term. When M > 0 and α > 1/2, the asymptotic term for δn is inde-
pendent of (γn) and of order O(n−1). Thus, averaging allows to get from the slow rate O(n−α) to
the optimal rate O(n−1). The next two leading terms (in the first line) have order O(nα−2) and
O(n−2α), suggesting the setting α=2/3 to make them equal. When M =0 (quadratic functions),
the leading term has rate O(n−1) for all α∈(0, 1) (with then a contribution of the first term in the
second line).

Case α = 1. We get a simpler bound by directly averaging the bound in Theorem 1, which leads
to an unchanged rate of n−1, i.e., averaging is not key for α = 1, and does not solve the robustness
problem related to the choice of C or the lack of strong convexity.

Leading term independent of (γn). The term in O(n−1) does not depend on γn. Moreover,
as noticed in the stochastic approximation literature [4], in the context of learning from i.i.d. ob-
servations, this is exactly the Cramer-Rao bound (see, e.g., [25]), and thus the leading term is
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asymptotically optimal. Note that no explicit Hessian inversion has been performed to achieve this
bound.

Relationship with prior work on online learning. There is no clear way of adding a bounded
gradient assumption in the general case α ∈ (0, 1), because the proof relies on the recursion without
projections, but for α = 1, the rate of O(n−1) (up to a logarithmic term) can be achieved in the
more general framework of online learning, where averaging is key to deriving bounds for stochastic
approximation from regret bounds. Moreover, bonds are obtained in high probability rather than
simply in quadratic mean (see, e.g., [11, 12, 13, 14, 15]).

4 Non-strongly convex objectives

In this section, we do not assume that the function f is strongly convex, but we replace (H3) by:

(H9) The function f attains its global minimum at a certain θ∗ ∈ H (which may not be unique).

In the machine learning scenario, this essentially implies that the best predictor is in the function
class we consider.1 In the following theorem, since θ∗ is not unique, we only derive a bound on
function values. Not assuming strong convexity is essential in practice to make sure that algorithms
are robust and adaptive to the hardness of the learning or optimization problem (much like gradient
descent is).

4.1 Stochastic gradient descent

The following theorem is shown in a similar way to Theorem 1; we first derive a deterministic
recursion, which we analyze with novel tools compared to the non-stochastic case (see details in the
appendix):

Theorem 4 (Stochastic gradient descent, no strong convexity) Assume (H1,H2’,H4,H9).
Then, if γn = Cn−α, for α ∈ [1/2, 1], we have:

E [f(θn)− f(θ∗)] 6
1

C

(
δ0 +

σ2

L2

)
exp

(
4L2C2ϕ1−2α(n)

) 1 + 4L3/2C3/2

min{ϕ1−α(n), ϕα/2(n)}
. (10)

When α = 1/2, the bound goes to zero only when LC < 1/4, at rates which can be arbitrarily
slow. For α ∈ (1/2, 2/3), we get convergence at rate O(n−α/2), while for α ∈ (2/3, 1), we get a
convergence rate of O(nα−1). For α = 1, the upper bound is of order O((log n)−1), which may be
very slow (but still convergent). The rate of convergence changes at α = 2/3, where we get our best
rate O(n−1/3), which does not match the minimax rate of O(n−1/2) for stochastic approximation
in the non-strongly convex case [23]. These rates for stochastic gradient descent without strong
convexity assumptions are new and we conjecture that they are asymptotically minimax optimal
(for stochastic gradient descent, not for stochastic approximation). Nevertheless, the proof of this
result falls out of the scope of this paper.

If we further assume that we have all gradients bounded by B (that is, we assume D = ∞ in (H5)),
then, we have the following theorem, which allows α ∈ (1/3, 1/2) with rate O(n−3α/2+1/2):

1For least-squares regression with kernels, where fn(θ) =
1

2
(yn − 〈θ,Φ(xn)〉)2, with Φ(xn) being the feature map

associated with a reproducing kernel Hilbert space H with universal kernel [26], then we need that x 7→ E(Y |X = x)
is a function within the RKHS. Taking care of situations where this is not true is clearly of importance but out of the
scope of this paper.
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Figure 1: Robustness to lack of strong convexity for different learning rates and stochastic gradient
(sgd) and Polyak-Ruppert averaging (ave). From left to right: f(θ) = |θ|2 and f(θ) = |θ|4, (between
−1 and 1, affine outside of [−1, 1], continuously differentiable). See text for details.

Theorem 5 (Stochastic gradient descent, no strong convexity, bounded gradients) Assume
(H1, H2’, H5, H9). Then, if γn = Cn−α, for α ∈ [1/3, 1], we have:

E [f(θn)− f(θ∗)] 6






(
δ0 +B2C2ϕ1−2α(n)

)
1+4L1/2C1/2

C min{ϕ1−α(n),ϕα/2(n)}
, if α ∈ [1/2, 1],

2
C (δ0 +B2C2)1/2 (1+4L1/2BC3/2)

(1−2α)1/2ϕ3α/2−1/2(n)
, if α ∈ [1/3, 1/2].

(11)

4.2 Polyak-Ruppert averaging

Averaging in the context of non-strongly convex functions has been studied before, in particular in
the optimization and machine learning literature, and the following theorems are similar in spirit to
earlier work [7, 8, 13, 14, 15]:

Theorem 6 (averaging, no strong convexity) Assume (H1,H2’,H4,H9). Then, if γn = Cn−α,
for α ∈ [1/2, 1], we have

E
[
f(θ̄n)− f(θ∗)

]
6

1

C

(
δ0 +

σ2

L2

)exp
(
2L2C2ϕ1−2α(n)

)

n1−α

[
1+(2LC)1+

1
α

]
+
σ2C

2n
ϕ1−α(n). (12)

If α = 1/2, then we only have convergence under LC < 1/4 (as in Theorem 4), with potentially
slow rate, while for α > 1/2, we have a rate of O(n−α), with otherwise similar behavior than for the
strongly convex case with no bounded gradients. Here, averaging has allowed the rate to go from
O(max{nα−1, n−α/2}) to O(n−α).

Theorem 7 (averaging, no strong convexity, bounded gradients) Assume (H1,H2’,H5,H9).
If γn = Cn−α, for α ∈ [0, 1], we have

E
[
f(θ̄n)− f(θ∗)

]
6

nα−1

2C
(δ0 + C2B2ϕ1−2α(n)) +

B2

2n
ϕ1−α(n). (13)

With the bounded gradient assumption (and in fact without smoothness), we obtain the minimax
asymptotic rate O(n−1/2) up to logarithmic terms [23] for α = 1/2, and, for α < 1/2, the rate
O(n−α) while for α > 1/2, we get O(nα−1). Here, averaging has also allowed to increase the range
of α which ensures convergence, to α ∈ (0, 1).

5 Experiments

In this section, we illustrate our theoretical results on synthetic and non-synthetic examples.
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Figure 2: Robustness to wrong constants for γn = Cn−α. Left: α = 1/2, right: α = 1. See text for
details. Best seen in color.
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Figure 3: Comparison on non strongly convex logistic regression problems. Left: synthetic example,
right: “alpha” dataset. See text for details. Best seen in color.

Robustness to lack of strong convexity. Definef : R → R as |θ|q for |θ| 6 1 and extended
into a continuously differentiable function, affine outside of [−1, 1]. For all q > 1, we have a convex
function with Lipschitz-continuous gradient with constant L = q(q−1). It is strongly convex around
the origin for q ∈ (1, 2], but its second derivative vanishes for q > 2. In Figure 1, we plot in log-log
scale the average of f(θn) − f(θ∗) over 100 replications of the stochastic approximation problem
(with i.i.d. Gaussian noise of standard deviation 4 added to the gradient). For q = 2 (left plot),
where we locally have a strongly convex case, all learning rates lead to good estimation with decay
proportional to α (as shown in Theorem 1), while for the averaging case, all reach the exact same
convergence rate (as shown in Theorem 3). However, for q = 4 where strong convexity does not
hold (right plot), without averaging, α = 1 is still fastest but becomes the slowest after averaging;
on the contrary, illustrating Section 4, slower decays (such as α = 1/2) leads to faster convergence
when averaging is used. Note also the reduction in variability for the averaged iterations.

Robustness to wrong constants. We consider the function on the real line f , defined as
f(θ) = 1

2 |θ|2 and consider stochastic approximation with standard i.i.d. Gaussian noise on the
gradients. In Figure 2, we plot the average performance over 100 replications, for various values of
C and α. Note that for α = 1/2 (left plot), the 3 curves for stochastic gradient descent end up being
aligned and equally spaced, corroborating a rate proportional to C (see Theorem 1). Moreover, when
averaging for α = 1/2, the error ends up being independent of C and α (see Theorem 3). Finally,
when C is too large, there is indeed an explosion (up to 105), hinting at the potential instability of
having C too large. For α = 1 (right plot), if C is too small, convergence is very slow (and not at
the rate n−1), as already observed by several authors (see, e.g., [8, 6]).

Medium-scale experiments with linear logistic regression. We consider two situations where
H = R

p: (a) the “alpha” dataset from the Pascal large scale learning challenge (http://largescale.
ml.tu-berlin.de/), for which p = 500 and n = 50000, and (b) a synthetic example where p = 100,
n = 100000; we generate the input data i.i.d. from a multivariate Gaussian distribution with mean
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zero and a covariance matrix sampled from a Wishart distribution with p degrees of freedom (thus
with potentially bad condition number), and the output is obtained through a classification by a
random hyperplane. For different values of α, we choose C in an adaptive way where we consider
the lowest test error after n/10 iterations, and report results in Figure 3. In experiments reported
in the appendix, we also consider a fixed rate equal to 1/L suggested by our analysis to avoid
large constants, for which the convergence speed is very slow, suggesting that our global bounds
involving the Lipschitz constants may be locally far too pessimistic and that designing a truly
adaptive sequence (γn) instead of a fixed one is a fruitful avenue for future research.

6 Conclusion

In this paper, we have provided a non-asymptotic analysis of stochastic gradient, as well as its
averaged version, for various learning rate sequences of the form γn = Cn−α (see summary of
results in Table 1). Following earlier work from the optimization, machine learning and stochastic
approximation literatures, our analysis highlights that α = 1 is not robust to the choice of C and to
the actual difficulty of the problem (strongly convex or not). However, when using averaging with
α ∈ (1/2, 1), we get, both in strongly convex and non-strongly convex situation, close to optimal
rates of convergence. Our work can be extended in several ways: first, we have focused on results in
quadratic mean and we expect that some of our results can be extended to results in high probability
(in the line of [13, 3]). Second, we have focused on differentiable objectives, but the extension to
objective functions with a differentiable stochastic part and a non-differentiable deterministic (in the
line of [14]) would allow an extension to sparse methods. Finally, there are potentially further links
between machine learning and the existing literature on stochastic approximation (see, e.g., [2]),
which are worth pursuing.

SGD SGD SGD SGD Aver. Aver. Aver.
α µ,L µ,B L L,B µ, L L B

(0 , 1/3) α α × × 2α × α
(1/3 , 1/2) α α × (3α− 1)/2 2α × α
(1/2 , 2/3) α α α/2 α/2 1 1− α 1− α
(2/3 , 1) α α 1− α 1− α 1 1− α 1− α

Table 1: Summary of results: For stochastic gradient descent (SGD) or Polyak-Ruppert averag-
ing (Aver.), we provide their rates of convergence of the form n−β corresponding to learning rate
sequences γn = Cn−α, where β is shown as a function of α. For each method, we list the main
assumptions (µ: strong convexity, L: bounded Hessian, B: bounded gradients). For all columns but
the second, we consider the convergence rates of function values.

Acknowledgement
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In this appendix, we provide detailed proofs to all the results presented in the main paper. We also
provide an additional simulation experiment comparing fixed learning rate sequences of the form
γn = Cn−α, and adaptive ways of setting C.

A Proof of Theorem 1

Proof
Sketch. Under the stated assumptions, it is easily shown that (δn) satisfies the following recursion:

δn 6 (1− 2µγn + 2L2γ2
n)δn−1 + 2σ2γ2

n. (14)

Note that it also appears in [3, Eq. (2)] under different assumptions. Using this recursion, we
then derive bounds using some classical techniques from stochastic approximation [2], but in a
non-asymptotic way, by deriving explicit upper-bounds.

Derivation of recursion. Using the Lipschitz continuity of f ′
n (assumption (H2)), together with

assumption (H4) and the fact that θn−1 is Fn−1-measurable, we obtain

E(‖f ′
n(θn−1)‖2|Fn−1) 6 2E(‖f ′

n(θ
∗)− f ′

n(θn−1)‖2|Fn−1) + 2E(‖f ′
n(θ

∗)‖2|Fn−1)

6 2L2‖θn−1 − θ∗‖2 + 2σ2.

On the other hand, the recursion in Eq. (1) implies:

‖θn − θ∗‖2 = ‖θn−1 − θ∗‖2 − 2γn〈θn−1 − θ∗, f ′
n(θn−1)〉+ γ2

n‖f ′
n(θn−1)‖2. (15)

By computing the conditional expectation of the two sides of the previous equation, and using
assumption (H1) together with the strong convexity assumption (assumption (H3)), in particular
through [20, Eq. (2.1.17)] (i.e., for all θ1, θ2, 〈f ′(θ1)− f ′(θ2), θ1 − θ2〉 > µ‖θ1 − θ2‖2)

E(‖θn − θ∗‖2|Fn−1) = ‖θn−1 − θ∗‖2 − 2γn〈θn−1 − θ∗, f ′(θn−1)〉 + γ2
nE(‖f ′

n(θn−1)‖2|Fn−1)

6 ‖θn−1 − θ∗‖2 − 2γnµ‖θn−1 − θ∗‖2 + γ2
nE(‖f ′

n(θn−1)‖2|Fn−1)

6 (1 − 2µγn + 2L2γ2
n)× ‖θn−1 − θ∗‖2 + 2σ2γ2

n.

Thus, setting δn = E‖θn−θ∗‖2 and taking the expectation of the both side of the previous inequality
yields to the following deterministic recursion:

δn 6 (1− 2µγn + 2L2γ2
n)δn−1 + 2σ2γ2

n. (16)

General study of recursion for any decreasing sequence (γn)n∈N
. Since µ 6 L, we have

2µγn − 2L2γ2
n 6 2Lγn − 2L2γ2

n = 2Lγn(1 − Lγn) 6 1/2, thus the multiplicative factor in front of
δn−1 is always positive (in fact greater than 1/2). Moreover, since all terms are positive, we have
by applying the recursion n times:

δn 6

n∏

k=1

(1− 2µγk + 2L2γ2
k)δ0 + 2σ2

n∑

k=1

n∏

i=k+1

(1− 2µγi + 2L2γ2
i )γ

2
k. (17)

The quadratic risk is therefore a sum of two terms: a transient term, depending only on the initial
condition δ0, of the form A1,nδ0, and stationary term depending only on the noise variance, of the
form 2σ2A2,n.

To deal with the transient term, we use the simple bound 1 + t 6 exp(t) for any t ∈ R, to obtain

A1,n
def
=

n∏

k=1

(1− 2µγk + 2L2γ2
k) 6 exp

(
−2µ

n∑

k=1

γk

)
exp

(
2L2

n∑

k=1

γ2
k

)
. (18)
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For the stationary term, we consider two cases, depending whether γn is smaller or larger than µ
2L2 ,

leading to two regimes, the first one where in fact the error δn may grow, and a second one where
it goes back to zero.

Indeed, when γn 6
µ

2L2 , then 1 − 2µγn + 2L2γ2
n 6 1 − µγn and in all cases, 1 − 2µγn + 2L2γ2

n 6

1 + 2L2γ2
n. We denote by n0 = inf

{
n ∈ N, γn 6

µ
2L2

}
. We then have:

A2,n
def
=

n∑

k=1

n∏

i=k+1

(1− 2µγi + 2L2γ2
i )γ

2
k

=
n∑

k=n0+1

n∏

i=k+1

(1− 2µγi + 2L2γ2
i )γ

2
k

+

n0∑

k=1

n0∏

i=k+1

(1− 2µγi + 2L2γ2
i )γ

2
k

n∏

i=n0+1

(1 − 2µγi + 2L2γ2
i ) (19)

6

n∑

k=1

n∏

i=k+1

(1− µγi)γ
2
k +

[ n0∑

k=1

n0∏

i=k+1

(1 + 2L2γ2
i )γ

2
k

] n∏

i=n0+1

(1− µγi). (20)

We have:

n0∑

k=1

n0∏

i=k+1

(1 + 2L2γ2
i )γ

2
k =

1

2L2

n0∑

k=1

[ n0∏

i=k

(1 + 2L2γ2
i )−

n0∏

i=k+1

(1 + 2L2γ2
i )

]

6
1

2L2

n0∏

i=1

(1 + 2L2γ2
i ) 6

1

2L2
exp

(
2L2

n0∑

k=1

γ2
k

)
. (21)

Moreover, because for n 6 n0, γn >
µ

2L2 , we obtain:

n∏

i=n0+1

(1− µγi) = exp

(
−µ

n∑

i=1

γi

)
exp

(
µ

n0∑

i=1

γi

)

6 exp

(
−µ

n∑

i=1

γi

)
exp

(
2L2

n0∑

i=1

γ2
i

)
. (22)

Moreover, since (γn) is decreasing, for any m ∈ {1, . . . , n}, we may split the following sum as follows:

n∑

k=1

n∏

i=k+1

(1− µγi)γ
2
k =

m∑

k=1

n∏

i=k+1

(1 − µγi)γ
2
k +

n∑

k=m+1

n∏

i=k+1

(1− µγi)γ
2
k

6

n∏

i=m+1

(1− µγi)

m∑

k=1

γ2
k + γm

n∑

k=m+1

n∏

i=k+1

(1− µγi)γk

6 exp

(
−µ

n∑

i=m+1

γi

)
m∑

k=1

γ2
k +

γm
µ

n∑

k=m+1

[
n∏

i=k+1

(1 − µγi)−
n∏

i=k

(1 − µγi)

]

6 exp

(
−µ

n∑

i=m+1

γi

)
m∑

k=1

γ2
k +

γm
µ

[
1−

n∏

i=m+1

(1− µγi)

]

6 exp

(
−µ

n∑

i=m+1

γi

)
n∑

k=1

γ2
k +

γm
µ

.
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This leads to the following bound on A2,n:

A2,n 6 exp

(
−µ

n∑

i=m+1

γi

)
n∑

k=1

γ2
k +

γm
µ

+
1

2L2
exp

(
4L2

n0∑

k=1

γ2
k

)
exp

(
−µ

n∑

i=1

γi

)
, (23)

with an alternative equation (with no split using m, which will be used for γn = C/n):

A2,n 6

n∑

k=1

n∏

i=k+1

(1 − µγi)γ
2
k +

1

2L2
exp

(
4L2

n0∑

k=1

γ2
k

)
exp

(
−µ

n∑

i=1

γi

)
. (24)

Note that in order for the previous inequalities to be valid for all n, we may simply replace n0 by n
(which we do later).

Study of recursion for γn = Cn−α, α ∈ (0, 1]. We use the following inequalities (which are
standardly obtained by bounding sums with integrals, and which could clearly be improved to
obtain sharper bounds):

∀β > 1, ϕβ(n)− ϕβ(m) 6
n∑

k=m+1

kβ−1
6 2[ϕβ(n)− ϕβ(m)],

∀β 6 1,
1

2
[ϕβ(n)− ϕβ(m)] 6

n∑

k=m+1

kβ−1
6 ϕβ(n)− ϕβ(m).

We take bounds on the two terms A1,n and A2,n. From Eq. (18), we get for all α ∈ (0, 1],

A1,n 6 exp[−µCϕ1−α(n)] exp[2L2C2ϕ1−2α(n)].

For any α ∈ (0, 1), Eq. (23) leads to

A2,n 6
2C

µnα
+ C2ϕ1−2α(n) exp

(
−µC

2
[ϕ1−α(n)− ϕ1−α(n/2)]

)

+
1

2L2
exp

(
4C2L2ϕ1−2α(n0)

)
exp

(
−µC

2
ϕ1−α(n)

)

6
2C

µnα
+ C2ϕ1−2α(n) exp

(
−µC

4
n1−α

)

+
1

2L2
exp

(
4C2L2ϕ1−2α(n0)

)
exp

(
−µC

2
ϕ1−α(n)

)
,

where we have used the fact that for all β ∈ [0, 1), ϕβ(x)−ϕβ(x/2) >
1
2x

β . We can replace n0 by n,
thus leading to

δn 6 exp
(
4L2C2ϕ1−2α(n)

)
exp

(
−µC

2
ϕ1−α(n)

)(
δ0 +

σ2

L2

)

+
4Cσ2

µnα
+ 2C2σ2ϕ1−2α(n) exp

(
−µC

4
n1−α

)
.

We can now use the inequality ϕ1−α(n) > n1−α to combine the first and third term into

2 exp
(
4L2C2ϕ1−2α(n)

)
exp

(
−µC

4
n1−α

)(
δ0 +

σ2

L2

)
,

leading to Eq. (5).
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For α = 1, we get from Eq. (24),

A2,n 6 2σ2
n∑

k=1

exp

(
−µC

2
ln(n) +

µC

2
ln(k)

)
C2

k2

+
1

2L2
exp

(
4C2L2ϕ1−2α(n0)

)
exp

(
−µC

2
ϕ1−α(n)

)
.

6 2σ2C2n−µC/2ϕµC/2−1(n) +
1

2L2
exp

(
4C2L2ϕ1−2α(n0)

)
exp

(
−µC

2
ϕ1−α(n)

)
.

Bound on function values. Using the Cauchy-Schwarz inequality, we get:

E[fn(θn−1)− fn(θ
∗)|Fn−1] =

∫ 1

0

E
[
〈f ′

n(tθn−1 + (1− t)θ∗)− f ′
n(θ

∗), θn−1 − θ∗〉|Fn−1

]
dt

6

∫ 1

0

[
E
(
‖f ′

n(tθn−1 + (1− t)θ∗)− f ′
n(θ

∗)‖2|Fn−1

)]1/2
‖θn−1 − θ∗‖dt

6 L‖θn−1 − θ∗‖2
∫ 1

0

tdt =
L

2
‖θn−1 − θ∗‖2.

This implies that, for all n ∈ N, E [f(θn)− f(θ∗)] 6 L
2 δn.

B Proof of Theorem 2

Proof We follow the same proof technique than for Theorem 1. If we assume that all gradients are
upperbounded, i.e., for all n ∈ N and all θ ∈ H, ‖f ′

n(θ)‖ 6 B, then the recursion in Eq. (6) becomes
(using that orthogonal projectors are contractive and that ‖θ∗‖ 6 D):

δn 6 (1− 2µγn)δn−1 +B2γ2
n 6 exp(−2µγn)δn−1 +B2γ2

n. (25)

By applying Eq. (25) n times, we get

δn 6 δ0

n∏

k=1

exp(−2µγk) +B2
n∑

k=1

γ2
k

n∏

i=k+1

exp(−2µγi).

Case γn = Cn−α. For α < 1, the first term leads to a bound,

δ0 exp[−µCϕ1−α(n)]

while the second term leads to, following the same reasoning than for obtaining Eq. (23) in the proof
of Theorem 1:

2B2C2

µnα
+B2C2ϕ1−2α(n) exp

(
−µC

2
n1−α

)
,

leading to an overall bound

δ0 exp[−µCϕ1−α(n)] +
2B2C2

µ‘nα
+B2C2ϕ1−2α(n) exp(−µCn1−α/2).
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In order to get Eq. (8), we combine the first and third terms, by noticing that ϕ1−α(n) > n1−α.

For α = 1, we get the bound (still following the same reasoning than for Theorem 1):

δ0 exp[−µCϕ1−α(n)] + 2B2C2n−µCϕµC−1(n).

C Proof of Theorem 3

Proof Following [4], we start from Eq. (1) and write it as f ′
n(θn−1) =

1
γn

(θn−1 − θn), and notice
that:

(a) f ′
n(θn−1) ≈ f ′

n(θ
∗) + f ′′(θ∗)(θn−1 − θ∗),

(b) f ′
n(θ

∗) has expectation zero and essentially behaves like an i.i.d. sequence,

(c) 1
n

∑n
k=1

1
γk
(θk−1 − θk) turns out to be negligible owing to a summation by parts and to the

bound obtained in Theorem 1.

Thus θ̄n − θ∗ then behaves like − 1
n

∑n
k=1 f

′′(θ∗)−1f ′
k(θ

∗), which leads to the bound in O(n−1/2).

More precisely, we have:

f ′′(θ∗)(θn−1 − θ∗) = f ′′
n (θ

∗)(θn−1 − θ∗) + [f ′′(θ∗)− f ′′
n (θ

∗)](θn−1 − θ∗)

= f ′
n(θn−1)− f ′

n(θ
∗) + [f ′′

n (θ
∗)(θn−1 − θ∗)− f ′

n(θn−1) + f ′
n(θ

∗)]

+[f ′′(θ∗)− f ′′
n (θ

∗)](θn−1 − θ∗).

Note that f ′′(θ∗) is invertible (with lowest eigenvalue greater than µ). We treat all terms separately:

− Note that we have for all n > 1, from Eq. (1):

f ′
n(θn−1) =

1

γn
(θn−1 − θn).

We have, summing by parts,

1

n

n∑

k=1

1

γk
(θk−1 − θk) =

1

n

n−1∑

k=1

(θk − θ∗)(γ−1
k+1 − γ−1

k )− 1

n
(θn − θ∗)γ−1

n +
1

n
(θ0 − θ∗)γ−1

1 ,

leading to

∥∥∥
1

n

n∑

k=1

1

γk
(θk−1 − θk)

∥∥∥ 6
1

n

n−1∑

k=1

‖θk − θ∗‖ · |γ−1
k+1 − γ−1

k |+ 1

n
‖θn − θ∗‖γ−1

n +
1

n
‖θ0 − θ∗‖γ−1

1 .

− Since (f ′
n(θ

∗)) is a square-integrable martingale increment sequence in H, we get

E

∥∥∥f ′′(θ∗)−1 1

n

n−1∑

k=0

f ′
k(θ

∗)
∥∥∥
2

6
1

n
tr
[
f ′′(θ∗)−1Σf ′′(θ∗)−1

]
.
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− Because of assumption (H5), we obtain

‖f ′′
n(θ

∗)(θn−1 − θ∗)− f ′
n(θn−1) + f ′

n(θ
∗)‖ 6

M

2
‖θn−1 − θ∗‖2.

− Similarly [f ′′(θ∗)−f ′′
n (θ

∗)](θn−1−θ∗) is also a martingale in H, whose conditional second order
moment is upper bounded by 4L2‖θn−1 − θ∗‖2. Thus

E

(∥∥∥
1

n

n∑

k=1

[f ′′(θ∗)− f ′′
k (θ

∗)](θk−1 − θ∗)
∥∥∥
2
)

6
4L2

n2

n−1∑

k=0

δk.

We finally obtain by combining all factors using Minkowski’s inequality [17]:

(
E‖(θ̄n − θ∗)‖2

)1/2
6

(tr f ′′(θ∗)−1Σf ′′(θ∗)−1)1/2√
n

+
1

nγnµ1/2
δ1/2n +

1

nγ1µ1/2
δ
1/2
0 +

2L

nµ1/2

(
n−1∑

k=0

δk

)1/2

+
1

nµ1/2

n−1∑

k=1

δ
1/2
k |γ−1

k+1 − γ−1
k |+ M

2nµ1/2

n∑

k=1

(E‖θk − θ∗‖4)1/2, (26)

which can further simplify as

(
E‖(θ̄n − θ∗)‖2

)1/2
6

(tr f ′′(θ∗)−1Σf ′′(θ∗)−1)1/2√
n

+
1

nγnµ1/2
δ1/2n

+
1

nµ1/2

(
1

γ1
+ 2L

)
δ
1/2
0 +

2L

nµ1/2

(
n∑

k=1

δk

)1/2

(27)

+
1

nµ1/2

n−1∑

k=1

δ
1/2
k |γ−1

k+1 − γ−1
k |+ M

2nµ1/2

n∑

k=1

(E‖θk − θ∗‖4)1/2 (28)

In order to further bound the error, we can first re-use results from Theorem 1, but we also need to
derive a bound on the fourth-order moment E‖θk − θ∗‖4.
Fourth-order moment. We now derive a recursion for the fourth-order moment, following the
same arguments than for the second-order moment:

‖θn − θ∗‖4 =
(
‖θn−1 − θ∗ − γnf

′
n(θn−1)‖2

)2

=
(
‖θn−1 − θ∗‖2 + γ2

n‖f ′
n(θn−1)‖2 − 2γn 〈θn−1 − θ∗, f ′

n(θn−1)〉
)2

= ‖θn−1 − θ∗‖4 + 4γ2
n 〈θn−1 − θ∗, f ′

n(θn−1)〉2 + γ4
n‖f ′

n(θn−1)‖4

−4γn‖θn−1 − θ∗‖2 〈θn−1 − θ∗, f ′
n(θn−1)〉+ 2γ2

n‖θn−1 − θ∗‖2‖f ′
n(θn−1)‖2

−4γ3
n 〈θn−1 − θ∗, f ′

n(θn−1)〉 ‖f ′
n(θn−1)‖2 .

Therefore

E
[
‖θn − θ∗‖4

∣∣Fn−1

]
6 ‖θn−1 − θ∗‖4 + 6γ2

n‖θn−1 − θ∗‖2E
[
‖f ′

n(θn−1)‖2
∣∣Fn−1

]
(29)

+γ4
nE
[
‖f ′

n(θn−1)‖4
∣∣Fn−1

]

−4γn‖θn−1 − θ∗‖2 〈θn−1 − θ∗, f ′(θn−1)− f ′(θ∗)〉
+4γ3

n‖θn−1 − θ∗‖E
[
‖f ′

n(θn−1)‖3
∣∣Fn−1

]
.

Since the function f is strongly convex,

〈θn−1 − θ∗, f ′(θn−1)− f ′(θ∗)〉 ≥ µ‖θn−1 − θ∗‖2 . (30)
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On the other hand, the decomposition

‖f ′
n(θn−1)‖ 6 ‖f ′

n(θn−1)− f ′
n(θ

∗) + f ′
n(θ

∗)‖ 6 L‖θn−1 − θ∗‖+ ‖f ′
n(θ

∗)‖ ,

implies that for all p ∈ {1, . . . , 4}

E [‖f ′
n(θn−1)‖p| Fn−1] 6 2p−1 [Lp‖θn−1 − θ∗‖p + τp] , (31)

where we have used that E(‖f ′
n(θ∗)‖p|Fn−1) 6 τp (Assumption (H6)). Combining Eq. (29) with

Eq. (30) and Eq. (31) yields

E
[
‖θn − θ∗‖4

∣∣Fn−1

]
6 ‖θn−1 − θ∗‖4

[
1− 4µγn + 12γ2

nL
2 + 16γ3

nL
3 + 8γ4

nL
4
]

(32)

+12‖θn−1 − θ∗‖2γ2
nτ

2 + 16‖θn−1 − θ∗‖γ3
nτ

3 + 8γ4
nτ

4 .

Since
16‖θn−1 − θ∗‖γ3

nτ
3
6 8

[
γ2
nτ

2‖θn−1 − θ∗‖2 + γ4
nτ

4
]
,

Eq. (32) yields

E
[
‖θn − θ∗‖4

∣∣Fn−1

]
6 ‖θn−1 − θ∗‖4

[
1− 4µγn + 12γ2

nL
2 + 16γ3

nL
3 + 8γ4

nL
4
]

+20‖θn−1 − θ∗‖2γ2
nτ

2 + 16γ4
nτ

4 .

We can now combine this with Eq. (6) and replace σ2 by τ2 > σ2, i.e.,

E
[
‖θn − θ∗‖2

∣∣Fn−1

]
6 (1− 2µγn + 2L2γ2

n)‖θn−1 − θ∗‖2 + 2τ2γ2
n, (33)

to derive a recursion for

un = ‖θn − θ∗‖4 + 20γn+1τ
2

µ
‖θn − θ∗‖2.

Indeed, we have, using 1
2γn 6 γn+1 6 γn:

E(un|Fn−1) 6 ‖θn−1 − θ∗‖4
[
1− 4µγn + 12γ2

nL
2 + 16γ3

nL
3 + 8γ4

nL
4
]

+‖θn−1 − θ∗‖2
[
20γ2

nτ
2 +

20γn+1σ
2

µ
(1− 2µγn + 2L2γ2

n)
]
+ 16γ4

nτ
4 +

40γn+1

µ
τ4γ2

n

6 un−1

[
1− µγn + 12γ2

nL
2 + 16γ3

nL
3 + 8γ4

nL
4
]
+ 16γ4

nτ
4 +

40

µ
τ4γ3

n

+‖θn−1 − θ∗‖2
[
20γ2

nτ
2 +

20γnτ
2

µ
(1− 2µγn + 2L2γ2

n)

+
20γnτ

2

µ

(
−1 + µγn − 12γ2

nL
2 − 16γ3

nL
3 − 8γ4

nL
4
) ]

6 un−1

[
1− µγn + 12γ2

nL
2 + 16γ3

nL
3 + 8γ4

nL
4
]
+ 16γ4

nτ
4 +

40

µ
τ4γ3

n

6 un−1

[
1− µγn + 16γ2

nL
2 + 24γ4

nL
4
]
+ 16γ4

nτ
4 +

40

µ
τ4γ3

n.

17



Following the proof of Theorem 1, we consider the following terms A′
1,n and A′

2,n, where n0 is the
largest n such that 16γ2

nL
2 + 24γ4

nL
4 > γnµ/2:

A′
1,n

def
= exp

(
−µ

n∑

k=1

γk + 16L2
n∑

k=1

γ2
k + 24L4

n∑

k=1

γ4
k

)

A′
2,n

def
=

n∑

k=n0+1

n∏

i=k+1

exp(−µγi/2)

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

+

n∏

k=n0+1

exp(−µγk/2)

n0∑

k=1

n0∏

i=k+1

exp(16γ2
i L

2 + 24γ4
i L

4)

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

We have

A′
2,n 6

n∑

k=1

n∏

i=k+1

exp(−µγi/2)

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

+

n∏

k=1

exp(−µγk/2)

n0∏

k=1

exp(µγk/2)

n0∏

i=1

exp(16γ2
i L

2 + 24γ4
i L

4)

n0∑

k=1

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

6

n∑

k=1

n∏

i=k+1

exp(−µγi/2)

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

+

n0∏

k=1

exp(32γ2
kL

2 + 48γ4
kL

4)

n∏

k=1

exp(−µγk/2)

n0∑

k=1

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

Moreover, we further split A′
2,n and get, for any m ∈ (0, n):

A′
3,n

def
=

n∑

k=1

n∏

i=k+1

exp(−µγi/2)

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

=

m∑

k=1

n∏

i=k+1

exp(−µγi/2)

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)
+

n∑

k=m+1

n∏

i=k+1

exp(−µγi/2)

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)

6

n∏

i=m+1

exp(−µγi/2)
m∑

k=1

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)
+

n∑

k=m+1

n∏

i=k+1

exp(−µγi/2)

(
16γ3

mτ4 +
40

µ
τ4γ2

m

)
γk

6

n∏

i=m+1

exp(−µγi/2)

n∑

k=1

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)
+

(
16γ3

mτ4 +
40

µ
τ4γ2

m

) n∑

k=1

n∏

i=k+1

exp(−µγi/2)γk

6

n∏

i=m+1

exp(−µγi/2)

n∑

k=1

(
16γ4

kτ
4 +

40

µ
τ4γ3

k

)
+

(
16γ3

mτ4 +
40

µ
τ4γ2

m

)
1

µ

This leads to, for γn = Cn−α and m = n/2:

un 6 u0A
′
1,n +A′

2,n

6 exp

(
−µC

2
ϕ1−α(n) + 16L2C2ϕ1−2α(n) + 24L4C4ϕ1−4α(n)

)
u0

+exp

(
−µC

4
ϕ1−α(n) + 32L2C2ϕ1−2α(n) + 48L4C4ϕ1−4α(n)

)(
16τ4C4ϕ1−4α(n) +

40τ4C3

µ
ϕ1−3α(n)

)

+
1

µ

(
16× 23αC3τ4

n3α
+

40× 24ατ4C2

µn2α

)
+

(
16τ4C4ϕ1−4α(n) +

40τ4C3

µ
ϕ1−3α(n)

)
exp(−µC

8
n1−α).
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Since ϕ1−4α(n) 6 1 and ϕ1−3α(n) 6 3, we obtain:

un 6 exp

(
−µC

2
ϕ1−α(n) + 16L2C2ϕ1−2α(n) + 24L4C4

)
u0 (34)

+ exp

(
−µC

4
ϕ1−α(n) + 32L2C2ϕ1−2α(n) + 48L4C4

)(
16τ4C4 +

80τ4C3

µ

)

+
1

µ

(
128C3τ4

n3α
+

640τ4C2

µn2α

)
+

(
16τ4C4 +

80τ4C3

µ

)
exp(−µC

8
n1−α).

With further simplifications, we get:

un 6 exp

(
−µC

8
n1−α + 32L2C2ϕ1−2α(n) + 48L4C4

)(
32τ4C4 +

160τ4C3

µ
+ E‖θ0 − θ∗‖4 + 20Cτ2

µ
δ0

)

+
1

µ

(
128C3τ4

n3α
+

640τ4C2

µn2α

)
. (35)

Overall bound. For α < 1, we now compute a bound on all terms from Eq. (26), using Theorem 1
and Eq. (34), with the notation

A =
n∑

k=1

exp

(
−µC

16
k1−α + 16L2C2ϕ1−2α(k)

)
. (36)
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1

nγnµ1/2
δ1/2n 6

1

n1−αµ1/2C

2C1/2σ

µ1/2nα/2

+2
1

n1−αµ1/2C
exp

(
2L2C2ϕ1−2α(n)

)
exp

(
−µC

8
n1−α

)(
δ0 +

σ2

L2

)1/2

6
2σ

µC1/2n1−α/2
+

(
δ0 +

σ2

L2

)1/2
2A

nµ1/2C

1

nµ1/2

(
1

γ1
+ 2L

)
δ
1/2
0 6

1

nµ1/2

(
1

C
+ 2L

)
δ
1/2
0

2L

nµ1/2

(
n∑

k=1

δk

)1/2

6
2L

nµ1/2

[4Cσ2

µ
ϕ1−α(n)

+2

n∑

k=1

exp
(
4L2C2ϕ1−2α(k)

)
exp

(
−µC

4
k1−α

)(
δ0 +

σ2

L2

)]1/2

6
2L

nµ1/2

2C1/2σ

µ1/2
ϕ1−α(n)

1/2 +
4L

nµ1/2

(
δ0 +

σ2

L2

)1/2

A1/2

1

nµ1/2

n−1∑

k=1

δ
1/2
k |γ−1

k+1 − γ−1
k | 6

2α

Cnµ1/2

n∑

k=1

2C1/2σ

µ1/2
kα/2−1

+
4α

Cnµ1/2

n∑

k=1

kα−1 exp
(
2L2C2ϕ1−2α(n)

)
exp

(
−µC

8
n1−α

)(
δ0 +

σ2

L2

)1/2

6
4σα

C1/2nµ
ϕα/2(n) +

4α

Cnµ1/2

(
δ0 +

σ2

L2

)1/2

A

M

2nµ1/2

n∑

k=1

(E‖θk − θ∗‖4)1/2 6
M

2nµ1/2

n∑

k=1

[ 1

µ1/2

12C3/2τ2

k3α/2
+

26τ2C

µkα

]

+
M

2nµ1/2

n∑

k=1

exp

(
−µC

16
k1−α + 16L2C2ϕ1−2α(k) + 24L4C4

)

×
(
32τ4C4 +

160τ4C3

µ
+ E‖θ0 − θ∗‖4 + 20Cτ2

µ
δ0

)1/2

6
MCτ2

2nµ

[
C1/2ϕ1−3α/2(n) + µ−1/2ϕ1−α(n)

]

+
M

√
20C1/2τ

2nµ
A exp

(
24L4C4

)(
δ0 +

µE‖θ0 − θ∗‖4
20Cτ2

+ 2τ2C3µ+ 8τ2C2

)1/2

Behavior of the constant A. For all α ∈ (0, 1), A is finite, while for α = 1, A = O(n). Note
that when CL is too large, A may be large as well.
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Final bound. We get a bound of the form

(
E‖(θ̄n − θ∗)‖2

)1/2
6

(tr f ′′(θ∗)−1Σf ′′(θ∗)−1)1/2√
n

+
2σ

µC1/2n1−α/2
+

(
δ0 +

σ2

L2

)1/2
2A

nµ1/2C

+
1

nµ1/2

(
1

C
+ 2L

)
δ
1/2
0

+
2L

nµ1/2

2C1/2σ

µ1/2
ϕ1−α(n)

1/2 +
4L

nµ1/2

(
δ0 +

σ2

L2

)1/2

A1/2

+
4σα

C1/2nµ
ϕα/2(n) +

4α

Cnµ1/2

(
δ0 +

σ2

L2

)1/2

A

MCτ2

2nµ

[
C1/2ϕ1−3α/2(n) + µ−1/2ϕ1−α(n)

]

+
M

√
20C1/2τ

2nµ
A exp

(
24L4C4

)(
δ0 +

µE‖θ0 − θ∗‖4
20Cτ2

+ 2τ2C3µ+ 8τ2C2

)1/2

which we can simplify into

(
E‖(θ̄n − θ∗)‖2

)1/2
6

(tr f ′′(θ∗)−1Σf ′′(θ∗)−1)1/2√
n

+
6σ

µC1/2

1

n1−α/2
+

4LC1/2

µ

ϕ1−α(n)
1/2

n

+
MCτ2

2nµ

[
C1/2ϕ1−3α/2(n) + µ−1/2ϕ1−α(n)

]

+
8A

nµ1/2

(
1

C
+ L

)(
δ0 +

σ2

L2

)1/2

+
5MC1/2τ

2nµ
A exp

(
24L4C4

)(
δ0 +

µE‖θ0 − θ∗‖4
20Cτ2

+ 2τ2C3µ+ 8τ2C2

)1/2

.

We can further simplify by noticing that ϕ1−3α/2(n) 6 ϕ1−α(n), and thus obtain the desired result.

D Proof of Theorem 4

Proof In this proof, we follow the proof technique of [20] for the deterministic case. Define

∆n = E [f(θn)− f(θ∗)] . (37)

We also derive a deterministic bound, which we upper bound, but here on the function values ∆n .
We start by showing that the iterates remain bounded in quadratic mean.

Note that the bound that we derive depends on a particular choice of θ∗ among all minimizers of f .

Bound on ‖θn − θ∗‖2. Following the same argument than for strongly convex functions to obtain
Eq. (6) (but taking µ = 0), we have, for δn = E‖θn − θ∗‖2, using (H1), (H2’), (H4):

δn 6 (1 + 2L2γ2
n)δn−1 + 2σ2γ2

n. (38)
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This implies, by applying the previous recursion n times, that

δn 6

n∏

k=1

(1 + 2L2γ2
k)δ0 + 2σ2

n∑

k=1

n∏

j=k+1

(1 + 2L2γ2
j )γ

2
k

=

n∏

k=1

(1 + 2L2γ2
k)δ0 +

σ2

L2

n∑

k=1

[ n∏

j=k+1

(1 + 2L2γ2
j )−

n∏

j=k

(1 + 2L2γ2
j )

]

6 exp

(
2L2

n∑

k=1

γ2
k

)(
δ0 +

σ2

L2

)
def
= Dn, (39)

which provides an upper-bound on the mean-square error δn. Moreover, we have, using the Lipschitz
continuity of f , and taking conditional expectations:

f(θn) 6 f(θn−1)− γn〈f ′(θn−1), f
′
n(θn−1)〉+

γ2
nL

2
‖f ′

n(θn−1)‖2

E [f(θn)| Fn−1] 6 f(θn−1)− γn‖f ′(θn−1)‖2 +
γ2
nL

2
E
[
‖f ′

n(θn−1)‖2
∣∣Fn−1

]
. (40)

Using inequality (2.1.7) from [20] (owing to the Lipschitz continuity of fn), we get:

1

2L
‖f ′

n(θn−1)− f ′
n(θ

∗)‖2 6 fn(θn−1)− fn(θ
∗)− 〈f ′

n(θ
∗), θn−1 − θ∗〉 .

By computing the conditional expectation, we therefore obtain, since θn−1 is Fn−1-measurable,

1

2L
E
[
‖f ′

n(θn−1)− f ′
n(θ

∗)‖2
∣∣Fn−1

]
6 f(θn−1)− f(θ∗). (41)

Combining the two inequalities in Eq. (40) and Eq. (41) leads to

E [f(θn)− f(θ∗)| Fn−1]

6 f(θn−1)− f(θ∗)− γn‖f ′(θn−1)‖2 +
γ2
nL

2
E
[
‖f ′

n(θn−1)‖2
∣∣Fn−1

]

6 f(θn−1)− f(θ∗)− γn‖f ′(θn−1)‖2 +
γ2
nL

2
E
[
2‖f ′

n(θ
∗)‖2 + 2‖f ′

n(θ
∗)− f ′

n(θn−1)‖2
∣∣Fn−1

]

6 (1 + 2γ2
nL

2)[f(θn−1)− f(θ∗)]− γn‖f ′(θn−1)‖2 + γ2
nLσ

2 .

Taking the expectation on the both sides of the previous identity yields

E [f(θn)− f(θ∗)] 6 (1 + 2γ2
nL

2)E [f(θn−1)− f(θ∗)]− γnE‖f ′(θn−1)‖2 + γ2
nLσ

2.

Using f(θ)− f(θ∗) 6 〈f ′(θ), θ − θ∗〉 (from the convexity of f), we get, from Hölder’s inequality:

∆2
n−1 =

[
E [f(θn−1)− f(θ∗)]

]2

6 E‖f ′(θn−1)‖2 × E‖θn−1 − θ∗‖2 6 DnE‖f ′(θn−1)‖2 (42)

with ∆n given in (37). We thus get our main recursion:

∆n 6 (1 + 2γ2
nL

2)∆n−1 −
γn
Dn

∆2
n−1 + γ2

nLσ
2 . (43)
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Case: γn = Cn−α, α ∈ (1/2, 1). In this case, we have Dn 6 D∞. We make the following steps:

− We first show that the inequality in Eq. (43) may be replaced with an equality, which leads to
a discrete time-difference equation which is analogous to the continuous-time Riccati ordinary
differential equation (see, e.g., [27]).

− The behavior of the recursion changes depending on the sign of − γn

D∞

∆2
n−1 + γ2

nLσ
2, i.e.,

whether ∆̃2
n−1 6 Lγnσ

2D∞ or not. We will show that if this inequality is strict, then it
remains strict and we can derive a simple bound on ∆n.

Replacing inequalities by equalities. For all n ∈ N
∗, consider the recursion deduced from (43)

by replacing inequality with equality:

∆̃n = (1 + 2γ2
nL

2)∆̃n−1 −
γn
D∞

∆̃2
n−1 + γ2

nLσ
2, (44)

with initial value ∆̃0 = ∆0. It is worthwhile to note that, for any n ∈ N,

∆n > ∆̃n .

This is due to the fact, that both sequences are upper-bounded by (L/2)D∞ (using the reasoning

in Eq. (39)), where D∞ = (δ0 +
σ2

L2 ) exp(
2L2C2

2α−1 ), and that the function

t 7→ ϕn(t)
def
= (1 + 2γ2

nL
2)t− γn

D∞
t2 , (45)

is increasing on [0,
1+2γ2

nL
2

2γn
D∞] ⊃ [0, L2D∞].

Relationship between ∆̃2
n−1 and Lγnσ

2D∞. Denote

εn = (4L1/2σC3/2)−1D1/2
∞ min{1, n3α/2−1} . (46)

Since γ
1/2
n − γ

1/2
n+1 >

C1/2

4nα/2 and (εn) is decreasing, we have for all n > 0,

γ1/2
n (1 + εn)

1/2 − γ
1/2
n+1(1 + εn+1)

1/2
> γ1/2

n (1 + εn+1)
1/2 − γ

1/2
n+1(1 + εn+1)

1/2,

> (
C1/2

4nα/2
)(1 + εn+1)

1/2
>

C1/2

4nα/2
,

εnL
1/2σγ2

nD
−1/2
∞ = σγ2

nD
−1/2
∞ (4L1/2σC3/2)−1D1/2

∞ min{1, n3α/2−1},

=
C1/2 min{1, n3α/2−1}

4n2α
6

C1/2

4nα/2
,

leading to

γ1/2
n (1 + εn)

1/2 − γ
1/2
n+1(1 + εn+1)

1/2
> εnL

1/2σγ2
nD

−1/2
∞ . (47)

Let n0 be the smallest n such that ∆̃2
n−1 > (1 + εn)Lγnσ

2D∞. Let us assume for now that n0

is finite. We first establish that, for all n ≥ n0, we have ∆̃2
n−1 > (1 + εn)Lγnσ

2D∞. Indeed, if

∆̃n−1 > (1 + εn)
1/2L1/2γ

1/2
n σD

1/2
∞ , then, since the function ϕn in Eq. (44) is increasing in ∆̃n−1,

∆̃n > (1 + 2γ2
nL

2)(1 + εn)
1/2L1/2γ1/2

n σD1/2
∞ − γn

D∞
((1 + εn)

1/2L1/2γ1/2
n σD1/2

∞ )2 + γ2
nLσ

2

> (1 + εn)
1/2L1/2γ

1/2
n+1σD

1/2
∞ − εγ2

nLσ
2 + L1/2σD1/2

∞ (γ1/2
n (1 + εn)

1/2 − γ
1/2
n+1(1 + εn+1)

1/2)

> (1 + εn+1)
1/2L1/2γ

1/2
n+1σD

1/2
∞ ,
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because of our assumption regarding γn and εn (that led to Eq. (47)).

Thus for n > n0, we have:

∆̃n 6 (1 + 2γ2
nL

2)∆̃n−1 −
γn
D∞

∆̃2
n−1(1− (1 + εn)

−1)

= (1 + 2γ2
nL

2)∆̃n−1 −
γn
D∞

∆̃2
n−1

εn
1 + εn

.

If we denote vn = ∆̃n

∏n
k=n0+1(1+2γ2

kL
2)−1, for n > n0, and vn0

= ∆̃n0
, then we have the inequality

vn 6 vn−1 −
γn
D∞

v2n−1

(1 + 2γ2
nL

2)

n−1∏

k=n0+1

(1 + 2γ2
kL

2)
εn

1 + εn

6 vn−1 −
εn

1 + εn

γn
D∞

v2n−1

1 + 2γ2
n−1L

2

1 + 2γ2
nL

2

6 vn−1 −
γn

2D∞

εn
1 + εn

v2n−1.

We can now follow the standard argument from [20], i.e., divide by vnvn−1 and obtain for n > n0:

v−1
n−1 6 v−1

n − γn
2D∞

εn
1 + εn

vn−1

vn
6 v−1

n − γn
2D∞

εn
1 + εn

,

which leads to, by summing n− n0 times,

v−1
n0

6 v−1
n − 1

2D∞

n∑

k=n0+1

εk
1 + εk

γk,

i.e., for n > n0 (using the definition of n0),

vn 6
1

1
2D∞

∑n
k=n0+1

εk
1+εk

γk + v−1
n0

6
1

1
2D∞

∑n
k=n0+1

εk
1+εk

γk + (1 + εn0
)−1/2L−1/2γ

−1/2
n0

σ−1D
−1/2
∞

By assumption regarding the value of εn, for all n, we have

γ−1/2
n (1 + εn)

−1/2 =

n−1∑

k=1

(γ
−1/2
k+1 (1 + εk+1)

−1/2 − γ
−1/2
k (1 + εk)

−1/2) + γ
−1/2
1 (1 + ε1)

−1/2

=

n−1∑

k=1

γ
1/2
k (1 + εk)

1/2 − γ
1/2
k+1(1 + εk+1)

1/2

γ
1/2
k (1 + εk)1/2γ

1/2
k+1(1 + εk+1)1/2

+ γ
−1/2
1 (1 + ε1)

−1/2

>

n−1∑

k=1

(1 + εk+1)
−1γ

−1/2
k γ

−1/2
k+1 (γ

1/2
k − γ

1/2
k+1) + γ

−1/2
1 (1 + ε1)

−1/2

>
1

2

n∑

k=1

γk
εk

1 + εk
L1/2σD−1/2

∞ . (48)

Thus, for n > n0,

vn 6
1

1
2D∞

∑n
k=1

εk
1+εk

γk
,

which leads to ∆n 6 1
1

2D∞

∑
n
k=1

εk
1+εk

γk
exp

(
2L2

∑n
k=1 γ

2
k

)
. Given Eq. (48), this is also true for

n < n0, and thus also true if n0 is infinite. We thus get the desired bound because D∞ > σ2/L:
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− For α > 2/3,

n∑

k=1

εk
1 + εk

γk > (1 + 4L1/2σC3/2D−1/2
∞ )−1Cϕ1−α(n)

> (1 + 4L3/2C3/2)−1Cϕ1−α(n).

− For α 6 2/3,

n∑

k=1

εk
1 + εk

γk =

n∑

k=1

1

1 + ε−1
k

γk

=

n∑

k=1

1

1 + 4L1/2σC3/2D
−1/2
∞ k1−3α/2

Ck−α

> (1 + 4L1/2σC3/2D−1/2
∞ )−1Cϕα/2(n)

> (1 + 4L3/2C3/2)−1Cϕα/2(n).

Study of recursion for γn = Cn−1/2. For all α ∈ (1/2, 1], we can replace D∞ by Dn in the
final bound. Note that this may not lead to the best possible bound; we thus get the desired result,
which is also valid for α = 1/2.

D.1 Proof for Theorem 5

Proof The proof technique is the same as in previous theorems.

Derivation of deterministic recursion. Since ‖f ′
n(θ)‖ 6 B almost surely, then,

δn 6 δn−1 +B2γ2
n, (49)

leading to a bound δn 6 Dn
def
= δ0 +B2

∑n
k=1 γ

2
k. Using (40), we obtain

E [f(θn)| Fn−1] 6 f(θn−1)− γn‖f ′(θn−1)‖2 +
γ2
nLB

2

2
,

which implies, together with (42), the following recursion (which replaces (43)),

∆n 6 ∆n−1 −
γn
Dn

∆2
n−1 +

1

2
γ2
nLB

2 , (50)

where ∆n is defined in (37).

Study for α > 1/2. We can then follow exactly the same proof than for Theorem 4 for α ∈
[1/2, 1], and obtain the desired result for α > 1/2 (note that the absence of the multiplicative factor
(1 + 2L2γ2

n) makes the problem a little easier).

Study for α < 1/2. For α < 1/2, we consider

εn = (4L1/2BC3/2)−1D1/2
n n3α/2−1

> (4L1/2C1/2)−1ϕ1−2α(n)
1/2n3α/2−1,

which is a decreasing sequence. We can then follow the same reasoning than for the proof of
Theorem 4.
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The recursion defining ∆̃n provides an upper bound to ∆n as soon as Dn/2γn > L/2, i.e., γn 6 1/L,
which simply implies that the reasoning from Theorem 4 can only be applied for n large enough.

Following the same reasoning than for Theorem 4, we get, using Dk 6 (δ0 + B2C2)ϕ1−2α(k) and
εn 6 (4L1/2BC3/2)−1(δ0 +B2C2)1/2:

∆n 6
1

1
2

∑n
k=1

1
Dk

εk
1+εk

γk

=
1

1
2

∑n
k=1

1
Dk

1
1+ε−1

k

γk

=
1

1
2

∑n
k=1

1
Dk

1

1+4L1/2BC3/2D
−1/2
k k1−3α/2

Ck−α

6
1

1
2

∑n
k=1

1
Dk

1

(1+4L1/2BC3/2)D
−1/2
k k1−3α/2

Ck−α

=
2(1 + 4L1/2BC3/2)/C∑n

k=1
1

D
1/2
k

kα/2−1

Therefore

∆n 6
2(1 + 4L1/2BC3/2)(δ0 +B2C2)1/2/C∑n

k=1
1

ϕ1−2α(k)1/2
kα/2−1

6
2(1 + 4L1/2BC3/2)(δ0 +B2C2)1/2/C

∑n
k=1

(1−2α)1/2

k1/2−α kα/2−1

6
2(1 + 4L1/2BC3/2)(δ0 +B2C2)1/2/C

(1 − 2α)1/2ϕ3α/2−1/2(n)

6
2(1 + 4L1/2BC3/2)(δ0 +B2C2)1/2/C

(1 − 2α)1/2ϕ3α/2−1/2(n)
,

which leads to the desired result for α < 1/2.

D.2 Proof of Theorem 6

Proof We follow the proof of [8, 7] by adapting it to the smooth case. Note first that by convexity

f

(
n−1

n−1∑

k=0

θk

)
6

1

n

n−1∑

k=0

f(θk) .

Since (still by convexity of f) f(θ∗) ≥ f(θk−1)+〈f ′(θk−1), θ
∗ − θk−1〉, the previous inequality implies

f(θk−1)− f(θ∗) 6 〈f ′(θk−1), θk−1 − θ∗〉 . (51)

Moreover, we have:

E
[
‖θk − θ∗‖2

∣∣Fk−1

]
6 ‖θk−1 − θ∗‖2 − 2γk 〈f ′(θk−1), θk−1 − θ∗〉

+ γ2
kE(‖f ′

k(θk−1)‖2|Fk−1) ; (52)
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The inequality [20, Eq. (2.1.8)] yields

L−1 ‖f ′
k(θk−1)− f ′

k(θ
∗)‖2 6 〈f ′

k(θk−1)− f ′
k(θ

∗), θk−1 − θ∗〉 ,

which implies that

‖f ′
k(θk−1)‖2 ≤ 2 ‖f ′

k(θ
∗)‖2 + 2L 〈f ′

k(θk−1)− f ′
k(θ

∗), θk−1 − θ∗〉 .

Plugging this inequality in Eq. (52) then implies

δk 6 δk−1 − 2γk (1− γkL)E [〈f ′(θk−1), θk−1 − θ∗〉] + 2γ2
kσ

2 ,

where δk = E

[
‖θk − θ∗‖2

]
, showing that

2γk [1− γkL]E [〈f ′(θk−1), θk−1 − θ∗〉] 6 δk−1 − δk + 2γ2
kσ

2 . (53)

Define n0 = inf {k ∈ N, (1− γkL) ≥ 1/2}. For any k ≥ n0, 1− γkL ≤ 1/2 and therefore,

E [〈f ′(θk−1), θk−1 − θ∗〉] ≤ γ−1
k

(
δk−1 − δk + 2γ2

kσ
2
)
.

Note that by integrating by parts,

n∑

k=n0+1

γ−1
k [δk−1 − δk] = γ−1

n0+1δn0
+

n−1∑

k=n0+1

δk
[
γ−1
k+1 − γ−1

k

]
− γ−1

n δn .

Using that δn 6 Dn, where Dn is defined in (39), and (Dn) is non-decreasing, the previous identity
shows that

n∑

k=n0+1

γ−1
k [δk−1 − δk] 6 Dnγ

−1
n . (54)

Combining Eq. (53) and Eq. (54) shows that For k ∈ {1, . . . , n0}, under (H2’),

|f(θk)− f(θ∗)| ≤
∣∣∣∣
∫ 1

0

〈f ′(θ∗ + t(θk − θ∗))− f ′(θ∗), θk − θ∗〉dt
∣∣∣∣ ≤ L/2 ‖θk − θ∗‖2 .

Combining these two inequalities finally yields to

E

[
f

(
n−1

n−1∑

k=0

θk

)]
− f(θ∗) 6

1

n

[Dn

γn
+

1

2
σ2

n∑

k=n0+1

γk +
L

2

n0∑

k=1

Dk

]
,

where we used the Lipschitz-continuity of f .

Case γn = Cn−1/2.

In this case, for L2C2 < 1/4, we have Dn =
(
δ0 +

σ2

L2

)
n2L2C2

. This leads to an upper bound of the

form

1

n1/2−2L2C2

1

C

(
δ0 +

σ2

L2

)
+

Cσ2

n
(n−1/2 − n

−1/2
0 ) +

1

n

L

2

(
δ0 +

σ2

L2

)
1

2L2C2 + 1
n2L2C2+1
0

leading to, for n0 = (2LC)2,

1

n1/2−2L2C2

1

C

(
δ0 +

σ2

L2

)
+

σ2

n1/2
+

L

2

(
δ0 +

Cσ2

L2

)
1

2L2C2 + 1
(4L2C2)2L

2C2+1 1

n
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Case γn = Cn−α, α ∈ (1/2, 1). In this case, we have Dn =
(
δ0 +

σ2

L2

)
exp

(
2L2C2

2α−1

)
, leading to the

upper bound

(
δ0 +

σ2

L2

)
exp

(
2L2C2

2α− 1

)
1

C
nα−1 +

Cσ2

n
ϕ1−α(n) +

L

2

(
δ0 +

σ2

L2

)
exp

(
2L2C2

2α− 1

)
(2LC)1/α

n

Case γn = Cn−1. In this case, we have Dn =
(
δ0 +

Cσ2

L2

)
exp

(
L2C2π2

6

)
, leading to the upper

bound
(
δ0 +

Cσ2

L2

)
exp

(
L2C2π2

6

)
1

C
+

Cσ2

2

ln(n)

n
+

L

2

(
δ0 +

σ2

L2

)
exp

(
L2C2π2

6

)
.

We can summarize the results as follows:

∆n 6

(
δ0 +

σ2

L2

)
exp

(
2L2C2ϕ1−2α(n)

) [ 1
C
nα−1 +

L

2

(2LC)1/α

n

]
+

σ2

2n
Cϕ1−α(n) (55)

and further bound
[
1
Cnα−1 + L

2
(2LC)1/α

n

]
by 1

C

[
1+(2LC)1+

1
α

]
, which leads to the desired result.

E Proof of Theorem 7

Proof We follow [7, 15, 14]. Since E(‖f ′
k(θk−1)‖2|Fk−1) ≤ B2 almost-surely, Eq. (52) rewrites

E
[
‖θk − θ∗‖2

∣∣Fk−1

]
6 ‖θk−1 − θ∗‖2 − 2γk 〈f ′(θk−1), θk−1 − θ∗〉+ γ2

kB
2 . (56)

which implies that
2γkE [〈f ′(θk−1), θk−1 − θ∗〉] 6 δk−1 − δk + γ2

kB
2 . (57)

Since, on the other hand, for any n ∈ N, δn ≤ Dn = δ0 +B2
∑n

k=1 γ
2
k, (51) shows that

E

[
f

(
n−1

n−1∑

k=0

θk

)]
− f(θ∗) 6

1

2n

[Dn

γn
+B2

n−1∑

k=0

γk

]
.

This leads to the bound

nα−1

2C
(δ0 + C2B2ϕ1−2α(n)) +

B2

2n
ϕ1−α(n).

F Additional experiments

Medium-scale experiments with linear logistic regression. We consider two situations where
H = R

p: (a) the “alpha” dataset from the Pascal large scale learning challenge (http://largescale.
ml.tu-berlin.de/), for which p = 500 and n = 50000, and (b) a synthetic example where p = 100,
n = 100000, we generate the input data i.i.d. from a multivariate Gaussian distribution with mean
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Figure 4: Comparison on a non strongly convex logistic regression problem with p = 100.
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Figure 5: Comparison on a non strongly convex logistic regression problem with p = 100. “alpha”
dataset.

zero and a covariance matrix sampled from a Wishart distribution with p degrees of freedom (thus
with potentially bad condition number), and the output is obtained through a classification by a
random hyperplane. In Figure 4 and Figure 5, we try two ways of selecting the constant C for
γn = Cn−α: (1) a fixed rate equal to 1/L suggested by our analysis to avoid large constants (left
plots), for which the convergence speed may be too slow, hinting at the fact that our global bounds
involving the Lipschitz constants may be locally far too pessimistic; (2) an adaptive way where we
consider the lowest test error after n/10 iterations (right plots), for which convergence is much faster,
hinting at the fact that a truly adaptive sequence (γn) instead of a fixed one is clearly an important
avenue for future research.
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