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The analytical computation of nuclear gradients has been derived and implemented for the
explicitly correlated second-order Møller-Plesset method (MP2-F12). The implementation has
been accomplished in the Turbomole program package for ansatz MP2-F12/2∗A. A Slater-
type geminal expanded in six Gaussian geminals (STG-6G), a complementary auxiliary basis
set (CABS), and robust density fitting approximations are used. In addition, a second-order
perturbation theory correction for single excitations into the complementary auxiliary basis
set (CABS singles) is included to reduce the Hartree-Fock error. Smooth convergence towards
the basis set limit is observed for a selection of molecules. For computations on dimers of
weakly interacting molecules in small basis sets, explicitly correlated second-order Møller-
Plesset theory outperforms conventional second-order Møller-Plesset theory because basis set
superposition errors are largely avoided at the MP2-F12/2∗A level.
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2 S. Höfener and W. Klopper

1. Introduction

The determination of molecular equilibrium geometries and other stationary points
(e.g., transition-state geometries) is one of the most important tasks of modern ab
initio quantum chemistry, for molecules in electronically excited as well as ground
states. For many quantum-chemical methods, analytical nuclear gradients are avail-
able, which is a prerequisite for computationally efficient geometry optimizations.
Concerning wave-function based methods that account for electron-correlation ef-
fects, analytical first derivatives have been derived and implemented for general
coupled-cluster and configuration-interaction models, that is, basically for all rele-
vant methods [1].

Altough these methods are general in the sense that both single- and
multireference-type methods are included, which are able to handle wave functions
truncated at arbitrary excitation level or which include excitations selected via
a complete active space, the computation of analytical nuclear gradients thus far
has been restricted to coupled-cluster and configuration-interaction wave functions
that are expanded in terms of orbital products. The drawback of orbital-product
expansions, however, is the very slow convergence of the computed results (energies,
geometries, spectra, etc. [2–4]) to the limit of a complete basis set when the orbital
basis set is enlarged. In the present article, we shall be concerned with explicitly
correlated methods. These methods go beyond the orbital-product expansion by
the inclusion of additional two-electron basis functions (geminals). By virtue of
these geminals, it becomes possible to satisfy the electron-electron cusp condition
and to accelerate the basis set convergence towards the limit of a complete basis
set.

The simplest wave-function based method accounting for electron-correlation ef-
fects is the second-order Møller-Plesset (MP2) method. For the standard MP2
theory in terms of an orbital-product expansion, analytical nuclear gradients were
derived and implemented by Pople and co-workers already more than 30 years ago
[5]. In the present work, we derive and implement the computation of analytical
nuclear gradients of the explicitly correlated variant of MP2 theory, which today
is either denoted as MP2-R12 or MP2-F12 theory. Explicitly correlated second-
order Møller-Plesset theory has recently been reviewed in Ref. [6]. Here and in the
following, we shall refer to explicitly correlated theory as MP2-R12 method if the
geminal consists of an orbital product multiplied by r12, the distance between the
two electrons in the two orbitals of the orbital product, and as MP2-F12 method
if the geminal is constructed from a function f(r12) multiplied by an orbital prod-
uct. In particular, we shall in the present article be concerned with the MP2-F12
method, where f(r12) is a Slater-type geminal (STG) of the form

f(r12) = γ−1{1− exp(−γr12)} , (1)

expanded in a basis of Gaussian geminals [7–10].
The computation of certain analytical first derivatives of the MP2-R12 and MP2-

F12 energies have been reported before [11–14], but a number of aspects have not
been accounted for thus far.

In our previous work [14], only the analytical first derivatives needed for the com-
putation of first-order molecular properties had been implemented in the Turbo-
mole program package [15]. In the present article, the implementation of Ref. [14]
is extended to the computation of analytical nuclear gradients.

In Ref. [11], Kordel et al. report the implementation of analytical nuclear gradi-
ents in the Dalton program package [16] at the level of MP2-R12 theory, that is,
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with linear r12 geminals. This implementation had been accomplished for an ansatz
that is usually denoted as “standard approximation A” (cf. Ref. [6]). Furthermore,
in Ref. [11], the auxiliary basis set (ABS) used for the resolution-of-the-identity
(RI) approximation of explicitly correlated theory was identical with the basis set
of atomic orbitals (AO) used to expand the Hartree-Fock molecular orbitals (MO).
The latter basis is referred to as Hartree-Fock basis (HF basis) in the following.
In modern applications of explicitly correlated theory, not this HF basis set but
an especially optimized auxiliary basis set is used for the RI approximation. In
particular, today, researchers in the field almost exclusively use a complementary
auxiliary basis set (CABS) for this approximation [17]. Furthermore, only the MP2-
F12 method using STG’s is currently of interest.

In the present work, analytical nuclear gradients are derived and implemented
for the MP2-F12/2∗A-[T+V] method. Elsewhere, we could show that applying
standard approximation A and the extended Brillouin condition (EBC, indicated
by the asterisk: 2∗; cf. Ref. [6]) is sufficiently accurate for obtaining molecular
geometries close to those obtained at the basis set limit [14]. Therefore, we decided
to restrict the implementation of analytical nuclear gradients to the MP2-F12/2∗A-
[T+V] level. Extending the work towards the MP2-F12/2B-[T+V] level does not
seem worth the effort [14].

Compared with our previous work on analytical first derivatives [11, 14], the new
aspects of the MP2-F12/2∗A-[T+V] analytical nuclear gradients reported in the
present article are the following:

• Use of an complementary auxiliary basis set (CABS) [17];

• Use of the [T+V] approximation [18, 19];

• Use of density fitting [20];

• Inclusion of CABS singles [21, 22].

The consequences of these new aspects will be described in detail in the remainder
of this article. The CABS consists of basis functions that usually are centered at
the positions of the atoms’ nuclei in the molecule. Hence, the CABS changes when
the nuclei are moved when computing the nuclear gradient. This gives rise to CABS
related reorthonormalization terms, that is, terms related to the first derivative of
the CABS overlap matrix (and of overlap matrix elements between the CABS and
the HF basis set). These new terms are discussed in Section 2.3. The [T+V] ap-
proximation involves matrix elements of the kinetic energy (T) and electron-nuclear
attraction (V) operators, and the first derivatives of these matrices thus enter the
expression of the analytical MP2-F12/2∗A-[T+V] nuclear gradient, see Section 2.4.
In the MP2-F12 implementation in Turbomole, all of the two-electron integrals
are computed using density fitting techniques. Hence, the analytical computation
of the first derivatives of these integrals requires taking care of changes in the
density fitting approximation when nuclei are moved (Section 2.5). Finally, when
the MP2-F12 energy is supplemented by a correction for single excitations into
the CABS, then also the analytical nuclear gradient of the corresponding energy
contribution must be considered. This is done in Section 2.6.

Apart from the above mentioned sections, the present article is organized as fol-
lows: In Section 2, we present the MP2-F12 theory and derive its nuclear gradient.
Numerical issues are discussed in Section 3. Then, the performance of the MP2-
F12 method is assessed and compared with conventional MP2 results (Section 4).
Section 5 concludes the article.
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2. Theory

2.1. Projection operators

In explicitly correlated MP2-F12 theory, the first-order wave function is expanded
not only in a basis of double excitations containing the product of two virtual
orbitals (as in standard MP2 theory) but also in a basis of two-electron basis
functions

Q̂12f12|xy〉 , (2)

where f12 = f(r12) is the correlation factor which depends on the interelectronic
distance r12 of electrons 1 and 2. In Eq. (2), |xy〉 = ϕx(1)ϕy(2) denotes a pair of

“F12 geminal” orbitals. The projection operator Q̂12 ensures that the new pairs
are strongly orthogonal on the occupied Hartree-Fock orbitals. Throughout this
article, we will use

Q̂12 = (1− Ô1)(1− Ô2)− V̂1V̂2 , (3)

known as (modified) ansatz 2 in F12 theory [17, 23, 24]. The projection operators
onto the one-particle spaces are given by

Ô =
∑
m

|m〉〈m| , (4)

V̂ =
∑
a

|a〉〈a| , (5)

P̂ =
∑
p

|p〉〈p| , (6)

V̂ ′ =
∑
a′

|a′〉〈a′| , (7)

P̂ ′ =
∑
p′

|p′〉〈p′| . (8)

The geminal orbitals are denoted as x, y. Often, these are active (non-frozen) oc-
cupied orbitals, denoted as i, j, k, l. All occupied orbitals (frozen as well as active)
are denoted as m,n, o. Since a large number of different orbital sets are used in
F12 theory, the index conventions are summarized in Table 1.

In F12 methods, an auxiliary basis set (ABS) is used for the standard approxi-
mation, that is, an approximate resolution of the identity (RI) is inserted to avoid
three- and four-electron integrals [23]. Typically, in the MO basis, this RI basis set
consists of the orbital basis supplemented with a complementary auxiliary basis
set (CABS). Using this CABS, the projection operator Q̂12 is approximated as

Q̂12 ≈ Q̂CABS
12 = 1− Ô1V̂

′
2 − V̂ ′1Ô2 − P̂1P̂2 . (9)

When computing molecular gradients, reorthonormalization terms occur since the
unperturbed molecular orbitals, which are orthonormal at the reference geometry
(x = 0), are no longer orthonormal at the new geometry (x 6= 0). At this new geom-
etry, they are orthonormalized as follows to yield orthonormal molecular orbitals
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(OMO) [25–28]:

|p̃〉 =
∑
r

|r〉[S−
1

2 ]rp , (10)

where S is the overlap matrix at the new geometry. The transformation to the
OMO basis ensures orthonormality of the orbitals, since

〈q̃|p̃〉 =
∑
rs

[S−
1

2 ]qsSsr[S
− 1

2 ]rp = δqp . (11)

The final molecular orbitals at the new geometry are obtained by orbital rotations,

|p〉 = e−κ|p̃〉 , (12)

which are chosen such that κ = 0 at the reference geometry (x = 0). For the various
projection operators, this means that we must write

Ô =
∑
m

∑
qr

e−κ|q〉[S−
1

2 ]qm[S−
1

2 ]mr〈r|eκ , (13)

V̂ =
∑
a

∑
qr

e−κ|q〉[S−
1

2 ]qa[S
− 1

2 ]ar〈r|eκ , (14)

P̂ =
∑
qr

|q〉[S−1]qr〈r| , (15)

V̂ ′ = P̂ ′ − P̂ , (16)

P̂ ′ =
∑
q′r′

|q′〉[S−1]q′r′〈r′| . (17)

Note that the projection operators P̂ and P̂ ′ are invariant to orbital rotations.
Furthermore, V̂ ′ is expressed as P̂ ′− P̂ because the complementary auxiliary basis
set {a′} must remain orthogonal on the orbital basis set {p} for all geometries x.

2.2. The MP2-F12/2∗A-[T+V] Lagrangian

For second-order Møller-Plesset perturbation theory, the inclusion of two-electron
basis functions (geminals) in the F12 fashion is formulated using the Hylleraas
functional, which consists of a conventional MP2 part, a pure F12 part, and a
coupling term,

HMP2-F12 = HMP2 +HF12 +Hcoupling , (18)

where HMP2 contains the Hartree-Fock contribution. In the following, we will only
discuss the F12 contributions to the total MP2-F12 gradient in detail. The con-
ventional MP2 gradient is considered to be available.

In the framework of molecular gradients, a Lagrange functional L is constructed
that is variational with respect to both orbital rotations and amplitudes. In ansatz
2∗, by virtue of the EBC, the coupling term Hcoupling in Eq. (18) vanishes, and the
Lagrangian consists of the conventional MP2 part, the pure F12 contributions, and
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6 S. Höfener and W. Klopper

the Brillouin condition Fma = 0 as constraint,

L = HMP2 +
∑
ma

κ̄maFma +
∑
Ij

κ̄IjFIj + 2
∑
ij

∑
xy

dxyij 〈x̃ỹ|e
κf12Q̂12g12e

−κ |̃ij̃〉

+
∑
vw

∑
xy

evwxy P̂xy,vw〈x̃ỹ|eκf12Q̂12[T̂12, f12]e−κ|ṽw̃〉 , (19)

where T̂12 denotes the sum of the operators of kinetic energy of electrons 1 and 2.
The operator P̂xy,vw symmetrizes an arbitrary four-index object E(x, y, v,w) as

P̂xy,vwE(x, y, v,w) =
1

2
{E(x, y, v,w) + E(v,w,x, y)} . (20)

g12 = 1/r12 is the operator of interelectronic repulsion. With cxyij being the F12
amplitudes, let us introduce the quantities:

dxyij = 2cxyij − c
yx
ij , (21)

evwxy =
∑
ij

cxyij d
vw
ij . (22)

Inserting the projection operators into Eq. (19) yields different types of integrals.
Except for integrals over the interelectronic distance, g12, integrals over the cor-
relation factor f12 have to be evaluated. Additionaly, integrals over the product
f12g12 have to be computed, as well as f2

12r
2
12, arising from the kinetic energy oper-

ator acting on the correlation factor. These will be denoted fg and f2r2 integrals,
respectively. Furthermore, the integral over the commutator

t̂12 = [T̂12, f12] (23)

needs to be computed. Although it can be calculated analytically, we introduce an
additional RI approximation (using ABS) to avoid the calculation of these integrals
[18]. This RI approximation is most easily invoked using the transformed orbitals

|p̆〉 = P̂ ′ĥ|p〉 =
∑
r′

|r′〉〈r′|ĥ|p〉 , (24)

where ĥ denotes the sum of kinetic energy and electron-nuclear attraction. The
inclusion of the latter has turned out to increase numerical stability (using ĥ is de-
noted as [T+V] approximation) [29]. Using these transformed orbitals, an integral
over the commutator can be expressed as

〈pq|[T̂12, f12]|rs〉 ≈ X̆pq,rs〈pq|f12|rs〉 , (25)

where the operator X̆pq,rs carries out the appropriate transformations,

X̆pq,rsE(p, q, r, s) = E(p̆, q, r, s) + E(p, q̆, r, s)− E(p, q, r̆, s)− E(p, q, r, s̆) . (26)

Here, E is an arbitrary four-index object.
As for all gradients, there are three types of contributions for MP2-F12 gradi-

ents: Differentiated one- and two-electron integrals, orbital response, and change
of metric. In the framework of density fitting, differentiated two-electron integrals
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are not computed explicitly but rather split into their two- and three-index con-
tributions (vide infra). Hence, analytical first derivatives with respect to x can be
calculated as (cf. Ref. [30])

L
[x]
F12 =

∑
µ′ν′

Hao
µ′ν′h

[x]
µ′ν′ −

∑
µ′ν′

F eff,ao
µ′ν′ S

[x]
µ′ν′

+
∑
µνP

fg,f2r2∑
f

f∆P ,ao
µν (µν|f12|P )[x] −

∑
PQ

g,f ,fg,f2r2∑
f

fγPQ(P |f12|Q)[x]

+
∑
µ′ν′P

g,f∑
f

f∆P ,ao
µ′ν′ (µ′ν ′|f12|P )[x] , (27)

where the upper index [x] denotes the partial derivative according to Lagrange’s
method, and where Feff,ao is the effective Fock matrix taking care of the reorthonor-
malization of the united basis (HF + CA basis). The differentiated one-electron
integrals arising from the [T+V] approximation are contracted with the density
Hao. Greek letters indicate atomic orbitals while the superscript “ao” labels the
contravariant quantities that transform as the MO’s. In the following, we will derive
expressions for the various contributions. The computation of the orbital rotation
multipliers κ̄ has been described elsewhere [14].

2.3. New terms due to the CABS

We are now in the position to take derivatives of the projection operators including
the operator Q̂CABS

12 . Let us first consider Ô, for which we write

∂Ô

∂x

∣∣∣∣∣
x=0

=
∂Ô

∂x

∣∣∣∣∣
x=0,reorth

+
∂Ô

∂x

∣∣∣∣∣
x=0,other

. (28)

The first term on the r.h.s. collects all terms in which the differentiated overlap
matrix S[x] appears, where it is understood that only the overlap matrix elements
in the AO basis are differentiated with respect to x, not the molecular orbitals.
Since

∂S−1/2

∂x

∣∣∣∣
x=0

= −1

2
S[x] , (29)
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we obtain

∂Ô

∂x

∣∣∣∣∣
x=0,reorth

= −1

2

∑
mr

(
|r〉S[x]

rm〈m|+ |m〉S[x]
mr〈r|

)
, (30)

∂V̂

∂x

∣∣∣∣∣
x=0,reorth

= −1

2

∑
ar

(
|r〉S[x]

ra 〈a|+ |a〉S[x]
ar 〈r|

)
, (31)

∂P̂

∂x

∣∣∣∣∣
x=0,reorth

= −
∑
qr

|q〉S[x]
qr 〈r| , (32)

∂P̂ ′

∂x

∣∣∣∣∣
x=0,reorth

= −
∑
q′r′

|q′〉S[x]
q′r′〈r

′| , (33)

∂V̂ ′

∂x

∣∣∣∣∣
x=0,reorth

= −
∑
q′r′

|q′〉S[x]
q′r′〈r

′|+
∑
qr

|q〉S[x]
qr 〈r|

= −
∑
a′b′

|a′〉S[x]
a′b′〈b

′| −
∑
a′r

|a′〉S[x]
a′r〈r| −

∑
qb′

|q〉S[x]
qb′〈b

′| . (34)

Note that κ = 0 at the reference geometry (x=0). For the strong-orthogonality

projection operator Q̂CABS
12 , we obtain

∂Q̂CABS
12

∂x

∣∣∣∣∣
x=0,reorth

=
∑
pqr

S[x]
qr (|pq〉〈pr|+ |qp〉〈rp|)

+
1

2

∑
mra′

S[x]
rm

(
|ra′〉〈ma′|+ |a′r〉〈a′m|

)
+

1

2

∑
mra′

S[x]
mr

(
|ma′〉〈ra′|+ |a′m〉〈a′r|

)
+
∑
ma′b′

S
[x]
a′b′

(
|ma′〉〈mb′|+ |a′m〉〈b′m|

)
+
∑
ma′r

S
[x]
a′r

(
|ia′〉〈mr|+ |a′m〉〈rm|

)
+
∑
mqb′

S
[x]
qb′

(
|mq〉〈mb′|+ |qm〉〈b′m|

)
. (35)

It is obvious how these derivatives contribute to the renormalization term
−
∑

µ′ν′ F
eff,ao
µ′ν′ S

[x]
µ′ν′ . The fourth term on the r.h.s. of Eq. (35), for example, yields

the following contribution to the CABS-CABS block of F eff,ao
µ′ν′ :

F eff,ao
a′b′ ← − 4

∑
m

∑
ij

∑
xy

dxyij 〈xy|f12|ma′〉〈mb′|g12|ij〉

− 2
∑
m

∑
vw

∑
xy

evwxy P̂xy,vw〈xy|f12|ma′〉〈mb′|[T̂12, f12]|vw〉 . (36)
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Of course, the [T̂12, f12] integrals in Eq. (36) are evaluated using the [T+V] ap-
proximation. The other terms on the r.h.s. of Eq. (35) contribute accordingly to

other parts of F eff,ao
µ′ν′ .

2.4. New terms due to the [T+V] approximation

In the [T+V] approximation, the integrals over the commutator t̂12 = [T̂12, f12]

are computed using the matrix representation of the one-electron Hamiltonian ĥ
in the united basis set {p′} (HF + CA basis) and two-electron integrals over f12.
Hence, apart from differentiated two-electron f12 integrals, renormalization terms
occur with respect to the united basis set {p′}. Morover, differentiated integrals of
the one-electron Hamiltonian must be accounted for.

Let us first consider the renormalization terms arising from the RI approximation
in X̆pq,vw〈pq|f12|vw〉, that is, from the projection operator P̂ ′,

∂X̆pq,vw〈pq|f12|vw〉
∂x

∣∣∣∣∣
x=0,reorth

= −
∑
q′r′

S
[x]
q′r′
{
hpq′〈r′q|f12|vw〉

+ hqq′〈pr′|f12|vw〉 − hq′v〈pq|f12|r′w〉 − hq′w〈pq|f12|vr′〉
}

+ other terms . (37)

The “other terms” refer to renormalization terms arising from the orbitals p, q, v,w.
From this derivative of P̂ ′, we obtain the following contribution to the matrix

elements F eff,ao
µ′ν′ ,

F eff,ao
µ′ν′ ← −2

∑
vw

∑
xy

evwxy P̂xy,vw

×{
∑
pq

〈xy|f12|pq〉
[
hpq′〈r′q|f12|vw〉 − hq′v〈pq|f12|r′w〉

]
+
∑
mb′

〈xy|f12|mb′〉
[
hmq′〈r′b′|f12|vw〉+ hb′q′〈mr′|f12|vw〉

− hq′v〈mb′|f12|r′w〉 − hq′w〈mb′|f12|vr′〉
]}

. (38)

Next, we consider the contributions in which the differentiated one-electron Hamil-
tionan integrals occur,

∂X̆pq,vw〈pq|f12|vw〉
∂x

∣∣∣∣∣
x=0,h[x]

=
∑
r′

{
h

[x]
pr′〈r

′q|f12|vw〉+ h
[x]
qr′〈pr

′|f12|vw〉

− h[x]
r′v〈pq|f12|r′w〉 − h[x]

r′w〈pq|f12|vr′〉
}

(39)

This leads to the following contributions to the density matrix elements Hpr′ , Hmr′ ,
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Hb′r′ , and Hr′v, respectively:

Hpr′ ← −2
∑
vw

∑
xy

evwxy P̂xy,vw

∑
q

〈xy|f12|pq〉〈r′q|f12|vw〉 ,

Hmr′ ← −2
∑
vw

∑
xy

evwxy P̂xy,vw

∑
b′

〈xy|f12|mb′〉〈r′b′|f12|vw〉 ,

Hb′r′ ← −2
∑
vw

∑
xy

evwxy P̂xy,vw

∑
m

〈xy|f12|mb′〉〈mr′|f12|vw〉 ,

Hr′v ←
∑
w

∑
xy

(
evwxy + exyvw

)(∑
pq

〈xy|f12|pq〉〈pq|f12|r′w〉

+
∑
mb′

[
〈xy|f12|mb′〉〈mb′|f12|r′w〉+ 〈xy|f12|b′m〉〈b′m|f12|r′w〉

])
. (40)

2.5. New terms due to density fitting

Let us introduce the following intermediate densities:

dfgxy,ij = 2dxyij (41)

df
2r2

xy,vw = exyvw (42)

dfxy,b′m = −4
∑
ij

dxyij 〈b
′m|g12|ij〉 −

∑
vw

(exyvw + evwxy )〈b′m|t12|vw〉 (43)

dfxy,pq = −2
∑
ij

dxyij 〈pq|g12|ij〉 −
1

2

∑
vw

(exyvw + evwxy )〈pq|t12|vw〉 (44)

dgij,b′m = −4
∑
xy

dxyij 〈b
′m|f12|xy〉 (45)

dgij,pq = −2
∑
xy

dxyij 〈pq|f12|xy〉 (46)

dtvw,b′m = −
∑
xy

(exyvw + evwxy )〈xy|f12|b′m〉 (47)

dtvw,pq = −1

2

∑
xy

(exyvw + evwxy )〈xy|f12|pq〉 (48)

Page 10 of 22

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

March 22, 2010 12:16 Molecular Physics Hoefener-Klopper

Molecular Physics 11

Using these intermediates, the gradient contribution from differentiated two-
electron integrals can be written as

E
[x]
F12 ←

∑
ij

∑
xy

dfgxy,ij〈xy|f12g12|ij〉[x] +
∑
xy,vw

df
2r2

xy,vw〈xy|f2
12r

2
12|vw〉[x]

+
∑
xy

∑
b′m

dfxy,b′m〈xy|f12|b′m〉[x] +
∑
xy

∑
pq

dfxy,pq〈xy|f12|pq〉[x]

+
∑
ij

∑
b′m

dgij,b′m〈b
′m|g12|ij〉[x] +

∑
ij

∑
pq

dgij,pq〈pq|g12|ij〉[x]

+
∑
vw

∑
b′m

dtvw,b′m〈b′m|t12|vw〉[x] +
∑
vw

∑
pq

dtvw,pq〈pq|t12|vw〉[x] . (49)

The two-electron integrals over the Coulomb operator g12 are evaluated using “stan-
dard” density fitting, whereas all other integrals are computed using robust density
fitting. When computed by means of robust density fitting, the general structure
of a differentiated integral is for all integrals x = fg, f2r2, f :

(µν|x12|κλ)
[x]
DF

=
∑
P

(µν|x12|P )[x] gΓPκλ +
∑
P

gΓPµν(P |x12|κλ)[x]

+
∑
P

[xΓPµν +x Γ̃Pµν ](P |g12|κλ)[x] +
∑
P

(µν|g12|P )[x][xΓPκλ +x Γ̃Pκλ]

−
∑
PQ

[ gΓPµν
xΓ̃Qκλ + gΓPκλ

xΓ̃Qµν + xΓPµν
gΓQκλ + gΓQµν

xΓPκλ](P |g12|Q)[x]

−
∑
PQ

gΓPµν(P |x12|Q)[x] gΓQκλ , (50)

where we have used the abbreviation for (e.g., for instance x = f),

fΓPκλ =
∑
Q

(P |g12|Q)−1(Q|f12|κλ) =
∑
Q

(P |g12|Q)−1/2FQκλ , (51)

f Γ̃Pκλ = −
∑
QR

(P |g12|Q)−1/2UfQRG
R
κλ , (52)

and

∂

∂x
M−1 = −M−1M[x]M−1 . (53)

Note that the differentiated two-electron integrals are not evaluated explictly.
Rather, they are contracted on the fly with appropriate two- and three-index den-
sities, respectively.

In the following two sections, we present the gradient expressions involving the
differentiated two- and three-index integrals arising from the density fitting ap-
proximation.
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2.5.1. Differentiated two-index integrals

According to Eq. (27), the contributions from the differentiated two-index inte-
grals have the structure

E[x] ←
∑
PQ

(P |f12|Q)[x] · fγPQ (54)

for various two-electron operators f. Collecting all terms from Eq. (49) yields

fgγPQ = −
∑
xy

∑
ij

dfgxy,ij
gΓPxi

gΓQyj , (55)

f2r2γPQ = −
∑
xyvw

df
2r2

xy,vw
gΓPxv

gΓQyw , (56)

fγPQ = +
∑
xy

{∑
b′m

dfxy,b′m
gΓPxb′

gΓQym +
∑
pq

dfxy,pq
gΓPxp

gΓQyq

}

+
∑
vw

{∑
b′m

dtvw,b′m( gΓ̆Pvb′
gΓQwm + gΓPvb′

gΓ̆Qwm)

+
∑
pq

dtvw,pq(
gΓ̆Pvp

gΓQwq + gΓPvp
gΓ̆Qwq)

}
. (57)

The corresponding expression for gγPQ (i.e., the density to be contracted with the
differentiated two-index Coulomb integrals) is

gγPQ = −
∑
xyvw

df
2r2

xy,vw

{
gΓPxv

f2r2Γ̃Qyw + gΓPyw
f2r2Γ̃Qxv + f2r2ΓPxv

gΓQyw + gΓQxv
f2r2ΓPyw

}
−
∑
xy

∑
ij

dfgxy,ij

{
gΓPxi

fgΓ̃Qyj + gΓPyj
fgΓ̃Qxi + fgΓPxi

gΓQyj + gΓQxi
fgΓPyj

}
−
∑
xy

∑
pq

dfxy,pq

{
gΓPxp

f Γ̃Qyq + gΓPyq
f Γ̃Qxp + fΓPxp

gΓQyq + gΓQxp
fΓPyq

}
−
∑
xy

∑
b′m

dfxy,b′m

{
gΓPxb′

f Γ̃Qym + gΓPym
f Γ̃Qxb′ + fΓPxb′

gΓQym + gΓQxb′
fΓPym

}
−
∑
vw

∑
pq

dtvw,pqX̆vwpq

{
gΓPvp

f Γ̃Qwq + gΓPwq
f Γ̃Qvp + fΓPvp

gΓQwq + gΓQvp
fΓPwq

}
−
∑
vw

∑
b′m

dtvw,b′mX̆vwb′m

{
gΓPvb′

f Γ̃Qwm + gΓPwm
f Γ̃Qvb′ + fΓPvb′

gΓQwm + gΓQvb′
fΓPwm

}

−
∑
ij

{∑
b′m

dgij,b′m
gΓPib′

gΓQjm +
∑
pq

dgij,pq
gΓPip

gΓQjq

}
. (58)
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2.5.2. Differentiated three-index integrals

In analogy to the previous section, three-index quantities contribute to the gra-
dient as

E[x] ←
∑
µνP

(µν|f12|P )[x] · f∆P ,ao
µν . (59)

Note that for convenience, the three-index contributions are expressed using a back
transformation,

fg∆P ,ao
µν =

∑
xy

∑
ij

dfgxy,ij

{
CxµCiν

gΓPyj + CyµCjν
gΓPxi

}
(60)

f2r2∆P ,ao
µν =

∑
xyvw

df
2r2

xy,vw

{
CxµCvν

gΓPyw + CyµCwν
gΓPxv

}
f∆P ,ao

µ′ν′ = −
∑
xy

∑
b′m

dfxy,b′m

{
Cxµ′Cb′ν′

gΓPym + CyµCmν
gΓPxb′

}
−
∑
vw

∑
b′m

dtvw,b′mX̆vwb′m

{
Cvµ′Cb′ν′

gΓPwm + CwµCmν
gΓPvb′

}
−
∑
xy

∑
pq

dfxy,pq

{
Cxµ′Cpν′

gΓPyq + Cyµ′Cqν′
gΓPxp

}
(61)

−
∑
vw

∑
pq

dtvw,pqX̆vw,pq

{
Cvµ′Cpν′

gΓPwq + Cwµ′Cqν′
gΓPvp

}
. (62)

Note that for the operators f12 and g12, the back transformation must be carried
out in the united basis due to the [T+V] transformation.

g∆P ,ao
µ′ν′ =

∑
xy

∑
ij

dfgxy,ij

{
Cxµ′Ciν′ [ fgΓPyj + fgΓ̃Pyj ] + Cyµ′Cjν′ [ fgΓPxi + fgΓ̃Pxi]

}
+
∑
xy

∑
vw

df
2r2

xy,vw

{
Cxµ′Cvν′ [ f

2r2ΓPyw + f2r2Γ̃Pyw] + Cyµ′Cwν′ [ f
2r2ΓPxv + f2r2Γ̃Pxv]

}
+
∑
ijpq

dgpq,ij
{
Ciµ′Cpν′

gΓPip + Cjµ′Cqν′
gΓPjq

}
+
∑
ijb′m

dgb′m,ij

{
Ciµ′Cb′ν′

gΓPip + Cjµ′Cmν′
gΓPjm

}
+
∑
xy

∑
pq

dfxy,pq

{
Cxµ′Cpν′ [ fΓPyq + f Γ̃Pyq] + Cyµ′Cqν′ [ fΓPxp + f Γ̃Pxp]

}
+
∑
xy

∑
b′m

dfxy,b′m

{
Cxµ′Cb′ν′ [ fΓPym + f Γ̃Pym] + Cyµ′Cmν′ [ fΓPxb′ + f Γ̃Pxb′ ]

}
+
∑
vw

∑
pq

dtvw,pqX̆vwpq

{
Cvµ′Cpν′ [ fΓPwq + f Γ̃Pwq] + Cwµ′Cqν′ [ fΓPvp + f Γ̃Pvp]

}
+
∑
vw

∑
b′m

dtvw,b′mX̆vwb′m

{
Cvµ′Cb′ν′ [ fΓPwm + f Γ̃Pwm]

+ Cwµ′Cmν′ [ fΓPvb′ + f Γ̃Pvb′ ]
}

(63)
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2.6. New terms due to CABS singles

When computing the CABS singles energy, we correct for the Hartree-Fock basis
set error by means of second-order perturbation theory,

HS =
∑
mn

∑
a′b′

ca
′

m〈a′|Q̂(SmnF̂ − Fmn)Q̂|b′〉cb′n + 2
∑
m

∑
a′

ca
′

m〈a′|Q̂F̂ |m〉 , (64)

with Q̂ = 1− P̂ . Note that this expression does not account for single excitations
into the HF basis, since we work within the EBC (fa

′

a ≈ 0).
In the original implementation, when computing the CABS singles energy, we

used an approximated RI-JK Fock matrix whenever one index is in the CABS but
the exact Fock matrix for the occupied-occupied matrix elements Fmn. Due to these
matrix elements, which depend on exact four-index two-electron integrals, differ-
entiated four-index integrals would have entered the expression for the analytical
nuclear gradient. To avoid the calculation of differentiated four-index integrals, we
here invoke the RI-JK approximation also when computing the occupied-occupied
matrix elements Fmn. Numerical tests showed that the change in energy due to
invoking the RI-JK approximation for the occupied-occupied matrix elements is
completely negligible compared with the remaining basis set errors.

2.6.1. Differentiated integrals

We obtain for the derivatives of the one-electron integrals

E
[x]
S ←

∑
mn

(∑
a′b′

ca
′

m(δmnh
[x]
a′b′ − δa′b′h

[x]
mn)cb

′

n + 2
∑
a′

ca
′

mh
[x]
ma′

)
. (65)

Furthermore, also the differentiated two-electron integrals are taken into account

E
[x]
S ←

∑
mn

(∑
a′b′

ca
′

m(δmnG
[x]
a′b′ − δa′b′G

[x]
mn)cb

′

n + 2
∑
a′

ca
′

mG
[x]
ma′

)
, (66)

where Gp′q′ denotes the sum of Coulomb and exchange contributions in the RI-JK
approximation.

2.6.2. Contributions to the effective Fock matrix

For the effective Fock matrix, we obtain contributions from the outer orbitals

E
[x]
S ← −

∑
a′m

da′m

(∑
c′

S
[x]
a′c′Fc′m +

∑
o

S[x]
omFa′o + 2

∑
r

S
[x]
a′rFrm

)

−1

2

∑
a′b′

da′b′

(∑
c′

S
[x]
a′c′Fc′b′ +

∑
c′

S
[x]
b′c′Fc′a′ + 4

∑
o

S
[x]
a′oFob′

)

+
1

2

∑
mn

dmn

(
S[x]
mrFrn + S[x]

nrFrm

)
. (67)

with

dmn =
∑
a′

ca
′

mc
a′

n , da′b′ =
∑
m

ca
′

mc
b′

m, da′m = dma′ = ca
′

m . (68)
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From the Coulomb and exchange operators, we obtain

F eff,S
or ← −1

2

∑
a′b′

da′b′(1 + P̂ro)
(
2(a′b′|g12|ro)− (a′r|g12|b′o)

)
+

1

2

∑
mn

dmn(1 + P̂ro) (2(mn|g12|ro)− (mr|g12|no))

−
∑
a′m

da′m(1 + P̂ro)
(
2(ma′|g12|ro)− (mr|g12|a′o)

)
, (69)

where P̂roE(r, o) = E(r, o) + E(o, r).

3. Computational details

3.1. General remarks

We have used Dunning’s orbital basis sets aug-cc-pVXZ with X = D, T, Q, 5
[31, 32] together with the MP2 fitting basis sets C-aug-cc-pwCV{T,Q,5}Z for X =
D, T, Q. For the aug-cc-pV5Z orbital basis, due to the lack of a C-aug-cc-pwCV6Z
MP2 fitting basis, we used the C-aug-cc-pV6Z MP2 fitting basis [33, 34]. Note that
also for the standard MP2 calculations, we have used the C-aug-cc-pwCV(X+1)Z
MP2 fitting basis, that is, one cardinal number higher than what is usually done.
For the RI-JK approximation, we have applied the auxiliary basis sets JK-aug-
cc-pVXZ [35]. For the intrinsic RI approximation of F12 theory, we have used the
CABS of Yousaf and Peterson [36].

The convergence criterion for the density-matrix norm was set to 10−9. The
geometries were considered to be optimized when a change less than 10−8 Eh in
the energy and less than 10−4 Eh/a0 in the gradient was reached. Tightening the
convergence criteria did not affect the significant digits reported. The frozen-core
approximation was applied in all of the calculations.

For conventional methods using density fitting, the HF basis and the level of
correlation treatment should be the factors that limit accuracy, whereas errors due
to integral screening or density fitting should be negligible. With respect to the
CABS, one has to distinguish between CABS as auxiliary basis for the MP2-F12
method and as basis for the computation of the CABS singles energy correction.
Concerning the use as auxiliary basis, we note that the total basis for the RI
approximation of MP2-F12 theory consists of the HF basis supplemented with the
CABS. Hence the importance of the CABS decreases with increasing HF basis,
because then the HF basis already becomes sufficiently large.

3.2. Density fitting error

As pointed out in Section 2, robust density fitting is applied to all two-electron
integrals in our explicitly correlated methods. Since thus far no density fitting
auxiliary basis sets have been optimized especially for the F12 methods, it is not a
priori clear, which (non-optimized) auxiliary basis sets one should select. Typically,
as a default, when using an aug-cc-pVXZ orbital basis in conjunction with F12
geminals, we use the C-aug-cc-pwCV(X+1)Z MP2 fitting basis for the density
fitting approximation. This large MP2 fitting basis is selected to be on the safe
side. It is taken with increased cardinal number, and furthermore, it is a fitting
basis that would allow for correlating the core electrons.
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The effect of the MP2 fitting basis is investigated by performing calculations on
C2H4 and one of its dimer structures. Selected results are summarized in Table 2. It
is observed for the C2H4 molecule that different density fitting basis sets yield the
same geometry when the explicitly correlated amplitudes are optimized (var-MP2-
F12 approach). This is not true for its dimer. Using the var-MP2-F12 approach,
the differences in the optimized dimer geometries are significant. When the C-aug-
cc-pwCVTZ is used as MP2 fitting basis, the intermolecular distance is 4 pm longer
than when the C-aug-cc-pwCVQZ or C-aug-cc-pwCV5Z MP2 fitting basis sets are
used. Fortunately, we find no differences in the optimized dimer geometries when
the explicitly correlated amplitudes are kept fixed (fix-MP2-F12 approach) [37].
Hence, it seems that in particular the nondiagonal elements of the matrices B and
V of F12 theory are sensitive to the MP2 fitting basis in this weakly interacting
system. Further investigations of the requirements on the MP2 fitting basis set
appear to be needed, but treating a weakly interacting system with the var-MP2-
F12 approach is certainly a special and challenging case.

4. Results

4.1. Molecules

Table 3 shows the convergence of the geometries of selected molecules using the
var -MP2-F12/2∗A-[T+V] method. The geometries exhibit a smooth and fast con-
vergence to the basis set limit. Even for the small double-ζ basis set, reasonable
results are obtained both in terms of energies and geometrical parameters (i.e.,
bond lengths and angles). See also Ref. [38]. The geometries are improved, that
is, brought closer to the corresponding basis set limit geometries, by including the
CABS singles energy correcions. By accounting for CABS singles in a given aug-cc-
pVXZ basis, the optimized geometries are close to those obtained in the next larger
aug-cc-pV(X+1)Z basis without CABS singles. Basis set convergence is practically
reached at the quadruple-ζ level. Calculations with fixed F12 amplitudes yield very
similar results.

In Table 3, the row denoted as “CABS” displays the results obtained with the
larger C-aug-cc-pwCV(X+2)Z MP2 fitting basis. The effect of taking this larger
fitting basis appears to be negligible.

4.2. Hydrogen-bonden complexes

We have first used the fix -MP2-F12/2∗A-[T+V] approach for the hydrogen-bonded
complexes, that is, the approach with fixed F12 amplitudes. Results of geometry op-
timizations of HF..H2O and NH3..H2O are summarized in Table 4. The geometries
of the individual molecules and their dimers have been optimized independently,
and hence, the reported energy differences are equilibrium binding energies (−De).

We observe that basis sets larger than double-ζ provide a smooth and rapid
convergence to the basis set limit both for binding energies and intermolecular
distances. At the aug-cc-pV5Z level, the inclusion of CABS singles has little effect,
and we expect that we have approached the basis set limit closely at this level.

Next, we assess the performance of the var -MP2-F12/2∗A-[T+V] approach (Ta-
ble 5). When using the var approach, in which all F12 amplitudes are optimized,
the results may be slightly corrupted by the so-called “geminal basis set superpo-
sition error” (geminal BSSE) [39]. This error may occur because pairs of occupied
orbitals located on one fragment may be correlated by geminals consisting of a
Slater-type geminal muliplied by geminal orbitals that are located on the other
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fragment. To investigate this geminal BSSE, we decided to use a large MP2 fitting
basis (aug-cc-pwCV(X+2)Z in place of aug-cc-pwCV(X+1)Z) to avoid density fit-
ting errors. Indeed, when comparing the results of Tables 4 and 5, we observe that in
the aug-cc-pVDZ and aug-cc-pVTZ basis sets, the binding energies obtained from
the var -MP2-F12 approach are more negative than those obtained from the fix -
MP2-F12 approach. In fact, the latter approach yields results closer to the basis set
limit. Considering that the fix -MP2-F12 approach is computationally less involved
than the var -MP2-F12 approach, and considering that the var -MP2-F12 approach
requires a larger MP2 fitting basis, it is clear that the fix -MP2-F12 approach is the
method of choice for studies of weakly interacting complexes.

Increasing the CABS in the fix -MP2-F12 approach (Table 4) leads to increased
intermolecular distances of 0.23 pm and 0.12 pm, respectively, for HF..H2O and
NH3..H2O in the double-ζ orbital basis (cf. row denoted “CABS”). Thus, the
double-ζ CABS appears to be slightly too small. However, in the larger orbital
basis sets, the effect of the CABS is much smaller, of the order of only 0.05 pm or
less.

4.3. Comparison with standard MP2 results

In this section, we shall compare our MP2-F12 results with the standard MP2
approach. We shall consider the same two dimers as in the previous section as well
as the water molecule.

Table 6 shows the convergence of the bond length and bond angle of the water
molecule, as obtained from geometry optimizations. The correlation energy as well
as the geometrical parameters converge smoothly to their basis set limits. Concern-
ing the geometry, one may consider the geometry being converged with respect to
the basis set at the aug-cc-pV5Z level. However, even at this level, the error in
the second-order correlation energy is of the order of 7.5 mEh. When perform-
ing a single-point MP2-F12/aug-cc-pV5Z calculation at the standard MP2/aug-
cc-pV5Z geometry, however, the basis set limit second-order correlation energy is
obtained. In this respect, it seems legitimate to optimize equilibrium geometries
at the standard MP2 level in conjunction with MP2-F12 computations of the final
total energy.

A slightly different picture is observed for the dimers (Table 7). A fortuitous
error compensation occurs at the standard MP2 level when the dimer geometries
are optimized without correction for the basis set superpostion error (BSSE) by
means of a function counterpoise (CP) correction. This error compensation occurs
since the basis set truncation error of the orbital-product approach partially cancels
the BSSE. It is most pronounced for the calculations in the aug-cc-pVDZ basis.
Without CP correction, the intermolecular bond lengths are ca. 0.7 pm longer than
the basis set limit value for both complexes. A geometry optimization including
CP corrections, however, yields much larger bond lengths, ca. 5–6 pm longer. The
interaction energies are too large in magnitude without CP correction while they
are too small when the CP correction is applied.

4.4. Comparison with literature data

For the dimers studied here, only few calculations at the basis set limit are known,
see Table 8. Concerning the HF..H2O complex, a good agreement is obtained when
comparing our results with literature data. For example, in Ref. [40], an intermolec-
ular distance of 171.44 pm was computed using a quintuple-ζ orbital basis, which
may be compared with our standard MP2/aug-cc-pV5Z value of 171.43 pm (Ta-
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ble 7). The fact that we use density fitting may explain the difference of 0.01 pm. In
Ref. [40], the authors emphasize that a counterpoise correction has to be carried out
for every HF basis. Moreover, it is unclear whether Q5 extrapolations or sixtuple-ζ
results exhibit higher accuracy (both corrected for BSSE) [41]. Compared with the
basis set limit computed in this work, the MP2/aug-cc-pV5Z intermolecular dis-
tance is about 0.6 pm too long when corrected for BSSE (0.1 pm too short without
correcting).

The large counterpoise corrections show that the standard MP2 results converge
only slowly to the basis set limit. In contrast, the MP2-F12 method provides results
much closer to the basis set limit (Table 4). We expect that our MP2-F12 results
for the water..ammonia complex are similarly accurate.

5. Conclusions

In the present article, we have reported the implementation of analytical nuclear
gradients of the explicitly correlated Møller-Plesset second-order energy. In par-
ticular, the implementation has been accomplished for the MP2-F12/2∗A-[T+V]
model as implemented in the Turbomole program package. Equilibrium geome-
tries close to the limit of a complete basis are obtained at the MP2-F12/2∗A-[T+V]
level already in relatively small basis sets. Concerning weakly (hydrogen-bonded)
complexes, it is strongly recommended to use the MP2-F12/2∗A-[T+V] method
in the fashion, in which the geminal amplitudes are kept fixed (fix-MP2-F12 ap-
proach). The fix-MP2-F12 approach appears less amenable to shortcomings in the
MP2 fitting basis for the density fitting approximation, and the fix-MP2-F12 ap-
proach is free of geminal BSSE.
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[14]S. Höfener, C. Hättig and W. Klopper, Z. Phys. Chem. (in press).
[15]Turbomole, v6.0. See: www.turbomole.com .
[16]Dalton, a molecular electronic structure program, release 2.0, 2005. See:

www.kjemi.uio.no/software/dalton/dalton.html .
[17]E.F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
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Table 1. Summary of index conventions.

p, q, r, . . . orbitals in HF basis
i, j, k, l active occupied orbitals
I, J , K, L frozen occupied orbitals
m, n, o active and frozen occupied orbitals
a, b, c, . . . active virtual orbitals in finite basis
α′, β′, γ′, . . . complementary virtual orbitals in formally complete basis
a′, b′, c′, . . . CABS representation of complementary virtual orbitals
p′, q′, r′, . . . orbitals in HF plus CA basis
v, w, x, . . . orbitals in the F12 geminals basis
µ, ν, ρ, . . . atomic orbitals in finite basis
µ′, ν′, ρ′, . . . atomic orbitals in finite plus CA basis
P , Q density fitting basis

Table 2. Investigations concerning the density fitting error using

aug-cc-pVDZ as orbital basis set. CABS singles were not included.

Different auxiliary basis sets of the type C-aug-cc-pwCVYZ have

been used. ||∇|| denotes the norm of the gradient for the inital

geometry in Eh/a0. Convergence criteria are described in the text.

REt-Et denotes the intermolecular distance in the dimer. Energies

E are given in mEh, distances R in pm, and angles � in degrees.

DF basis:
Y=T Y=Q Y=5

(=̂ X+1) (=̂ X+2) (=̂ X+3)

C2H4 var -MP2-F12/2∗A-[T+V]
1st Iteration ||∇|| 27.11 27.10 27.10

EF12 −97.03 −97.02 −97.02
Optimized RC-C 133.77 133.77 133.77

RC-H 108.69 108.69 108.69
�H-C-H 117.53 117.53 117.53

(C2H4)2 var -MP2-F12/2∗A-[T+V]
1st Iteration ||∇|| 20.97 20.51 20.50

EF12 −192.45 −192.20 −192.20
Optimized RC-C 133.80 133.82 133.82

RC-H 108.75 108.75 108.76
�H-C-H 117.33 117.44 117.44
REt-Et 370.00 366.42 366.36

(C2H4)2 fix -MP2-F12/2∗A-[T+V]
1. Iteration ||∇|| 20.21 20.21 20.21

EF12 −181.08 −181.06 −181.06
Optimized RC-C 133.84 133.84 133.84

RC-H 108.72 108.71 108.71
�H-C-H 117.43 117.43 117.43
REt-Et 369.69 369.69 369.69

Table 3. Geometry optimization of different molecules using var-MP2-F12 and the

[T+V] commutator approximation. Bond lengths R are given in pm, angles � in

degrees.

CABS H2O NH3 HF
Basis singles RO-H �H-O-H RN-H �H-N-H RH-F

aVDZ yes 96.02 104.32 101.08 106.85 92.01
no 96.24 104.08 101.50 106.42 92.21

CABSa 96.24 104.07 101.49 106.44 92.21

aVTZ yes 95.86 104.39 100.98 106.94 91.87
no 95.97 104.39 101.03 106.94 92.05

CABSa 95.97 104.39 101.03 106.94 92.05

aVQZ no 95.85 104.39 100.97 106.98 91.87
yes 95.84 104.39 100.96 106.97 91.84

aV5Z no 95.84 104.39 100.96 106.99 91.85
yes 95.84 104.39 100.95 106.99 91.85

aCABS was increased by one cardinal number.
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Table 4. Geometry optimizations at the fix -MP2-F12 level without counterpoise cor-

rection. aVXZ is a shorthand notation for the aug-cc-pVXZ orbital basis set.

Orbital CABS Bond length / pm Binding energy / mEh

basis singles HF..H2O NH3..H2O HF..H2O NH3..H2O

aVDZ yes 171.38 196.56 −13.35 −10.10
limita −13.88 −10.40

no 171.72 196.00 −13.58 −10.54
CABSb 171.95 196.12 −13.44 −10.49

aVTZ yes 170.82 195.96 −13.86 −10.40
limita −13.89 −10.37

no 170.25 195.45 −14.05 −10.51
CABSb 170.29 195.50 −14.02 −10.50

aVQZ yes 170.81 196.07 −13.91 −10.41
no 170.72 196.01 −13.97 −10.44

aV5Zc yes 170.84 196.09 −13.90 −10.40
no 170.82 196.08 −13.90 −10.40

aBasis set limit for binding energies using MP2-F12 at given geometry (basis:
aug-cc-pV5Z).

bCABS was increased by one cardinal number.

cUsed as basis set limit in the following.

Table 5. Geometry optimizations at the var-MP2-F12 level without counterpoise cor-

rection. aVXZ is a shorthand notation for the aug-cc-pVXZ orbital basis set. Auxiliary

basis sets of the type C-aug-cc-pwCV(X+2)Z were used for density fitting.

Orbital CABS Bond length / pm Binding energy / mEh

basis singles HF..H2O NH3..H2O HF..H2O NH3..H2O

aVDZ yes 171.09 196.24 −13.63 −10.40
limita −13.89 −10.41

no 171.46 195.69 −13.85 −10.83
CABSb 171.73 195.83 −13.75 −10.79

aVTZ yes 170.69 195.79 −13.98 −10.51
limita −13.90 −10.41

no 170.13 195.28 −14.17 −10.62
CABSb 170.18 195.33 −14.13 −10.60

Limitc 170.84 196.09 −13.90 −10.90

aSingle-point MP2-F12 energy calculation (orbital basis: aug-cc-pV5Z).

bCABS was increased by one cardinal number.

cSee Table 4.

Table 6. MP2 optimized geometry of H2O.

RO-H / pm �H-O-H / ◦ E(2) / mEh

aVDZ 96.59 103.87 −220.143
aVTZ 96.14 104.11 −268.704
aVQZ 95.89 104.27 −286.052
aV5Z 95.84 104.34 −293.002

−300.587a

aV6Z 95.84 104.37 −296.048

Limitb 95.84 104.39 −300.586

aSingle-point MP2-F12/aug-cc-pV5Z energy.

bAt the MP2-F12/aug-cc-pV5Z level.
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Table 7. MP2 geometry optimizations.

Basis CP Bond length / pm Binding energy / mEh

correction HF..H2O NH3..H2O HF..H2O NH3..H2O

aVDZ yes 176.07 201.98 −12.59 −9.31
no 171.52 196.78 −14.39 −11.07

limita −13.89 −10.44

aVTZ no 170.39 195.74 −14.28 −10.69
limita −14.02 −10.53

aVQZ no 170.37 195.83 −14.17 −10.55
limita −13.89 −10.40

aV5Z yes 171.43 196.74 −13.69 −10.26
no 170.76 196.01 −14.02 −10.45

limita −13.89 −10.40

aV6Z no 170.79 196.03 −13.95 −10.42

Limitb 170.84 196.09 −13.90 −10.40

aSingle-point MP2-F12/aug-cc-pV5Z energy.

bSee Table 4.

Table 8. Comparison with literatur data.

Method Basis Reference Bond length / pm Binding energy / mEh

HF..H2O NH3..H2O HF..H2O NH3..H2O

MP2 daV5Z [40] 170.78
MP2 (CP)a aV5Z [40] 171.44 −14.37
MP2 (CP)a Q5b [40] 171.02
MP2 (CP)a aVTZ [42] −9.94
MP2 aV6Z 170.79 −13.95
MP2-F12c aV5Z 170.84 196.09 −13.90 −10.40

aCP corrected results.

bExtrapolated results.

cSee Table 4.
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