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Asymptotic expressions for the nearest and furthest dislocations

in a pile-up against a grain boundary

Cameron L. Hall
(Received 00 Month 200x; final version received 00 Month 200x)

In 1965, Armstrong and Head (Acta Metall. 13(7):759–764, 1965) explored the problem
of a pile-up of screw dislocations against a grain boundary. They used numerical meth-
ods to determine the positions of the dislocations in the pile-up and they were able to fit
approximate formulae for the locations of the first and last dislocations. These formulae
were used to gain insights into the Hall-Petch relationship. More recently, Voskoboinikov et
al. (Phil. Mag. Lett. 87(9):669-676, 2007) used asymptotic techniques to study the equivalent
problem of a pile-up of a large number of screw dislocations against a bimetallic interface.

In this paper, we extend the work of Voskoboinikov et al. to construct systematic asymp-
totic expressions for the formulae proposed by Armstrong and Head. The further extension of
these techniques to more general pile-ups is also outlined. As a result of this work, we show
that a pile-up against a grain boundary can become equivalent to a pile-up against a locked
dislocation in the case where the mismatch across the boundary is small.

1. Introduction

In their analysis of brittle fracture of polycrystalline materials, Armstrong and
Head [1] investigated a pile-up of screw dislocations against a grain boundary.
Specifically, they considered the case of an elastically anisotropic material where
the crystal orientation changes across a grain boundary. This situation can be
dealt with effectively by using the method of images, in which each real disloca-
tion generates a stress field corresponding to a virtual dislocation situated at the
image point opposite the grain boundary. The strength of the image dislocation
is an explicitly known quantity that depends on the degree of elastic anisotropy
in the crystal and on the misorientation across the boundary. Analogous pile-ups
of screw dislocations against a bimetallic interface have recently been investigated
by Voskoboinikiov et al. [8] in the asymptotic limit as the number of dislocations
tends to infinity.

In [1], numerical methods were used to solve the equations of equilibrium for
pile-ups of up to 64 dislocations. Based on these results, heuristic formulae were
given for the positions of the first and last dislocations in the pile-up. In all cases
described, it was found that the dimensionless position of the first dislocation could
be simply expressed in terms of the number of real dislocations in the pile-up and
the comparative strength of an image dislocation relative to a real dislocation. In
this paper, the results of Voskoboinikov et al. [8] are used to develop asymptotic
expressions for the positions of the first and last dislocations in a pile-up of screw
dislocations against a grain boundary. These expressions give a good justification
for the formulae obtained in [1], but we also find some important differences.

Armstrong and Head [1] considered the implications of their formulae for pre-
dicting brittle fracture of a polycrystalline material. By making appropriate as-
sumptions, they recovered an expression for the yield stress that resembles the
Hall-Petch criterion. We also consider this problem and obtain equivalent asymp-
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totic expressions.
In a typical polycrystalline material, a very small mismatch in effective shear

modulus occurs across the grain boundary. As a result, the repulsion of the pile-up
by the grain boundary is weak and the first dislocation becomes very close to the
grain boundary. Indeed, we show that the equations for a pile-up against a grain
boundary reduce to the equations for a pile-up against a lock in the asymptotic
limit of very weak image dislocations.

Although [1] only considered pile-ups of screw dislocations, the asymptotic meth-
ods developed by Voskoboinikov and coworkers can readily be extended to more
complicated problems. Voskoboinikov et al. [7] have already analysed a pile-up of
edge dislocations against a bimetallic interface and their techniques could also be
used to analyse pile-ups of edge or mixed dislocations in elastically anisotropic
materials. Although we concentrate on the simplest problem of screw dislocation
pile-ups, we demonstrate that it is again possible to exploit the smallness of the
mismatch across the grain boundary to obtain simple results for more complicated
configurations.

2. Pile-up against a grain boundary

Armstrong and Head [1] considered both pile-ups against a grain boundary and
pile-ups against a grain boundary and a locked dislocation. The former situation
is identical to the problem investigated by Voskoboinikov et al. [8] and we analyse
it first.

Consider a pile-up of n screw dislocations, each with Burgers vector b = bk, in an
infinite material containing a grain boundary at the plane x = 0. The dislocations
are taken to be parallel with the z-axis and are located in the plane y = 0 at
positions x = xi > 0, i = 1, . . . , n. The pile-up is held � in � place by a constant
applied y-z shear stress of magnitude τ . The ratio of the strength of an image
dislocation compared to a real dislocation is represented by λ; Armstrong and
Head [1] observe that |λ| < 0.3 for both iron and copper.

With this notation, the equations for dislocation equilibrium for λ > 0 are given
by

µ

2π

n∑
j=1, j 6=i

1
xi − xj

+
µλ

2π

n∑
j=1

1
xi + xj

= τ, i = 1, 2, . . . , n,

where µ is the equivalent shear modulus obtained from the anisotropic elasticity
tensor [1]. Nondimensionalising space with respect to µb

2πτ , this leads to the following
dimensionless system:

n∑
j=1, j 6=i

1
xi − xj

+ λ
n∑
j=1

1
xi + xj

= 1, i = 1, 2, . . . , n. (1)

When λ < 0, equation (1) cannot be used to find x1 because the attraction
from the image dislocations would make the first real dislocation very close to the
grain boundary. This implies the situation of a pile-up against a lock and a grain
boundary, which we discuss in Section 3.
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2.1. Position of the furthest dislocation

As described by Voskoboinikov et al. [8], there are three spatial scalings to consider
for (1). In the region where x is sufficiently far from the boundary layers near x = 0
and x = xn, the spatial variable can be rescaled by introducing x = n ξ to recover
a singular integral equation for the leading-order dislocation density, ρ0(ξ). This
integral equation can be solved using the Wiener-Hopf method, enabling us to find
both ρ0(ξ) and the leading-order scaled location of the last dislocation, ξ∗0 . From
� [5] �, these are given by

ρ0(ξ) =
1

π sin(πa/2)
sinh

(
a cosh−1 ξ

∗
0

ξ

)
(2)

and

ξ∗0 =
sin(πa)

a
, (3)

where

a =
cos−1 λ

π
. (4)

Greater accuracy in the position of the furthest dislocation can be obtained by
considering the boundary layer near x = xn. Equation (2) indicates that ρ0(ξ) ∼
1
π

√
c0 (ξ∗0 − ξ) near ξ∗0 , where

c0 =
2 a3

sin2(πa/2) sin(πa)
.

Following the procedures in [9], we find that

ξn = ξ∗0 + q c
− 1

3
0 n−

2
3 +O

(
n−1

)
,

where q is the first root of the Airy function, Ai(x).
Taking Taylor series around λ = 0, this yields

ξn = 2
(

1 +
2
π
λ

)
+ 2

1
3 q n−

2
3

(
1 +

(
2
π
− 1

3

)
λ

)
+O

(
n−1, λ2

)
. (5)

Ignoring the n−
2
3 term would give the simpler expression

ξn = 2
(

1 +
2
π
λ

)
+O

(
n−

2
3 , λ2

)
. (6)

Using (5), we find that

xn = 2n
(

1 +
2
π
λ

)
+ 2

1
3 q n

1
3

(
1 +

(
2
π
− 1

3

)
λ

)
+O

(
1, n λ2

)
(7)

≈ 2n (1 + 0.64λ)− 2.94n
1
3 (1 + 0.30λ) .
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Figure 1. Numerically obtained results for ξn using a variety of values of n and λ. Results for n = 4 are
shown as �, results for n = 16 are shown as ©, results for n = 64 are shown as × and results for n = 400
are shown as +. The leading-order asymptotic approximation ξn = 2 (1+ 2

π
λ) is shown as a continuous line

while the Armstrong-Head formula ξn = 2 (1 + 0.9λ) is shown as a dashed line. Clearly, the correction due
to the boundary layer is important; better asymptotic approximations based on equation (5) are shown as
dotted lines.

For comparison, the equivalent expression obtained by Armstrong and Head [1]
from curve-fitting is

xn ≈ 2n (1 + 0.9λ) . (8)

We have developed a Newton iterative scheme for solving (1), using a starting
condition where each dislocation is only able to feel its nearest neighbours and
the external stress. This gave the numerical results for ξn shown in Figure 1 for a
variety of different values of n and λ, including the values used in [1]. Interestingly,
equations (6) and (8) both give a fairly poor fit to the final dislocation positions
obtained using our numeric scheme. However, including the first correction term
associated with the boundary layer gives an expression for ξn that � agrees well
with the numerical results � over a wide range of λ values and is even � quite �
good when n is not very large.

2.2. Position of the nearest dislocation

We now obtain an expression for x1, the location of the first dislocation in the pile-
up. Since this dislocation will lie in a boundary layer region near x = 0, it requires
a different spatial scaling from the one described above. Following Voskoboinikov
et al. [8], we introduce an inner scaling of the form x = n−a/(1−a)η, where a is
defined as above. As shown in [8], the leading-order inner equation takes the form

∞∑
j=1, i 6=j

1
ηi − ηj

+
∞∑
j=1

λ

ηi + ηj
= 0, i = 1, 2, . . . (9)
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subject to the matching condition

ηk → 2
(
kπ(1− a) sin(πa/2)

(ξ∗0)a

)1/(1−a)

(10)

as k →∞.
In Voskoboinikov et al. [8], equation (9) is solved using numerical methods. How-

ever, it is possible to make further algebraic progress by exploiting the assumption
that λ is small. We thus let each ηi be represented as an asymptotic power series
in λ:

ηi ∼ ηi,0 + λ ηi,1 + . . .

Collecting only the leading-order terms in equation (9), we find that

∞∑
j=1, i 6=j

1
ηi,0 − ηj,0

= 0, i = 1, 2, . . . (11)

Also, we note that a ∼ 1
2 + O (λ) and ξ∗0 ∼ 2 + O (λ). Hence, the leading-order

matching condition (10) becomes

ηk,0 ∼
k2 π2

8
(12)

as k →∞. However, (11) is clearly incorrect when i = 1, as all of the terms on the
left-hand side are negative. We attempt to resolve this problem by introducing a
different scaling for just η1. Specifically, we propose η1 = λ η1,0 + o(λ) and thus we
find that the leading-order equation for i = 1 takes the form

1
2η1,0

−
∞∑
j=2

1
ηj,0

= 0, (13)

while the other leading-order equations are given by

∞∑
j=2, i 6=j

1
ηi,0 − ηj,0

+
1
ηi,0

= 0, i = 2, 3, . . . (14)

Importantly, we note that the system (14) is completely independent of η1,0.
Moreover, this system of equations is identical to the system described in
Voskoboinikov et al. [9] for the inner problem of a pile-up of dislocations against a
lock. Indeed, when λ is small, we find that the dislocation x1 is precisely equivalent
to a locked dislocation to lowest order.

Unlike the system (9), (14) has the advantage that it can be solved exactly.
Following Voskoboinikov et al. [9] and applying the matching condition (12), we
find that

ηi,0 =
(αi−1)2

8
, i = 2, 3, . . . (15)

where αk is the kth positive zero of the Bessel function J1(x).
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Rearranging equation (13), this implies that

η1,0 =
1
16

( ∞∑
i=1

1
αi2

)−1

.

We can now exploit the fact that

∞∑
k=1

1
(jν,k)

2 =
1

4 (ν + 1)
,

where jν,k is the kth zero of the Bessel function, Jν(x), and ν ≥ 0 to show that

η1,0 =
1
2
,

and hence,

x1 ∼
λ

2n1− 4
π
λ
≈ λ

2n1−1.27λ
. (16)

For comparison, the equivalent expression obtained by Armstrong and Head [1]
is

x1 ≈
λ

2n1−1.1λ
. (17)

The discrepancy between (16) and (17) can be investigated by plotting values of
log(2x1

λ )/ log n obtained using the numerical procedure described above against λ,
as shown in Figure 2. From this, we clearly see that (16) gives a good approximation
of these numerical results when λ is sufficiently small, but that the relationship be-
tween log(2x1

λ )/ log n and λ quickly deviates from linearity as λ increases. Indeed,
for suitably large values of λ, the Armstrong-Head formula (17) is a better approx-
imation of the numerical results than the asymptotic formula (16).

3. Pile-up against a lock and a grain boundary

Armstrong and Head [1] also consider the situation where there is a locked disloca-
tion at x = 0 in addition to image dislocations associated with the grain boundary.
In this case, the equations of equilibrium take the form

n∑
j=1, j 6=i

1
xi − xj

+ λ

n∑
j=1

1
xi + xj

+
1 + λ

xi
= 1, i = 1, 2, . . . , n. (18)

The presence or absence of a locked dislocation at x = 0 will not affect the
equilibrium equations for the dislocation density in the outer region. Hence, we
can repeat the methods of the previous section to find that

xn ∼ 2n
(

1 +
2
π
λ

)
+ 2

1
3 q n−

2
3

(
1 +

(
2
π
− 1

3

)
λ

)
.
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Figure 2. Numerically obtained results for log( 2 x1
λ

)/ logn using a variety of values of n and λ. Results
for n = 4 are shown as �, results for n = 16 are shown as©, results for n = 64 are shown as × and results

for n = 400 are shown as +. The asymptotic approximation log( 2 x1
λ

)/ logn = −1 + 4
π
λ is shown as a

continuous line while the Armstrong-Head formula log( 2 x1
λ

)/ logn = −1 + 1.1λ is shown as a dashed line.

This is in general agreement with Armstrong and Head [1], who found that the
position of the nth dislocation is not noticeably affected by the addition of a locked
dislocation at x = 0. They reached this conclusion by comparing numerical results
for the two cases and finding that they converged as n increased.

However, the locked dislocation will affect the solution in the inner region. In
order to match with the unchanged outer region, we find that the same scalings
apply as for the simple pile-up against a grain boundary. However, the inner system
now takes the form

∞∑
j=1, i 6=j

1
ηi − ηj

+
∞∑
j=1

λ

ηi + ηj
+

1 + λ

ηi
= 0, i = 1, 2, . . .

As before, we consider the case where λ is small and we propose solutions for ηi
as asymptotic power series in λ. This leads us to recover the leading-order system

∞∑
j=1, i 6=j

1
ηi,0 − ηj,0

+
1
ηi,0

= 0, i = 1, 2, . . . (19)

Because of the repulsion from the lock, the i = 1 equation is no longer special and
we can directly use the solution for a pile-up against a lock given by Voskoboinikov
et al. [9]. Using this method, we find that

η1,0 =
α1

2

8
,

where α1 is the first positive zero of the Bessel function J1(x). Thus,

x1 ∼
α1

2

8n1− 4
π
λ
≈ 1.84
n1−1.27λ

. (20)
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Armstrong and Head [1] observed that plots of log x1 against log n based on the
numerical solution of (18) yielded curves that were almost parallel to equivalent
plots of log x1 against log n from the numerical solution of (1). This agrees with
the observation that introducing a locked dislocation does not change the scaling
used in the boundary layer.

Armstrong and Head [1] also found that, when extrapolated to n = 1, the plots
of log x1 against log n based on (18) converged to the same point for all values of
λ. Thus, they obtained an expression for x1 of the form

x1 ≈
1.9

n1−1.1λ
. (21)

Finally, they noted that this agrees well with the approximate result,

x1 ∼
α1

2

8n
≈ 1.84

n
,

obtained by Eshelby et al. [3] for the well-studied problem of a pile-up against a
locked dislocation (i.e. with λ = 0).

4. More general pile-ups

One limitation of [1] is that only pile-ups of screw dislocations are considered. For
edge dislocations, more complicated expressions for the image forces are required.
Additionally, it is possible to encounter pile-ups of edge dislocations where the
plane containing the dislocations is not perpendicular to the plane of the grain
boundary. In the simple case of a bimetallic interface (i.e. an interface between
two elastically isotropic materials with different elastic constants), the full image
stress is given by Head [4] and perpendicular pile-ups of edge dislocations have
been analysed by Kuang and Mura [5] and by Voskoboinikov et al. [7].

In the more general case where there is a planar boundary between two different
elastically anisotropic materials, Tucker [6] gives an expression for the interaction
forces between a pair of straight dislocations. Except in the case of a dramatic
change in material properties across the interface, it is found that the interaction
forces can be dealt with by introducing fictional dislocations at the image points.
These image dislocations will have Burgers vectors that are smaller in magnitude
and generally different in orientation from the Burgers vectors of the original dis-
locations.

Despite this added complexity, it is still possible to exploit a small discrepancy in
elastic properties across the grain boundary in order to obtain asymptotic expres-
sions for the dislocation density and for the locations of the furthest and nearest
dislocations. In some general pile-up, let xi represent the nondimensionalised dis-
tance from the point where the plane of dislocations intersects the grain boundary
to the ith dislocation in the pile-up. Then, the equations for a pile-up of dislocations
will be of the form

n∑
j=1, j 6=i

1
xi − xj

+ ε
n∑
j=1

f(xi, xj) = 1, i = 1, 2, . . . , n, (22)

where ε is a small parameter representing the change in material properties across
the interface and f(xi, xj) is an order one function representing the stress from an
image dislocation at xj that tends to make the dislocation at xi glide.
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By the intrinsic symmetry of linear elasticity, we note that

f(c xi, c xj) = c−1f(xi, xj). (23)

That is, dilating the entire system by a factor of c will reduce all of the interaction
stresses by a factor of c−1.

Following [7] and [8], we now consider the asymptotic limit of (22) as n → ∞.
In the outer region away from the boundary layers, we again rescale space by
introducing x = ξn. This leads to an integral equation of the form

∫ ξ∗0

0

ρ0(ξ′)
ξ − ξ′

+ ε
ρ0(ξ′)
ξ′

k

(
ξ

ξ′

)
dξ′ = 1, (24)

where ξ∗ is the leading order location of the last dislocation, ρ0(ξ) is the leading
order dislocation density and

k

(
ξ

ξ′

)
=
f(ξ, ξ′)
ξ′

.

Note that we are only able to construct k(t) in this way because f(xi, xj) satisfies
(23).

Equation (24) is in the form of the integral equations analysed in [5]. If an
appropriate factorisation can be found for

K(s) =
∫ ∞

0
k(u)us−1 du, (25)

it is possible to use the Wiener-Hopf method to obtain a closed-form solution for
the dislocation density, ρ0(ξ). Even if a Wiener-Hopf factorisation is unworkable,
progress might be made by expressing ρ0(ξ) and ξ∗0 as asymptotic series in powers
of ε and seeking a regular perturbation solution to (24).

The next correction in n to the position of the final dislocation can be obtained
by proposing a rescaling ξ = ξ∗0 + n−

2
3 τ and following the procedure given in [9]

for the boundary layer near the turning point.
In order to find the positions of dislocations in the boundary layer near the grain

boundary, it is necessary to determine the appropriate scaling in this region, which
(unlike the outer scalings) is sensitive to the form of the interaction with the image
dislocations. Following [7], it is possible to proceed using a general inner scaling of
the form x = n−

a

1−a η where 0 < a < 1, leaving a to be determined as a function of
λ. More simply, the analogy with [5] indicates that a will be the largest real root of
K(s) in (0, 1), where K(s) is defined in (25). Even for complicated functions K(s),
an approximation to a(λ) can be obtained by performing a regular perturbation
expansion in powers of λ for the root of K(s) near s = 1

2 .
Once the rescaling has been found, the procedure in the boundary layer near the

grain boundary will be identical to that described in Sections 2.2 and 3 above. As
before, we will find that the location of the first dislocation in a pile-up against a
grain boundary will scale like λn−

a

1−a as λ→ 0 and n→∞, while the location of
the first dislocation in a pile-up against a lock and a grain boundary will scale like
n−

a

1−a .
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Figure 3. ‘Hall-Petch’ exponents obtained from the Armstrong-Head formula (26), shown as a solid line,
and the asymptotic formula (27), shown as a dashed line. Over the physical range of λ values considered,
the exponent never deviates far from −0.5.

5. Discussion

5.1. The Hall-Petch criterion

Armstrong and Head [1] hypothesised that brittle fracture of a polycrystalline
material would first occur when a dislocation becomes locked near a grain boundary
and then a second dislocation is pushed to within a Burger’s vector length of the
locked dislocation. Thus, they considered the stress required to give µb

2πτ x1 = b in
the problem of a pile-up against a grain boundary and a lock, assuming that the
pile-up took place on the scale of a grain so that xn = l, where l is the grain size.

This led to the formula

τcrit =
µ

π

(
1.9
2

(1 + 0.9λ)1−1.1λ

) 1
2−1.1λ

(
l

b

)− 1−1.1λ
2−1.1λ

, (26)

where τcrit is the critical stress for fracture. The equivalent expression based on
equations (6) and (20) is

τ
(0)
crit =

µ

π

(
α1

2

16

(
1 +

2λ
π

)1− 4
π
λ
) 1

2− 4
π
λ
(
l

b

)− 1− 4
π
λ

2− 4
π
λ

. (27)

Although (5) is more accurate than (6), it is not possible to obtain a closed-form
expression for τcrit based on (5) and (20).

As in [1], (27) predicts that τcrit is proportional to a negative power of l that
depends on λ. Figure (3) shows that the exponents based on (26) and (27) never
vary far from −1

2 and the two approaches yield results that are always very close
to each other. For small λ, (27) yields

τcrit ∝ l−( 1
2
− λ
π ). (28)

As noted by Armstrong and Head [1], taking λ = 0 leads to τcrit ∝ l−
1
2 , which is
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a special case of the Hall-Petch criterion:

τcrit = τ0 + k l−
1
2 , (29)

where τ0 and k are material-specific constants obtained by experiment.
However, neither (26) nor (27) can account for the τ0 term in (29). Moreover, it

is unlikely that taking further terms in the asymptotic expansions for x1 and xn
would yield a τ0 term. Instead, τ0 needs to be associated with the Peierls friction
stress or similar mechanism.

5.2. Comparison with other work

It is interesting to note that Armstrong and Head [1] are not the only researchers to
use curve fitting in order to approximate the locations of the nearest and furthest
dislocations in a pile-up. Contemporary with their work, Chou [2] considered the
problem of finding the position of the furthest dislocation when λ = 0 or λ = 1.
In [2], as in [9], singular integral equations were used and the results obtained are
equivalent. Based on his work, Chou [2] hypothesised a linear relationship between
ξn and λ:

ξn = 2 + (π − 2)λ, 0 ≤ λ ≤ 1.

Although this expression fails to incorporate the effects of the boundary layer, we
find that it gives results that are very close to the leading order expression in (3)
for a range of λ values. Equation (6) is, however, a superior approximation to (3)
when λ is small and the correction term in (5) is important unless n is very large.

Wagoner [10] used numerical techniques to find the equilibrium positions of dislo-
cations in pile-ups against interfaces in anisotropic materials. Although no attempt
was made to fit formulae for the locations of the furthest and nearest dislocations,
the position of the dislocation nearest to the interface was estimated by balancing
the forces from the real dislocations in the pile-up with the force from the nearest
image dislocation. This is analogous to the method described in Section 2.2, but
[10] found a surprisingly poor agreement between estimated position and calculated
position. The main reason for this is that [10] did not have the correct scaling for
the dependence of x1 on n. Thus, insights from asymptotic analysis can be used to
obtain results that are not immediately intuitive.

6. Conclusions

We have used the asymptotic methods of Voskoboinikov et al. [8] to obtain ex-
pressions for the locations of the first and last dislocations in a pile-up against a
grain boundary and these expressions have been compared with numerical results.
Our asymptotic expressions have the same form as the formulae obtained by Arm-
strong and Head [1] using curve fitting, but some of the parameters are different.
As expected, the asymptotic expressions are better than the fitted formulae when
n is large and λ is small.

For a pile-up against a grain boundary where the mismatch (and hence λ) is
small, we recovered the same system of equations in the inner region as for a
pile-up against a locked dislocation. This can be explained by observing that the
first dislocation becomes very close to the grain boundary as λ→ 0 and the other
dislocations begin to feel it as if it were locked at the grain boundary. Thus, pile-ups
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against grain boundaries may lead to situations that are physically equivalent to
pile-ups against locks. This is true both for the simple pile-ups of screw dislocations
analysed in detail and for more complicated configurations.
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