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The analytical computation of nuclear gradients has been derived and implemented for the explicitly correlated second-order Møller-Plesset method (MP2-F12). The implementation has been accomplished in the Turbomole program package for ansatz MP2-F12/2 * A. A Slatertype geminal expanded in six Gaussian geminals (STG-6G), a complementary auxiliary basis set (CABS), and robust density fitting approximations are used. In addition, a second-order perturbation theory correction for single excitations into the complementary auxiliary basis set (CABS singles) is included to reduce the Hartree-Fock error. Smooth convergence towards the basis set limit is observed for a selection of molecules. For computations on dimers of weakly interacting molecules in small basis sets, explicitly correlated second-order Møller-Plesset theory outperforms conventional second-order Møller-Plesset theory because basis set superposition errors are largely avoided at the MP2-F12/2 * A level.

Introduction

The determination of molecular equilibrium geometries and other stationary points (e.g., transition-state geometries) is one of the most important tasks of modern ab initio quantum chemistry, for molecules in electronically excited as well as ground states. For many quantum-chemical methods, analytical nuclear gradients are available, which is a prerequisite for computationally efficient geometry optimizations. Concerning wave-function based methods that account for electron-correlation effects, analytical first derivatives have been derived and implemented for general coupled-cluster and configuration-interaction models, that is, basically for all relevant methods [1].

Altough these methods are general in the sense that both single-and multireference-type methods are included, which are able to handle wave functions truncated at arbitrary excitation level or which include excitations selected via a complete active space, the computation of analytical nuclear gradients thus far has been restricted to coupled-cluster and configuration-interaction wave functions that are expanded in terms of orbital products. The drawback of orbital-product expansions, however, is the very slow convergence of the computed results (energies, geometries, spectra, etc. [2][3][4]) to the limit of a complete basis set when the orbital basis set is enlarged. In the present article, we shall be concerned with explicitly correlated methods. These methods go beyond the orbital-product expansion by the inclusion of additional two-electron basis functions (geminals). By virtue of these geminals, it becomes possible to satisfy the electron-electron cusp condition and to accelerate the basis set convergence towards the limit of a complete basis set.

The simplest wave-function based method accounting for electron-correlation effects is the second-order Møller-Plesset (MP2) method. For the standard MP2 theory in terms of an orbital-product expansion, analytical nuclear gradients were derived and implemented by Pople and co-workers already more than 30 years ago [5]. In the present work, we derive and implement the computation of analytical nuclear gradients of the explicitly correlated variant of MP2 theory, which today is either denoted as MP2-R12 or MP2-F12 theory. Explicitly correlated secondorder Møller-Plesset theory has recently been reviewed in Ref. [6]. Here and in the following, we shall refer to explicitly correlated theory as MP2-R12 method if the geminal consists of an orbital product multiplied by r 12 , the distance between the two electrons in the two orbitals of the orbital product, and as MP2-F12 method if the geminal is constructed from a function f (r 12 ) multiplied by an orbital product. In particular, we shall in the present article be concerned with the MP2-F12 method, where f (r 12 ) is a Slater-type geminal (STG) of the form f (r 12 ) = γ -1 {1 -exp(-γr 12 )} , (1) expanded in a basis of Gaussian geminals [7][8][9][10].

The computation of certain analytical first derivatives of the MP2-R12 and MP2-F12 energies have been reported before [11][12][START_REF] Kordel | Analytische Gradienten für die MP2-R12-Methode[END_REF][START_REF] Höfener | [END_REF], but a number of aspects have not been accounted for thus far.

In our previous work [START_REF] Höfener | [END_REF], only the analytical first derivatives needed for the computation of first-order molecular properties had been implemented in the Turbomole program package [15]. In the present article, the implementation of Ref. [START_REF] Höfener | [END_REF] is extended to the computation of analytical nuclear gradients.

In Ref. [11], Kordel et al. report the implementation of analytical nuclear gradients in the Dalton program package [START_REF]a molecular electronic structure program[END_REF] at the level of MP2-R12 theory, that is, 

with linear r 12 geminals. This implementation had been accomplished for an ansatz that is usually denoted as "standard approximation A" (cf. Ref. [6]). Furthermore, in Ref. [11], the auxiliary basis set (ABS) used for the resolution-of-the-identity (RI) approximation of explicitly correlated theory was identical with the basis set of atomic orbitals (AO) used to expand the Hartree-Fock molecular orbitals (MO). The latter basis is referred to as Hartree-Fock basis (HF basis) in the following.

In modern applications of explicitly correlated theory, not this HF basis set but an especially optimized auxiliary basis set is used for the RI approximation. In particular, today, researchers in the field almost exclusively use a complementary auxiliary basis set (CABS) for this approximation [START_REF] Valeev | [END_REF]. Furthermore, only the MP2-F12 method using STG's is currently of interest.

In the present work, analytical nuclear gradients are derived and implemented for the MP2-F12/2 * A-[T+V] method. Elsewhere, we could show that applying standard approximation A and the extended Brillouin condition (EBC, indicated by the asterisk: 2 * ; cf. Ref. [6]) is sufficiently accurate for obtaining molecular geometries close to those obtained at the basis set limit [START_REF] Höfener | [END_REF]. Therefore, we decided to restrict the implementation of analytical nuclear gradients to the MP2-F12/2 * A-[T+V] level. Extending the work towards the MP2-F12/2B-[T+V] level does not seem worth the effort [START_REF] Höfener | [END_REF].

Compared with our previous work on analytical first derivatives [11,[START_REF] Höfener | [END_REF], the new aspects of the MP2-F12/2 * A-[T+V] analytical nuclear gradients reported in the present article are the following:

• Use of an complementary auxiliary basis set (CABS) [START_REF] Valeev | [END_REF];

• Use of the [T+V] approximation [18,19]; • Use of density fitting [20];

• Inclusion of CABS singles [21,22].

The consequences of these new aspects will be described in detail in the remainder of this article. The CABS consists of basis functions that usually are centered at the positions of the atoms' nuclei in the molecule. Hence, the CABS changes when the nuclei are moved when computing the nuclear gradient. This gives rise to CABS related reorthonormalization terms, that is, terms related to the first derivative of the CABS overlap matrix (and of overlap matrix elements between the CABS and the HF basis set). These new terms are discussed in Section 2.3. The [T+V] approximation involves matrix elements of the kinetic energy (T) and electron-nuclear attraction (V) operators, and the first derivatives of these matrices thus enter the expression of the analytical MP2-F12/2 * A-[T+V] nuclear gradient, see Section 2.4. In the MP2-F12 implementation in Turbomole, all of the two-electron integrals are computed using density fitting techniques. Hence, the analytical computation of the first derivatives of these integrals requires taking care of changes in the density fitting approximation when nuclei are moved (Section 2.5). Finally, when the MP2-F12 energy is supplemented by a correction for single excitations into the CABS, then also the analytical nuclear gradient of the corresponding energy contribution must be considered. This is done in Section 2.6.

Apart from the above mentioned sections, the present article is organized as follows: In Section 2, we present the MP2-F12 theory and derive its nuclear gradient. Numerical issues are discussed in Section 3. Then, the performance of the MP2-F12 method is assessed and compared with conventional MP2 results (Section 4). Section 5 concludes the article. In explicitly correlated MP2-F12 theory, the first-order wave function is expanded not only in a basis of double excitations containing the product of two virtual orbitals (as in standard MP2 theory) but also in a basis of two-electron basis functions

F

Q12 f 12 |xy , (2) 
where f 12 = f (r 12 ) is the correlation factor which depends on the interelectronic distance r 12 of electrons 1 and 2. In Eq. ( 2), |xy = ϕ x (1)ϕ y (2) denotes a pair of "F12 geminal" orbitals. The projection operator Q12 ensures that the new pairs are strongly orthogonal on the occupied Hartree-Fock orbitals. Throughout this article, we will use

Q12 = (1 -Ô1 )(1 -Ô2 ) -V1 V2 , (3) 
known as (modified) ansatz 2 in F12 theory [START_REF] Valeev | [END_REF]23,24]. The projection operators onto the one-particle spaces are given by

Ô = m |m m| , (4) 
V = a |a a| , (5) P 
= p |p p| , (6) 
V = a |a a | , (7) 
P = p |p p | . ( 8 
)
The geminal orbitals are denoted as x, y. Often, these are active (non-frozen) occupied orbitals, denoted as i, j, k, l. All occupied orbitals (frozen as well as active) are denoted as m, n, o. Since a large number of different orbital sets are used in F12 theory, the index conventions are summarized in Table 1.

In F12 methods, an auxiliary basis set (ABS) is used for the standard approximation, that is, an approximate resolution of the identity (RI) is inserted to avoid three-and four-electron integrals [23]. Typically, in the MO basis, this RI basis set consists of the orbital basis supplemented with a complementary auxiliary basis set (CABS). Using this CABS, the projection operator Q12 is approximated as

Q12 ≈ QCABS 12 = 1 -Ô1 V 2 -V 1 Ô2 -P1 P2 . ( 9 
)
When computing molecular gradients, reorthonormalization terms occur since the unperturbed molecular orbitals, which are orthonormal at the reference geometry (x = 0), are no longer orthonormal at the new geometry (x = 0). (OMO) [25][26][27][START_REF] Helgaker | Calculation of geometrical derivatives in molecular electronic strucutre theory[END_REF]:

|p = r |r [S -1 2 ] rp , ( 10 
)
where S is the overlap matrix at the new geometry. The transformation to the OMO basis ensures orthonormality of the orbitals, since

q|p = rs [S -1 2 ] qs S sr [S -1 2 ] rp = δ qp . ( 11 
)
The final molecular orbitals at the new geometry are obtained by orbital rotations,

|p = e -κ |p , (12) 
which are chosen such that κ = 0 at the reference geometry (x = 0). For the various projection operators, this means that we must write

Ô = m qr e -κ |q [S -1 2 ] qm [S -1 2 ] mr r|e κ , ( 13 
) V = a qr e -κ |q [S -1 2 ] qa [S -1 2 ] ar r|e κ , (14) 
P = qr |q [S -1 ] qr r| , (15) 
V = P -P ,

= q r |q [S -1 ] q r r | . (16) P 
Note that the projection operators P and P are invariant to orbital rotations. Furthermore, V is expressed as P -P because the complementary auxiliary basis set {a } must remain orthogonal on the orbital basis set {p} for all geometries x.

The MP2-F12/2 * A-[T+V] Lagrangian

For second-order Møller-Plesset perturbation theory, the inclusion of two-electron basis functions (geminals) in the F12 fashion is formulated using the Hylleraas functional, which consists of a conventional MP2 part, a pure F12 part, and a coupling term,

H MP2-F12 = H MP2 + H F12 + H coupling , (18) 
where H MP2 contains the Hartree-Fock contribution. In the following, we will only discuss the F12 contributions to the total MP2-F12 gradient in detail. The conventional MP2 gradient is considered to be available.

In the framework of molecular gradients, a Lagrange functional L is constructed that is variational with respect to both orbital rotations and amplitudes. In ansatz 2 * , by virtue of the EBC, the coupling term H coupling in Eq. (18) 

where T12 denotes the sum of the operators of kinetic energy of electrons 1 and 2.

The operator Pxy,vw symmetrizes an arbitrary four-index object E(x, y, v, w) as

Pxy,vw E(x, y, v, w) = 1 2 {E(x, y, v, w) + E(v, w, x, y)} . ( 20 
)
g 12 = 1/r 12 is the operator of interelectronic repulsion. With c xy ij being the F12 amplitudes, let us introduce the quantities:

d xy ij = 2c xy ij -c yx ij , (21) 
e vw xy = ij c xy ij d vw ij . ( 22 
)
Inserting the projection operators into Eq. ( 19) yields different types of integrals. Except for integrals over the interelectronic distance, g 12 , integrals over the correlation factor f 12 have to be evaluated. Additionaly, integrals over the product f 12 g 12 have to be computed, as well as f 2 12 r 2 12 , arising from the kinetic energy operator acting on the correlation factor. These will be denoted f g and f 2 r 2 integrals, respectively. Furthermore, the integral over the commutator

t12 = [ T12 , f 12 ] (23) 
needs to be computed. Although it can be calculated analytically, we introduce an additional RI approximation (using ABS) to avoid the calculation of these integrals [18]. This RI approximation is most easily invoked using the transformed orbitals

|p = P ĥ|p = r |r r | ĥ|p , (24) 
where ĥ denotes the sum of kinetic energy and electron-nuclear attraction. The inclusion of the latter has turned out to increase numerical stability (using ĥ is denoted as [T+V] approximation) [START_REF] Bischoff | [END_REF]. Using these transformed orbitals, an integral over the commutator can be expressed as

pq|[ T12 , f 12 ]|rs ≈ Xpq,rs pq|f 12 |rs , ( 25 
)
where the operator Xpq,rs carries out the appropriate transformations, Xpq,rs E(p, q, r, s) = E(p, q, r, s) + E(p, q, r, s) -E(p, q, ȓ, s) -E(p, q, r, s) . ( 26)

Here, E is an arbitrary four-index object.

As for all gradients, there are three types of contributions for MP2-F12 gradients: Differentiated one-and two-electron integrals, orbital response, and change of metric. In the framework of density fitting, differentiated two-electron integrals are not computed explicitly but rather split into their two-and three-index contributions (vide infra). Hence, analytical first derivatives with respect to x can be calculated as (cf. Ref. [30])

L [x] F12 = µ ν H ao µ ν h [x] µ ν - µ ν F eff,ao µ ν S [x] µ ν + µνP f g,f 2 r 2 f f ∆ P ,ao µν (µν|f 12 |P ) [x] - P Q g,f ,f g,f 2 r 2 f f γ P Q (P |f 12 |Q) [x] + µ ν P g,f f f ∆ P ,ao µ ν (µ ν |f 12 |P ) [x] , (27) 
where the upper index [x] denotes the partial derivative according to Lagrange's method, and where F eff,ao is the effective Fock matrix taking care of the reorthonormalization of the united basis (HF + CA basis). The differentiated one-electron integrals arising from the [T+V] approximation are contracted with the density H ao . Greek letters indicate atomic orbitals while the superscript "ao" labels the contravariant quantities that transform as the MO's. In the following, we will derive expressions for the various contributions. The computation of the orbital rotation multipliers κ has been described elsewhere [START_REF] Höfener | [END_REF].

New terms due to the CABS

We are now in the position to take derivatives of the projection operators including the operator QCABS

12

. Let us first consider Ô, for which we write

∂ Ô ∂x x=0 = ∂ Ô ∂x x=0,reorth + ∂ Ô ∂x x=0,other . ( 28 
)
The first term on the r.h.s. collects all terms in which the differentiated overlap matrix S [x] appears, where it is understood that only the overlap matrix elements in the AO basis are differentiated with respect to x, not the molecular orbitals. Since 

∂S -1/2 ∂x x=0 = - 1 2 S [x] , (29) 
∂ V ∂x x=0,reorth = - 1 2 ar |r S [x] ra a| + |a S [x] ar r| , (31) 
∂ P ∂x x=0,reorth = - qr |q S [x] qr r| , (32) 
∂ P ∂x x=0,reorth = - q r |q S [x] q r r | , (33) 
∂ V ∂x x=0,reorth = - q r |q S [x] q r r | + qr |q S [x] qr r| = - a b |a S [x] a b b | - a r |a S [x] a r r| - qb |q S [x] qb b | . ( 34 
)
Note that κ = 0 at the reference geometry (x=0). For the strong-orthogonality projection operator QCABS

12

, we obtain

∂ QCABS 12 ∂x x=0,reorth = pqr S [x] qr (|pq pr| + |qp rp|) + 1 2 mra S [x] rm |ra ma | + |a r a m| + 1 2 mra S [x] mr |ma ra | + |a m a r| + ma b S [x] a b |ma mb | + |a m b m| + ma r S [x] a r |ia mr| + |a m rm| + mqb S [x] qb |mq mb | + |qm b m| . ( 35 
)
It is obvious how these derivatives contribute to the renormalization term

-µ ν F eff,ao µ ν S [x]
µ ν . The fourth term on the r.h.s. of Eq. ( 35), for example, yields the following contribution to the CABS-CABS block of F eff,ao µ ν : Of course, the [ T12 , f 12 ] integrals in Eq. ( 36) are evaluated using the [T+V] approximation. The other terms on the r.h.s. of Eq. ( 35) contribute accordingly to other parts of F eff,ao µ ν .

F eff,ao a b ← -4 m ij

New terms due to the [T+V] approximation

In the [T+V] approximation, the integrals over the commutator t12 = [ T12 , f 12 ] are computed using the matrix representation of the one-electron Hamiltonian ĥ in the united basis set {p } (HF + CA basis) and two-electron integrals over f 12 . Hence, apart from differentiated two-electron f 12 integrals, renormalization terms occur with respect to the united basis set {p }. Morover, differentiated integrals of the one-electron Hamiltonian must be accounted for.

Let us first consider the renormalization terms arising from the RI approximation in Xpq,vw pq|f 12 |vw , that is, from the projection operator P ,

∂ Xpq,vw pq|f 12 |vw ∂x x=0,reorth = - q r S [x]
q r h pq r q|f 12 |vw

+ h qq pr |f 12 |vw -h q v pq|f 12 |r w -h q w pq|f 12 |vr + other terms . ( 37 
)
The "other terms" refer to renormalization terms arising from the orbitals p, q, v, w.

From this derivative of P , we obtain the following contribution to the matrix elements F eff,ao µ ν , 

F eff,
+ ij b m d g ij,b m b m|g 12 |ij [x] + ij pq d g ij,pq pq|g 12 |ij [x] + vw b m d t vw,b m b m|t 12 |vw [x] + vw pq d t vw,pq pq|t 12 |vw [x] . ( 49 
)
The two-electron integrals over the Coulomb operator g 12 are evaluated using "standard" density fitting, whereas all other integrals are computed using robust density fitting. When computed by means of robust density fitting, the general structure of a differentiated integral is for all integrals x = f g, f 2 r 2 , f :

(µν|x 12 |κλ) [x] DF = P (µν|x 12 |P ) [x] g Γ P κλ + P g Γ P µν (P |x 12 |κλ) [x] + P [ x Γ P µν + x ΓP µν ](P |g 12 |κλ) [x] + P (µν|g 12 |P ) [x] [ x Γ P κλ + x ΓP κλ ] - P Q [ g Γ P µν x ΓQ κλ + g Γ P κλ x ΓQ µν + x Γ P µν g Γ Q κλ + g Γ Q µν x Γ P κλ ](P |g 12 |Q) [x] - P Q g Γ P µν (P |x 12 |Q) [x] g Γ Q κλ , (50) 
where we have used the abbreviation for (e.g., for instance x = f ),

f Γ P κλ = Q (P |g 12 |Q) -1 (Q|f 12 |κλ) = Q (P |g 12 |Q) -1/2 F Q κλ , (51) 
f ΓP κλ = - QR (P |g 12 |Q) -1/2 U f QR G R κλ , (52) 
and

∂ ∂x M -1 = -M -1 M [x] M -1 . ( 53 
)
Note that the differentiated two-electron integrals are not evaluated explictly. Rather, they are contracted on the fly with appropriate two-and three-index densities, respectively.

In the following two sections, we present the gradient expressions involving the differentiated two-and three-index integrals arising from the density fitting approximation. According to Eq. ( 27), the contributions from the differentiated two-index integrals have the structure

E [x] ← P Q (P |f 12 |Q) [x] • f γ P Q (54)
for various two-electron operators f. Collecting all terms from Eq. (49) yields

f g γ P Q = - xy ij d f g xy,ij g Γ P xi g Γ Q yj , ( 55 
)
f 2 r 2 γ P Q = - xyvw d f 2 r 2 xy,vw g Γ P xv g Γ Q yw , ( 56 
)
f γ P Q = + xy b m d f xy,b m g Γ P xb g Γ Q ym + pq d f xy,pq g Γ P xp g Γ Q yq + vw b m d t vw,b m ( g ΓP vb g Γ Q wm + g Γ P vb g ΓQ wm ) + pq d t vw,pq ( g ΓP vp g Γ Q wq + g Γ P vp g ΓQ wq ) . (57) 
The corresponding expression for g γ P Q (i.e., the density to be contracted with the differentiated two-index Coulomb integrals) is 

g γ P Q = - xyvw d f 2 r 2 xy,vw g Γ P xv f 2 r 2 ΓQ yw + g Γ P yw f 2 r 2 ΓQ xv + f 2 r 2 Γ P xv g Γ Q yw + g Γ Q xv f 2 r 2 Γ P yw - xy ij d f g xy,ij g Γ P xi f g ΓQ yj + g Γ P yj f g ΓQ xi + f g Γ P xi g Γ Q yj + g Γ Q xi f g Γ P yj - xy pq d f xy,pq g Γ P xp f ΓQ yq + g Γ P yq f ΓQ xp + f Γ P xp g Γ Q yq + g Γ Q xp f Γ P yq - xy b m d f xy,b m g Γ P xb f ΓQ ym + g Γ P ym f ΓQ xb + f Γ P xb g Γ Q ym + g Γ Q xb f Γ P ym - vw pq d t vw,pq Xvwpq g Γ P vp f ΓQ wq + g Γ P wq f ΓQ vp + f Γ P vp g Γ Q wq + g Γ Q vp f Γ P wq - vw b m d t vw,b m Xvwb m g Γ P vb f ΓQ wm + g Γ P wm f ΓQ vb + f Γ P vb g Γ Q wm + g Γ Q vb f Γ P wm - ij b m d g ij,b m g Γ P ib g Γ Q jm + pq d g ij,pq g Γ P ip g Γ Q jq . ( 58 
2.5.2. Differentiated three-index integrals

In analogy to the previous section, three-index quantities contribute to the gradient as

E [x] ← µνP (µν|f 12 |P ) [x] • f ∆ P ,ao µν . ( 59 
)
Note that for convenience, the three-index contributions are expressed using a back transformation, 

f g ∆ P ,ao µν = xy ij d f g xy,ij C xµ C iν g Γ P yj + C yµ C jν g Γ P xi ( 60 
)
f 2 r 2 ∆ P ,ao µν = xyvw d f 2 r 2 xy,vw C xµ C vν g Γ P yw + C yµ C wν g Γ P xv f ∆ P ,ao µ ν = - xy b m d f xy,b m C xµ C b ν g Γ P ym + C yµ C mν g Γ P xb - vw b m d t vw,b m Xvwb m C vµ C b
Note that for the operators f 12 and g 12 , the back transformation must be carried out in the united basis due to the [T+V] transformation. When computing the CABS singles energy, we correct for the Hartree-Fock basis set error by means of second-order perturbation theory,

g ∆ P ,ao µ ν = xy ij d f g xy,ij C xµ C iν [ f g Γ P yj + f g ΓP yj ] + C yµ C jν [ f g Γ P xi + f g ΓP xi ] + xy vw d f 2 r 2 xy,vw C xµ C vν [ f 2 r 2 Γ P yw + f 2 r 2 ΓP yw ] + C yµ C wν [ f 2 r 2 Γ P xv + f 2 r 2 ΓP xv ] + ijpq d g pq,ij C iµ C pν g Γ P ip + C jµ C qν g Γ P jq + ijb m d g b m,ij C iµ C b ν g Γ P ip + C jµ C mν g Γ P jm + xy pq d f xy,pq C xµ C pν [ f Γ P yq + f ΓP yq ] + C yµ C qν [ f Γ P xp + f ΓP xp ] + xy b m d f xy,b m C xµ C b ν [ f Γ P ym + f ΓP ym ] + C yµ C mν [ f Γ P xb + f ΓP xb ] + vw pq d t vw,pq Xvwpq C vµ C pν [ f Γ P wq + f ΓP wq ] + C wµ C qν [ f Γ P vp + f ΓP vp ] + vw b m d t vw,b m Xvwb m C vµ C b ν [ f Γ P wm + f ΓP wm ] + C wµ C mν [ f Γ P vb + f ΓP vb ] (63 
H S = mn a b c a m a | Q(S mn F -F mn ) Q|b c b n + 2 m a c a m a | Q F |m , (64) 
with Q = 1 -P . Note that this expression does not account for single excitations into the HF basis, since we work within the EBC (f a a ≈ 0). In the original implementation, when computing the CABS singles energy, we used an approximated RI-JK Fock matrix whenever one index is in the CABS but the exact Fock matrix for the occupied-occupied matrix elements F mn . Due to these matrix elements, which depend on exact four-index two-electron integrals, differentiated four-index integrals would have entered the expression for the analytical nuclear gradient. To avoid the calculation of differentiated four-index integrals, we here invoke the RI-JK approximation also when computing the occupied-occupied matrix elements F mn . Numerical tests showed that the change in energy due to invoking the RI-JK approximation for the occupied-occupied matrix elements is completely negligible compared with the remaining basis set errors.

Differentiated integrals

We obtain for the derivatives of the one-electron integrals

E [x] S ← mn a b c a m (δ mn h [x] a b -δ a b h [x] mn )c b n + 2 a c a m h [x] ma . ( 65 
)
Furthermore, also the differentiated two-electron integrals are taken into account

E [x] S ← mn a b c a m (δ mn G [x] a b -δ a b G [x] mn )c b n + 2 a c a m G [x] ma , ( 66 
)
where G p q denotes the sum of Coulomb and exchange contributions in the RI-JK approximation.

Contributions to the effective Fock matrix

For the effective Fock matrix, we obtain contributions from the outer orbitals

E [x] S ← - a m d a m c S [x] a c F c m + o S [x] om F a o + 2 r S [x] a r F rm - 1 2 a b d a b c S [x] a c F c b + c S [x] b c F c a + 4 o S [x] a o F ob + 1 2 mn d mn S [x] mr F rn + S [x] nr F rm . ( 67 
)
with 

d mn = a c a m c a n , d a b = m c a m c b m , d a m = d ma = c a m . ( 68 
where Pro E(r, o) = E(r, o) + E(o, r).

Computational details

General remarks

We have used Dunning's orbital basis sets aug-cc-pVXZ with X = D, T, Q, 5 [31,32] together with the MP2 fitting basis sets C-aug-cc-pwCV{T,Q,5}Z for X = D, T, Q. For the aug-cc-pV5Z orbital basis, due to the lack of a C-aug-cc-pwCV6Z MP2 fitting basis, we used the C-aug-cc-pV6Z MP2 fitting basis [33,34]. Note that also for the standard MP2 calculations, we have used the C-aug-cc-pwCV(X+1)Z MP2 fitting basis, that is, one cardinal number higher than what is usually done.

For the RI-JK approximation, we have applied the auxiliary basis sets JK-augcc-pVXZ [35]. For the intrinsic RI approximation of F12 theory, we have used the CABS of Yousaf and Peterson [36].

The convergence criterion for the density-matrix norm was set to 10 -9 . The geometries were considered to be optimized when a change less than 10 -8 E h in the energy and less than 10 -4 E h /a 0 in the gradient was reached. Tightening the convergence criteria did not affect the significant digits reported. The frozen-core approximation was applied in all of the calculations.

For conventional methods using density fitting, the HF basis and the level of correlation treatment should be the factors that limit accuracy, whereas errors due to integral screening or density fitting should be negligible. With respect to the CABS, one has to distinguish between CABS as auxiliary basis for the MP2-F12 method and as basis for the computation of the CABS singles energy correction. Concerning the use as auxiliary basis, we note that the total basis for the RI approximation of MP2-F12 theory consists of the HF basis supplemented with the CABS. Hence the importance of the CABS decreases with increasing HF basis, because then the HF basis already becomes sufficiently large.

Density fitting error

As pointed out in Section 2, robust density fitting is applied to all two-electron integrals in our explicitly correlated methods. Since thus far no density fitting auxiliary basis sets have been optimized especially for the F12 methods, it is not a priori clear, which (non-optimized) auxiliary basis sets one should select. Typically, as a default, when using an aug-cc-pVXZ orbital basis in conjunction with F12 geminals, we use the C-aug-cc-pwCV(X+1)Z MP2 fitting basis for the density fitting approximation. This large MP2 fitting basis is selected to be on the safe side. It is taken with increased cardinal number, and furthermore, it is a fitting basis that would allow for correlating the core electrons. The effect of the MP2 fitting basis is investigated by performing calculations on C 2 H 4 and one of its dimer structures. Selected results are summarized in Table 2. It is observed for the C 2 H 4 molecule that different density fitting basis sets yield the same geometry when the explicitly correlated amplitudes are optimized (var-MP2-F12 approach). This is not true for its dimer. Using the var-MP2-F12 approach, the differences in the optimized dimer geometries are significant. When the C-augcc-pwCVTZ is used as MP2 fitting basis, the intermolecular distance is 4 pm longer than when the C-aug-cc-pwCVQZ or C-aug-cc-pwCV5Z MP2 fitting basis sets are used. Fortunately, we find no differences in the optimized dimer geometries when the explicitly correlated amplitudes are kept fixed (f ix-MP2-F12 approach) [37]. Hence, it seems that in particular the nondiagonal elements of the matrices B and V of F12 theory are sensitive to the MP2 fitting basis in this weakly interacting system. Further investigations of the requirements on the MP2 fitting basis set appear to be needed, but treating a weakly interacting system with the var-MP2-F12 approach is certainly a special and challenging case.

Results

Molecules

Table 3 shows the convergence of the geometries of selected molecules using the var -MP2-F12/2 * A-[T+V] method. The geometries exhibit a smooth and fast convergence to the basis set limit. Even for the small double-ζ basis set, reasonable results are obtained both in terms of energies and geometrical parameters (i.e., bond lengths and angles). See also Ref. [38]. The geometries are improved, that is, brought closer to the corresponding basis set limit geometries, by including the CABS singles energy correcions. By accounting for CABS singles in a given aug-cc-pVXZ basis, the optimized geometries are close to those obtained in the next larger aug-cc-pV(X+1)Z basis without CABS singles. Basis set convergence is practically reached at the quadruple-ζ level. Calculations with fixed F12 amplitudes yield very similar results.

In Table 3, the row denoted as "CABS" displays the results obtained with the larger C-aug-cc-pwCV(X+2)Z MP2 fitting basis. The effect of taking this larger fitting basis appears to be negligible.

Hydrogen-bonden complexes

We have first used the fix -MP2-F12/2 * A-[T+V] approach for the hydrogen-bonded complexes, that is, the approach with fixed F12 amplitudes. Results of geometry optimizations of HF..H 2 O and NH 3 ..H 2 O are summarized in Table 4. The geometries of the individual molecules and their dimers have been optimized independently, and hence, the reported energy differences are equilibrium binding energies (-D e ).

We observe that basis sets larger than double-ζ provide a smooth and rapid convergence to the basis set limit both for binding energies and intermolecular distances. At the aug-cc-pV5Z level, the inclusion of CABS singles has little effect, and we expect that we have approached the basis set limit closely at this level.

Next, we assess the performance of the var -MP2-F12/2 * A-[T+V] approach (Table 5). When using the var approach, in which all F12 amplitudes are optimized, the results may be slightly corrupted by the so-called "geminal basis set superposition error" (geminal BSSE) [39]. This error may occur because pairs of occupied orbitals located on one fragment may be correlated by geminals consisting of a Slater-type geminal muliplied by geminal orbitals that are located on the other fragment. To investigate this geminal BSSE, we decided to use a large MP2 fitting basis (aug-cc-pwCV(X+2)Z in place of aug-cc-pwCV(X+1)Z) to avoid density fitting errors. Indeed, when comparing the results of Tables 4 and5, we observe that in the aug-cc-pVDZ and aug-cc-pVTZ basis sets, the binding energies obtained from the var -MP2-F12 approach are more negative than those obtained from the fix -MP2-F12 approach. In fact, the latter approach yields results closer to the basis set limit. Considering that the fix -MP2-F12 approach is computationally less involved than the var -MP2-F12 approach, and considering that the var -MP2-F12 approach requires a larger MP2 fitting basis, it is clear that the fix -MP2-F12 approach is the method of choice for studies of weakly interacting complexes.

Increasing the CABS in the fix -MP2-F12 approach (Table 4) leads to increased intermolecular distances of 0.23 pm and 0.12 pm, respectively, for HF..H 2 O and NH 3 ..H 2 O in the double-ζ orbital basis (cf. row denoted "CABS"). Thus, the double-ζ CABS appears to be slightly too small. However, in the larger orbital basis sets, the effect of the CABS is much smaller, of the order of only 0.05 pm or less.

Comparison with standard MP2 results

In this section, we shall compare our MP2-F12 results with the standard MP2 approach. We shall consider the same two dimers as in the previous section as well as the water molecule.

Table 6 shows the convergence of the bond length and bond angle of the water molecule, as obtained from geometry optimizations. The correlation energy as well as the geometrical parameters converge smoothly to their basis set limits. Concerning the geometry, one may consider the geometry being converged with respect to the basis set at the aug-cc-pV5Z level. However, even at this level, the error in the second-order correlation energy is of the order of 7.5 mE h . When performing a single-point MP2-F12/aug-cc-pV5Z calculation at the standard MP2/augcc-pV5Z geometry, however, the basis set limit second-order correlation energy is obtained. In this respect, it seems legitimate to optimize equilibrium geometries at the standard MP2 level in conjunction with MP2-F12 computations of the final total energy.

A slightly different picture is observed for the dimers (Table 7). A fortuitous error compensation occurs at the standard MP2 level when the dimer geometries are optimized without correction for the basis set superpostion error (BSSE) by means of a function counterpoise (CP) correction. This error compensation occurs since the basis set truncation error of the orbital-product approach partially cancels the BSSE. It is most pronounced for the calculations in the aug-cc-pVDZ basis. Without CP correction, the intermolecular bond lengths are ca. 0.7 pm longer than the basis set limit value for both complexes. A geometry optimization including CP corrections, however, yields much larger bond lengths, ca. 5-6 pm longer. The interaction energies are too large in magnitude without CP correction while they are too small when the CP correction is applied.

Comparison with literature data

For the dimers studied here, only few calculations at the basis set limit are known, see Table 8. Concerning the HF..H 2 O complex, a good agreement is obtained when comparing our results with literature data. For example, in Ref. [40], an intermolecular distance of 171.44 pm was computed using a quintuple-ζ orbital basis, which may be compared with our standard MP2/aug-cc-pV5Z value of 171.43 pm (Ta- ). The fact that we use density fitting may explain the difference of 0.01 pm. In Ref. [40], the authors emphasize that a counterpoise correction has to be carried out for every HF basis. Moreover, it is unclear whether Q5 extrapolations or sixtuple-ζ results exhibit higher accuracy (both corrected for BSSE) [41]. Compared with the basis set limit computed in this work, the MP2/aug-cc-pV5Z intermolecular distance is about 0.6 pm too long when corrected for BSSE (0.1 pm too short without correcting). The large counterpoise corrections show that the standard MP2 results converge only slowly to the basis set limit. In contrast, the MP2-F12 method provides results much closer to the basis set limit (Table 4). We expect that our MP2-F12 results for the water..ammonia complex are similarly accurate.

Conclusions

In the present article, we have reported the implementation of analytical nuclear gradients of the explicitly correlated Møller-Plesset second-order energy. In particular, the implementation has been accomplished for the MP2-F12/2 * A-[T+V] model as implemented in the Turbomole program package. Equilibrium geometries close to the limit of a complete basis are obtained at the MP2-F12/2 * A-[T+V] level already in relatively small basis sets. Concerning weakly (hydrogen-bonded) complexes, it is strongly recommended to use the MP2-F12/2 * A-[T+V] method in the fashion, in which the geminal amplitudes are kept fixed (fix-MP2-F12 approach). The fix-MP2-F12 approach appears less amenable to shortcomings in the MP2 fitting basis for the density fitting approximation, and the fix-MP2-F12 approach is free of geminal BSSE.
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	H b r , and H r v , respectively: Using these intermediates, the gradient contribution from differentiated two-
	electron integrals can be written as
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Table 1 .

 1 Summary of index conventions. , γ , . . . complementary virtual orbitals in formally complete basis a , b , c , . . . CABS representation of complementary virtual orbitals p , q , r , . . .
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Table 2 .

 2 Investigations concerning the density fitting error using aug-cc-pVDZ as orbital basis set. CABS singles were not included. Different auxiliary basis sets of the type C-aug-cc-pwCVYZ have been used. ||∇|| denotes the norm of the gradient for the inital geometry in E h /a0. Convergence criteria are described in the text. REt-Et denotes the intermolecular distance in the dimer. Energies E are given in mE h , distances R in pm, and angles in degrees.

				DF basis:	
			Y=T	Y=Q	Y=5
			( = X+1) ( = X+2) ( = X+3)
	C 2 H 4		var -MP2-F12/2 * A-[T+V]
	1st Iteration	||∇||	27.11	27.10	27.10
		E F12	-97.03	-97.02	-97.02
	Optimized	R C-C	133.77	133.77	133.77
		R C-H	108.69	108.69	108.69
		H-C-H	117.53	117.53	117.53
	(C 2 H 4 ) 2		var -MP2-F12/2 * A-[T+V]
	1st Iteration	||∇||	20.97	20.51	20.50
		E F12	-192.45	-192.20	-192.20
	Optimized	R C-C	133.80	133.82	133.82
		R C-H	108.75	108.75	108.76
		H-C-H	117.33	117.44	117.44
		R Et-Et	370.00	366.42	366.36
	(C 2 H 4 ) 2		fix -MP2-F12/2 * A-[T+V]
	1. Iteration	||∇||	20.21	20.21	20.21
		E F12	-181.08	-181.06	-181.06
	Optimized	R C-C	133.84	133.84	133.84
		R C-H	108.72	108.71	108.71
		H-C-H	117.43	117.43	117.43
		R Et-Et	369.69	369.69	369.69

Table 3 .

 3 Geometry optimization of different molecules using var -MP2-F12 and the [T+V] commutator approximation. Bond lengths R are given in pm, angles in degrees.

		CABS		H 2 O	NH 3	HF
	Basis	singles	R O-H	H-O-H	R N-H	H-N-H	R H-F
	aVDZ yes	96.02	104.32	101.08	106.85	92.01
		no	96.24	104.08	101.50	106.42	92.21
		CABS a	96.24	104.07	101.49	106.44	92.21
	aVTZ	yes	95.86	104.39	100.98	106.94	91.87
		no	95.97	104.39	101.03	106.94	92.05
		CABS a	95.97	104.39	101.03	106.94	92.05
	aVQZ	no	95.85	104.39	100.97	106.98	91.87
		yes	95.84	104.39	100.96	106.97	91.84
	aV5Z	no	95.84	104.39	100.96	106.99	91.85
		yes	95.84	104.39	100.95	106.99	91.85
	a CABS was increased by one cardinal number.			

Table 4 .

 4 Geometry optimizations at the fix -MP2-F12 level without counterpoise correction. aVXZ is a shorthand notation for the aug-cc-pVXZ orbital basis set. O NH 3 ..H 2 O HF..H 2 O NH 3 ..H 2 O

	Orbital CABS	Bond length / pm	Binding energy / mE h
	basis HF..H 2 aVDZ singles yes 171.38	196.56	-13.35	-10.10
		limit a			-13.88	-10.40
		no	171.72	196.00	-13.58	-10.54
		CABS b	171.95	196.12	-13.44	-10.49
	aVTZ	yes	170.82	195.96	-13.86	-10.40
		limit a			-13.89	-10.37
		no	170.25	195.45	-14.05	-10.51
		CABS b	170.29	195.50	-14.02	-10.50
	aVQZ	yes	170.81	196.07	-13.91	-10.41
		no	170.72	196.01	-13.97	-10.44
	aV5Z c	yes	170.84	196.09	-13.90	-10.40
		no	170.82	196.08	-13.90	-10.40

Table 5 .

 5 Geometry optimizations at the var -MP2-F12 level without counterpoise correction. aVXZ is a shorthand notation for the aug-cc-pVXZ orbital basis set. Auxiliary basis sets of the type C-aug-cc-pwCV(X+2)Z were used for density fitting. O NH 3 ..H 2 O HF..H 2 O NH 3 ..H 2 O

	Orbital CABS	Bond length / pm	Binding energy / mE h
	basis HF..H 2 aVDZ singles yes 171.09	196.24	-13.63	-10.40
		limit a			-13.89	-10.41
		no	171.46	195.69	-13.85	-10.83
		CABS b	171.73	195.83	-13.75	-10.79
	aVTZ	yes	170.69	195.79	-13.98	-10.51
		limit a			-13.90	-10.41
		no	170.13	195.28	-14.17	-10.62
		CABS b	170.18	195.33	-14.13	-10.60
	Limit c		170.84	196.09	-13.90	-10.90

Table 6 .

 6 MP2 optimized geometry of H2O. At the MP2-F12/aug-cc-pV5Z level.

		R O-H / pm	H-O-H / •	E (2) / mE h
	aVDZ	96.59	103.87	-220.143
	aVTZ	96.14	104.11	-268.704
	aVQZ	95.89	104.27	-286.052
	aV5Z	95.84	104.34	-293.002
				-300.587 a
	aV6Z	95.84	104.37	-296.048
	Limit b	95.84	104.39	-300.586

a Single-point MP2-F12/aug-cc-pV5Z energy. b

Table 7 .

 7 MP2 geometry optimizations. O NH 3 ..H 2 O HF..H 2 O NH 3 ..H 2 O

	Basis	CP	Bond length / pm	Binding energy / mE h
	correction HF..H 2 aVDZ yes 176.07	201.98	-12.59	-9.31
		no	171.52	196.78	-14.39	-11.07
		limit a			-13.89	-10.44
	aVTZ	no	170.39	195.74	-14.28	-10.69
		limit a			-14.02	-10.53
	aVQZ	no	170.37	195.83	-14.17	-10.55
		limit a			-13.89	-10.40
	aV5Z	yes	171.43	196.74	-13.69	-10.26
		no	170.76	196.01	-14.02	-10.45
		limit a			-13.89	-10.40
	aV6Z	no	170.79	196.03	-13.95	-10.42
	Limit b		170.84	196.09	-13.90	-10.40

Table 8 .

 8 Comparison with literatur data. HF..H 2 O NH 3 ..H 2 O HF..H 2 O NH 3 ..H 2 O

	Method	Basis	Reference	Bond length / pm	Binding energy / mE h
	MP2	daV5Z	[40]	170.78		
	MP2 (CP) a	aV5Z	[40]	171.44		-14.37
	MP2 (CP) a	Q5 b	[40]	171.02		
	MP2 (CP) a	aVTZ	[42]				-9.94
	MP2	aV6Z		170.79		-13.95
	MP2-F12 c	aV5Z		170.84	196.09	-13.90	-10.40

a CP corrected results.

b Extrapolated results.

c See Table
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