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using Ewald summation
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We propose a method for treating in Monte Carlo simulations the problem of the induced
dipoles for polarizable particles fluids confined in slab geometry and subject to an external
field. In order to compute the local field in a reasonable time, a partial update of the induced
dipole moments is performed by introducing a cut-off distance, as in bulk systems. This
strategy is then combined with a slab adapted 3D-Ewald summation for treating the long-
range interactions between the induced dipoles. The method is illustrated by simulations of
confined binary mixtures in the canonical and grand canonical ensembles.

1 Introduction

The study of dipolar fluids by simulation has become rather common since the
mid-eighties (see for example [1–4]). However, relatively few studies dealt with the
case of polarizable particles. One reason for this is a practical difficulty. Indeed,
when the dipole moments are induced by the applied field, the polarization in the
whole system must be updated after each particle move, in the Monte Carlo (MC)
method (see for example [5]). The result is a critical slowing down of the simulation,
in comparison with the situation of permanent dipoles. Special MC techniques were
recently proposed to overcome this problem, such as the one proposed by Moučka
et al. [6] that treats the polarization by multi-particle force-biased moves. Shortly
before, Předota et al. [7] proposed an approximate method, the pair approximation
for polarization interactions (PAPI) to treat the polarization by introducing a cut-
off distance beyond which the local field should not not be affected significantly by
a local MC move. While both methods result in a drastic increase in the simulation
efficiency, they share the same ingredient to handle long range interactions, namely
the reaction field method. The latter is not adapted for the slab geometry which
occurs frequently in surface and interfacial systems because of its mean-field nature.
As a result, one usually prefers to use in this case the Ewald summation method
(see [8] and refs therein).

The specific situation of induced dipoles in slab geometry, raises thus two different
problems whose combination has, to our knowledge, not been considered before.
The first one is the treatment of the long-range dipolar interaction, for a given
distribution of the dipole moments. The second one is the time needed to compute
the induced dipoles. We thus show in this paper that it is possible to combine the
slab adapted 3D-Ewald summation with the appropriate treatment of the local
field to efficiently treat induced dipoles confined in slab geometry.

The practical motivation of this study is the development of experiments on con-
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fined colloidal particles. In this domain, permanent dipoles are usually found in
ferromagnetic colloids and ferroelectric nematic ones (spherical ferroelectric par-
ticles that can be dispersed in solution have been elaborated more recently [9]).
Polarizable colloidal particles are on the other hand rather common, since polariz-
ability of the materials forming the colloids, say the electronic one, is always present
to some extent. Examples are polymethylmethacrylate (PMMA) or polystyrene La-
tex particles. Polarizability is also quite frequent in core-shell nanoparticles [10]).
Furthermore, the consideration of an external field in confined geometry gives ad-
ditional flexibility in the control of the behavior of a confined dipolar fluid [11–13].

Studying polarizable models in confinement is thus of much practical interest,
besides the general question of the treatment of non-additive interactions [6]. We
hence show in this work that the local field can be computed efficiently also in
slab geometry. To this end, this paper is organized as follows: we first present
the model of confined polarizable fluids that we will study. We then propose the
method to treat the polarization for slab geometry by the Ewald summation. The
efficiency of the proposed method is shown by simulating mixtures of polarizable
and non-polarizable particles in the canonical and grand canonical ensembles. This
will extend our previous results [14, 15] relative to permanent dipoles to the case
of induced ones.

2 Polarizability and local field

2.1 Potential Energy for a model with polarizability

We consider polarizable particles confined between two parallel walls. In this model,
the polarizability is accounted for by a point dipole µi, taken proportional to the
local electric field Eloc at the position of the center of mass ri of particle i:

µi = αpE
loc(ri). (1)

αp is here taken as a scalar for simplicity. The local field involves two contributions
:

Eloc(ri) = Eext(ri) + Eµ(ri), (2)

where Eext the external field and Eµ is the field due to the other induced dipoles :

Eµ(ri) =
∑

j 6=i

Tij · µj (3)

with

Tij =
1

r3
ij

(

3rijrij

r2
ij

− I

)

(4)

where I is the identity matrix. The induced dipoles are then given by the system
of equations:

µi = αp(E
ext +

∑

j
j 6=i

Tij · µj) (5)
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Since the direct solution of eq. (5) is impractical [17], it is more convenient to
compute the local field by an iterative scheme. Indeed, the local field Eloc(ri)
inducing the dipole moment µi at the position ri depends on all the dipole moments
for the actual spatial configuration of the system Eloc(ri) = Eloc(ri; µj({rk})).

Now, the difference with permanent dipoles is that one needs to evaluate the
local field before computing the energy. A convenient expression of the local field
can be derived starting from the potential energy for polarizable particles in an
external field U written (see for example [16,17]) in the form :

U = Uµµ + U ext + Upol, (6)

The first two terms in eq. (6) are the dipole-dipole and dipole-external field energies,
as if the dipoles were permanent :

Uµµ = −1

2

∑

i6=j

µi · Tij · µj (7)

U ext = −
∑

i

µi · Eext (8)

and Upol is the polarization energy [16] or the work done against the internal
forces, to form the dipoles in the local field :

Upol =
1

2

∑

i

µi · Eloc(ri) (9)

When the relation eq. (1) between the induced dipoles and the local field is used,
this expression becomes

Upol =
1

2αp

∑

i

µ2
i (10)

Since this additional term involves only the local field any technique to han-
dle long range interactions for permanent dipoles will also work for polarizable
particles. The local field can then be obtained as

Eloc = −∂(U − Upol)

∂µi
(11)

Once the induced dipoles are known, the total energy in eq. (6) can be conveniently
evaluated with the help of eq. (7), eq. (8) and eq. (9) as:

U = −1

2

∑

i

µi · Eext (12)

The problem of the treatment of the periodic boundary conditions is however still
present in the evaluation of the induced dipole moments µi. This is discussed in
the next section.
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2.2 Local field in the Ewald-Summation

In slab geometry, adapted 3D-Ewald summation techniques [18–21] are usually
used and the local field is derived from the Ewald energy. In the Ewald sum in
which the dipole-dipole term is written as Uµµ = U (r) + U (k) + U (s), each term in
the potential energy gives a contribution to the local field computed from eq. (11)
(see for example [8, 22]). The short-range contribution U (r) may be written as :

U (r) = −1

2

∑

i6=j

µi,s(T
(r))st

ijµj,t (13)

with

(T (r))st
ij = C(rij , α)rs

ijr
t
ij − δstB(rij , α) (14)

where s and t stand for the space coordinates {x, y, z} (Einstein’s convention for
repeated indexes is used); δ is the Kronecker symbol and the functions B and C
are defined by :

B(r, α) = erfc (αr) /r3 +
(

2α/π1/2
)

exp(−α2r2)/r2 (15)

C(r, α) = 3 erfc (αr) /r5 +
(

2α/π1/2
)

(

2α2 + 3/r2
)

exp(−α2r2)/r2 (16)

The corresponding contribution to the local field reads:

E
(r)
i,s =

∑

j
j 6=i

(T (r))st
ijµj,t (17)

The long-range contribution to the energy is given by :

U (k) = −1

2

∑

i,j

µi,s(T
(k))st

ijµj,t (18)

with

(T (k))st
ij = − 1

L3

∑

k 6=0

4π

k2
exp

(

− k2

4α2

)

kskt exp[ik · (ri − rj)] (19)

and the corresponding long-range contribution to the field in the s-direction is :

E
(k)
i,s =

∑

j

(T (k))st
ijµj,t (20)

The self-energy term that eliminates unwanted self-interactions in the central
box is :

U (s) = − 2α3

3
√

π

∑

i

µi · µi (21)
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It contributes to the local field by :

E
(s)
i,s =

4α3

3
√

π
µi,s (22)

In the standard 3D-Ewald-scheme, an additional term must be added that de-
pends on the dielectric medium surrounding the replicated boxes. For slab geom-
etry, one actually incorporates a vacuum region between the central slab and its
replicas as proposed by Yeh and Berkowitz [18]. This introduces a correction to
the energy and thus to the field given by :

E(c) = 4πPzuz (23)

where P is the total polarization in the slab.
As a result, in Slab geometry, the component in the s-direction of the local field

acting on the particle i is :

Elocal
i,s = Eext

i,s + E
(r)
i,s + E

(k)
i,s + E

(s)
i,s + δszE(c)

s (24)

As a verification, one can check that for permanent dipoles, the potential energy
obtained with this local field as U = U ext − 1

2

∑

i µi · (Eloc(ri)−Eext) is consistent

with the standard Ewald Energy route U ext + U (r) + U (k) + U (s) . For polarizable
particles the energy is obtained from eq. (12) as recalled above. One known problem
with the original method is that the vacuum region can be quite large. To reduce the
gap width the so-called electrostatic layer correction (ELC) has been introduced,
initially for point charges [20] and later for dipoles [21]. Furthermore the ELC
method and its variants allow an a priori control of the errors, this being important
to determine the optimum conditions for using the method (see for example [23]).
Here, however, our purpose was to investigate the question of the local field, which
is a distinguishing feature in comparison with permanent dipoles. Of course, all the
improvements made in the latter case can and should be implemented, in a second
stage to study induced ones.

3 Iteration process for the local field with polarizable particles

3.1 The full update process

We now turn to the implementation of these considerations in Monte Carlo sim-
ulation. For polarizable particles with point dipoles, only the positions ri need to
be sampled. But even a local displacement of one particle yields a change of the
local field acting on all the other particles. After a move of particle i from rold

i
to rnew

i , the new induced dipole moment is µnew
i = αpE

new
loc (rnew

i ). This modifies
the local field acting on the other particles and hence one has µnew

j = αpE
new
loc (rj).

As a result, after each local change (particle move, or more generally insertion,
etc.) one needs to update all the dipole moments in an iterative way to compute
the local field. In an algorithm with full update, all the induced dipole moments

are sequentially updated according to µ
(n)
i = αpEloc({µ(n)

j < i}, {µ
(n-1)
j ≥ i}) until one

observes for all dipoles :

|∆µi|
|µi|

< ǫ (25)
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where |∆µi| is the magnitude of the variation of the dipole moment between iter-
ations (n− 1) and (n). With ǫ = 10−4, we checked that the energy is affected only
by a term of the order of the machine single-precision error. This criterion is satis-
fied after approximately 5 iterations. The time required to evaluate the change in
energy by this method after N particle position updates is then much larger than
in simulations with permanent dipoles. This full update algorithm would require a
considerable amount of computer time, for example in order to obtain very accu-
rate results in a specific situation (see for example the benchmark result on water
of Jedlovszky et al. [5]). Faster - albeit probably less accurate - variants are thus
needed to explore the parameters space of a generic model in a reasonable time.
One possibility is considered below.

3.2 Update process with a Cut-off

Following this objective, the pair approximation for polarization interaction was
proposed by Předota and coworkers [7] in the context of bulk polarizable fluids.
The idea of this method is to update only the dipole moments of the particles that
are within a given distance Rcut from a displaced particle (see figure 2 in ref. [7] for
implementation details). Only interactions between pairs are taken into account
during the update process. Because of the long-range nature of the dipolar interac-
tion it is clear that introducing cutoff distances can give only an approximation of
the true local field. However, when the cut-off distance is taken large enough and
the local change not too important, the thermodynamics should remain correct in
this approximate treatment.

In slab geometry, one cannot use the reaction field method both because of the
loss of the spherical symmetry and the problem of the meaning of the dielectric
constant at high confinement. Since the PAPI method uses the reaction field, it
must be adapted to deal with such a geometry. As depicted in Fig. 1 the zone inside
which convergence of the local field will be made is a cylinder of height H and radius
Rcut around the displaced particle. During the iteration process with the cut-off
distance, only the dipole moments µin inside the cylinder will be updated. Since
the others, µout, are kept unchanged, their contribution to the local field acting on
the particles inside the cylinder is fixed. The iteration process to compute the new
dipole moments µin is as follows :

• A random trial move dr for particle imv is chosen:

rnew
imv

= rold
imv

+ dr

• The ensemble Dcut of the particles inside the cylinder is selected :

Dcut = {i;
√

(ri,x − rimv,x)2 + (ri,y − rimv,y)2 ≤ Rcut}

• The contribution of the out-dipoles to the local field acting on these particles is
evaluated from the non-updated values µout (j 6∈ Dcut) :

Eout
i,s =

∑

j 6∈Dcut

(T (r))st
ijµj,t +

∑

j 6∈Dcut

(T (k))st
ijµj,t + δsz4π

∑

j 6∈Dcut

µj,z

In practice, Eout
i,s is more efficiently computed by subtracting the contribution

of the actual dipoles located inside the cylinder from the stored values of the
local fields computed during the previous Monte Carlo step (this is of course
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not possible for the displaced particle itself).

• The dipoles moments inside the cylinder µin
i (i ∈ Dcut) are next modified :

µin
i = αpE

loc
i

with

Eloc
i,s = Eext

s + Eout
i,s +

∑

j∈Dcut

j 6=i

(T (r))st
ijµj,t +

∑

j∈Dcut

(T (k))st
ijµj,t

+
4α3

3
√

π
µi,s + δsz4π

∑

j∈Dcut

µj,z

until the criterion eq. (25) is verified.

Finally, the energy of the new configuration is computed with eq. (12) and the
move is accepted or rejected according to the standard Metropolis algorithm. Note
that this process is just a convenient way for solving eq. (5) ie computing, for a
given set {ri} of particles coordinates, the distribution of dipole moments. The
electrostatic energy depends thus only on {ri}, as with ordinary (pair additive)
interactions. Since the sampling of the configuration space is done here by single
particle translation moves (the first step above from to rnew

imv
to rold

imv
), the detailed

balance condition is indeed satisfied by the standard acceptation rule. Now, the
error in the change in energy after one particle move, due to the approximate
treatment of the local field, should of course be minimized by taking a large cut-
off, as shown below.

4 Test of the method

4.1 Simulation of asymmetric mixtures with polarizable particles in the

Canonical Ensemble

We first tested this method on a model considered in our previous work [14] :
a mixture of hard-spheres (diameter σs) and polarizable hard-spheres (diameter
σ) confined between two parallel walls. The pore width is H = 3σ, and the size
ratio σ/σs = 2. The other parameters are the same as in part C of [14] but the
permanent dipole µ∗ = 1.2 in the external field E∗ = 20 (defined for convenience as

E∗ = E
√

σ3/ǫw from the actual field strength E and wall-small spheres interaction
strength ǫw) is replaced by an induced one with αp = 0.06σ3.

For the Ewald summation we took a parameter α = 7/L were L is the lateral
box size. The gap width is γL − H. As in reference [19], we took γ = 10. For the
terms in reciprocal space we took n2 = 80. No significant deviation was found [19]
between the exact electrostatic energy for a lattice of permanent dipoles and the
one obtained with these values of the Ewald parameters and gap width. We made a
similar comparison for a slab of three layers of induced dipoles arranged on a square
lattice. For αp = 0.06σ3 and typical field strengths, we again found no significant
deviation between the exact and the Ewald sum, with γ = 10. To estimate the
sensitivity to this parameter, we considered the value γ = 1. We found no significant
variation of the average quantities, compared to γ = 10. For example, when going
from γ = 1 to γ = 10 we found a difference in the average energy per particles
δU/U ≈ 3.10−6 for E∗ = 20 and the densities considered below. For the slab width
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considered here, H = 3σ and γ = 1, the ratio γL/H is indeed already greater than
three even for the smallest lateral width L = 10.25σ. Since optimizing this aspect
of the method was not our objective here, we kept the somewhat rather large value
γ = 10 for safety. Furthermore, when the dipoles are induced by an external field,
there is a significant dipole-field contribution to the variation in electrostatic energy
after one particle move. A very accurate treatment of the long-range dipole-dipole
contributions seems then less pressing, especially in view of the fact that the largest
error comes from the partial update itself, as discussed below.

To test the update method, we performed a converged run of Nstep = 40 Kcycles
(one cycle involves NL + Ns trial moves ) with a cut-off distance Rcut = 3σ. The
same run was repeated with full update. To begin with, NL = 129 polarizable
particles and Ns = 1032 small hard-spheres were used in both cases. While it takes
3 days on a 4-processors computer to complete the first simulation, the same run
with full update takes about 15 days on the same machine.

As the time saving is important, the effect of the approximate treatment for the
local field must be discussed. Fig. 2 shows the mean change in the magnitude of
the dipole moment for the particles that are separated by a lateral distance greater
than R from the displaced particle, for full and partial update with Rcut = 3σ.

The direct effect of the cut-off distance is to ignore the variation of the dipole
moment beyond Rcut. The latter is more than 10 times smaller than the maximum
value around R = 1. Inside the cylinder the variations differ slightly, but are on
the whole quite consistent.

We now evaluate the impact of the cut-off method on the energy of the system.
With the same parameters a relative difference |UFull −URcut=3σ|/UFull ≈ 8.10−6 is
found between the two methods, for each configuration. This difference does not
increase during the simulation. This suggests that the equilibrium states sampled
by the two methods are not too different.

This is confirmed by Fig. 3 which shows the change in energy ∆U induced by
the trial move of one particle, in the two methods, for two box sizes corresponding
to the same state: the former box with NL = 129 and Ns = 1032 and a bigger
one having a twice larger surface, with NL = 258 and Ns = 2064. Fig. 3a and
Fig. 3c show that ∆URcut=3σ

remains close to ∆UFull. The rare cases where the
latter is zero but not the former show directly the magnitude of the error due
to the cut-off, compared to kBT . Since the difference between the two quantities
is always very small compared to kBT , the acceptance probability of the moves
should remain nearly the same. Using ∆URcut=3σ, instead of the exact one, should
thus not introduce a significant bias, as mentioned above. Fig. 3b and Fig. 3d show
∆URcut=3σ versus ∆UFull. In this example, the difference between the two quantities
increases with the magnitude of ∆UFull. The points corresponding to ∆URcut=3σ

seem to be distributed on a line with a slope slightly different from unity and not
as a random noise about the line of unit slope. This observation could be used to
improve the method by correcting ∆URcut=3σ (say by a linear fit that forces the
equality with the exact result). But without this, we find that the cut-off induces
a change in the Markov chain after approximately 250 trial moves in the smaller
box. We repeated the same tests with Rcut = σ. Then the Markov chain obviously
deviates faster (after about 50 trials). The choice Rcut = 3σ seems thus here a
good compromise for reducing the computer time without significantly affecting
the simulation dynamics.

We finally compare in Fig. 4a the density profiles of the dipoles for the system
with NL = 129 in the two methods. We observe no significant difference due to the
cut-off. To investigate the size effect in a converged simulation, we considered the
bigger box with NL = 258 and Ns = 2064. In the cut-off method (with Rcut = 3σ)
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a simulation with 40 Kcycles, takes 9 days on the same 4-processors computer. This
gives a scaling time factor of N3/2 for the algorithm with cut-off. The corresponding
density profile of the polarizable hard-spheres is shown in Fig. 4b. No significant
size effect is found in comparison with the simulation with 129 dipoles. In the full
update method now, we estimated that the same simulation would take about 6
months (on the basis of limited runs of about 100 cycles). Even so, a single check
would be insufficient. We thus cannot discuss here the size effect in the method
with full update, beyond the data shown as a function of the number of particle
moves in Fig. 3a and Fig. 3c.

From a more physical perspective now, we may note that the results are similar
to those shown in [14] for permanent dipoles: without the field, the density profile
of the large particles is structured at the scale of the small ones. In a normal electric
field, this layering is replaced by one at the scale of the large polarizable particles.

Additional tests of the size effects and of different choices of Rcut should of course
be performed to assess more quantitatively the consequences of this partial update
method (this last question is not specific to the slab geometry considered here).
At the present stage, we found it more important to examine if the general idea
remains applicable in an open system.

4.2 Grand-canonical simulation of a non-additive mixture of pure and

polarizable hard-spheres

This model is motivated by our recent study [15] in which we have shown how
the composition of a fluid comprising dipolar particles in an open pore may be
controlled by applying an electric field. For mixtures with non-additive interactions,
a population inversion occurs in the pore beyond a certain threshold value of the
applied field: starting from the situation of a pore in equilibrium with a bulk
mixture having widely different concentrations of the two components, a jump in
the adsorption of the minority component occurs when the field strength is varied.
After the threshold, the pore becomes filled with this species, while the former
majority component simultaneously desorbs.

In ref. [15] the dipoles were taken permanent. We relax here this constraint for
the reasons explained in the introduction (polarizable colloids). We thus consider
a mixture of hard-spheres (species (1)) and polarizable hard-spheres (species (2))
with non-additive diameters. For species (2) we took a polarizability αp = 0.04σ3

(in order to model colloidal particles). A reduced field strength E∗ = E(σ3/kT )1/2

will be used. For simplicity, we took σ2 = σ1 = σ. For the non additivity parameter
(defined from the cross diameter σij = 1/2(σi + σj)(1 + δ)) we took δ = 0.2. The
mixture is confined in a pore of width H = 3σ. The bulk fluid that fixes the
chemical potentials in the pore is the same mixture of non additive hard-spheres,
but without polarization, because the electric field is applied only in the pore.
The total reservoir density is ρb = 0.53. The bulk mole fraction of the polarizable
particles is x2 = 0.02. The simulation in the pore is done in the Grand-canonical
ensemble. The reduced density in the pore is ρ = 〈N〉σ3/V , with 〈N〉 the average
number of particles and V = S(H − σ).

For the translation moves, we first study the effect of the cut-off on the relative
mean variation of the dipole moment after the move of one particle. Fig. 5 shows

the result for Rcut = 3σ and E∗ = 5. Although < |∆µ|
|µ| > is larger than in Fig. 2, due

to a different dynamics - the maximum displacement of the particles ( δr = 0.3σ)
is 5 times bigger, we again find a negligible effect beyond Rcut.

The consequences on the change in energy is shown in Fig. 6. The same features as
in Fig. 3 are observed. The error induced by the cut-off is still very small compared
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to the change in energy after one particle move (with the same remark as with
for Fig. 3a when DeltaUFull = 0) . The smaller energies are due to lower values
of the field and polarizability. We finally measure that a change in the Markov
chain occurs only after 100 trial moves, probably because of the larger accepted
displacement.

Similar tests may be done for the deletion or the insertion of the dipoles. To
anticipate the effect of larger changes than with translation moves only, we took a
larger cut-of, Rcut = 5σ. The iterations are then much longer : about one month
on the same 4-processors machine, for comparable values of the parameter than in
the canonical simulation. Needless to say, the simulation with full update remains
equally problematic.

In Fig. 7, we present the population inversion in the pore that has been discussed
in ref. [15], but now for polarizable particles. In this case, the inversion is still
present but it occurs for a field that is 4 times stronger than for permanent dipole
[15]. These results depend of course on the value of αp and the comparison with
permanent dipole is not immediate, since the dipole moment changes with the
applied field. An accurate treatment of the local field will of course be necessary
to obtain accurate values (for example for the threshold field). The very question
of the occurrence of the population inversion should however not depend on this,
since it has been observed even without dipoles, by simply changing then the bulk
density.

5 Conclusion

In this paper, we presented a method for studying confined polarizable fluids by
Monte Carlo simulation that combines a slab-adapted Ewald method with an effi-
cient strategy for computing the induced dipoles at each Monte Carlo step. Since
we consider a slab geometry, the long-range interactions are handled by the method
of Ewald sums adapted to this geometry rather than the reaction field method. To
reduce the amount of computer time required by a full update of the dipole mo-
ments, we have proposed a simple update strategy that uses a cut-off distance,
in the same spirit as the PAPI methods for bulk systems. We have shown that
the partial update allows a large gain in computer time while preserving the con-
sistency of the Markov chains over a significant number of Monte Carlo particle
displacements. We suggested how this method could be improved to ensure a more
consistent calculation of the energy when necessary. This method opens up the
possibility to study confined polarizable fluids by MC simulation with a reasonable
restitution time. As with bulk systems, however, the choice of the cut-off distance
must be checked on a representative number of Monte Carlo steps before attempt-
ing a fully converged simulation. Other improvements specific to the slab geometry,
such as the ELC method for reducing the gap width, should also be considered to
reduce even further the length of the simulation.

References

[1] M. Caillol, D. Levesque, J. J. Weis, P. G. Kusalik and G.N. Patey, Molec. Phys. 55, 65 ( 1985)
[2] D. Levesque and J. J. Weis, J. Stat. Phys. 40 29 (1985)
[3] S. H. Lee, J. C. Rasaiah and J. B. Hubbard, J. Chem. Phys. 85, 5232 (1986).
[4] P. G. Kusalik, Molec. Phys. 67 67 (1989)
[5] P. Jedlovszky, and J. Richardi, J. chem. Phys. 110, 8019 (1999).
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Figure 1.: Schematic view of the cylindrical cut-off in the pore.
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Figure 2.: Relative mean variation 〈 |∆µ|
|µ| 〉 vs the lateral distance R =

√

x2 + y2

from the displaced particle. line: full update process, dashed line: Iteration with
Rcut = 3σ notice the drop to zero for r > Rcut
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(a) Change in energy ∆U/kBT after one particle move
versus number of particle moves Nm. Empty circles:
Rcut = 3σ; filled circles: full iterations
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(b) Change in energy with cutoff ∆URcut=3σ/kBT
vs full change ∆UFull/kBT : crosses. The line with
unit slope would correspond to ∆URcut=3σ/kBT =
∆UFull/kBT
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(c) Same caption as in Fig. 3a
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(d) Same caption as in Fig. 3b

Figure 3.: Effect of the cut-off distance on the energy change ∆U/kBT induced by
the trial moves.

(a) and (b): NL = 129 and Ns = 1032; (c) and (d) NL = 258 and Ns = 2064
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(a) Simulation with NL = 129, E∗ = 20,
Filled circles: Rcut = 3σ, line: Full update
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(b) Simulation box with NL = 258
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guide to the eye

Figure 4.: Density profiles of polarizable particles in an external normal electric
field.
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Figure 5.: Relative mean variation < |∆µ|
|µ| > vs the lateral distance R =

√

x2 + y2

from the displaced particle. dotted line : Iteration with Rcut = 3σ
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(a) Change in energy ∆U/kBT after one particle move versus
number of particle moves Nm. Empty circles: Rcut = 3σ; filled
circles: full iterations
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Figure 6.: Effect of the cut-off distance on the energy change ∆U/kBT induced by
the trial moves.

Page 15 of 16

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

April 13, 2010 18:37 Molecular Physics Brunet˙rev

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6

ρ i

E
*

Figure 7.: Electric field controlled population inversion for a non-additive mixture
of hard-spheres and polarizable hard-spheres confined in a slit pore. The total
reservoir density is ρb = 0.53. The bulk mole fraction of the polarizable hard-
spheres is x2 = 0.02. ρi: density of each species; E∗ : applied field strength Filled

circles: polarizable hard-spheres, Open circles: hard-spheres. Lines are a guide to
the eye.
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