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GLOBAL IN TIME SOLUTION TO THE INCOMPRESSIBLE
EULER EQUATIONS ON R". AN ELEMENTARY APPROACH.

ULISSE I0TTI

ABSTRACT. In this paper we prove a theorem of global time-extension for
the local classical solution of Euler’s evolution problem in R™ with n > 2 for
incompressible fluids subjected to external forces and regular initial conditions.
This will be achieved by expressing the boundedness of the time derivative of
the L°° solution norm.

1. INTRODUCTION

Let’s consider the problem of evolution for the Euler equations in R"”

du=—u-Vu—Vp+f (z€R"t>0)
(1.1) V-u=0 (x e R™,t > 0)

u(z,0) = uo(zx) (x € R™)
where:

u(z,t), f(z,t) € R, p(z,t) R upe C(R"), V-ug=0

(12)  [0%uo ()] <Cax (1+[2))77, zeR", VoK
(1.3) 090" f (#,)] <Camr (1 + |z|+8)7%,  (2,t) € R" x [0,00),Y a,m, K

The Euler equations describe the time evolution of the speed vector field u(z,t)
and the pressure p(x,t) of an incompressible inviscid fluid, depending on the initial
velocity ug(x) and the external force f(z,t).

Equation 1.1 represents the FEulerian description of the flow. The Lagrangian for-
mulation of Euler equation 1.1 describes the flow in term of a volume preserving
diffeomorphism, the time dependent map X : R — R™:

a— X(a,t), X(a,0) =«

These maps represent marked fluid particle trajectories, « in label of the particle,
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which can be seen as the location of the particle at time ¢ = 0. The fact that the
particle travels with velocity u is expressed by the system of ordinary differential
equations,

(1.4) %X(a, t) = u(X (o, t),1), X(,0) =«

The Lagrangian formulation of Euler equations and incomprensibility condition
given by 1.1 are respectively the Newton’s second law and det(V,X) = 1, where
det(VoX) denotes the determinant of V, X, the jacobian matrix of X. [AJMO02]
The map X defined by Equation 1.4 is a volume preserving C!-diffeomorphism from
R™ on itself, indeed, since u € C1(R"™ x [0,T]), then thanks to Cauchy-Lipschitz
Theorem, we deduce that the differential equation 1.4 admits a unique solution
X € CHR"™ x [0,T)).

We introduce P the Leray’s projection operator with components,
P=I1-VA~'vV.

The operator P is a projection: P? = P, annihilates gradients and map into
divergence-free vectors; it is a bounded operator on LP, 1 < p < oo and com-
mutes with translation. P yields to Helmholtz decomposition, indeed for al v €
L?(R™) N C*(R™) has a unique orthogonal decomposition:

v = Pv+ Vg
V- (Pv) =0, g=A"'V.v
Pv,Vq € L*(R™) N C>®(R"™).

2. LocAL IN TIME EXISTENCE THEOREMS

In this section we report without proof some results on classical mild solutions,
obtained for the first time by Kato and Fujita in the Sobolev spaces H*(R"™) for
s > "y — 1 [HF64], Theorems based on Picard’s contraction principle.

For a systematic treatment of the theorems of existence with demonstrations,
for example, see [LR02] [AJMO02] (proofs are given only for the homogeneous case
but they are easily extendable in case of external force f(x,t) € S(R"*1) ).

Definition 2.1. (Divergence-free Sobolev spaces)
Let’s define
Vi={ve H*(R"):V-v=0} = PH*(R")

Theorem 2.2 (Existence of local solutions to Euler’s problem). Let s > "o + 2.
For all ug € VS(R™), there exists T* > 0 (possibly infinite) and a unique solution

u € C([0,T%), V(R"™)) N CH[0,T*), VS2(R™))



INCOMPRESSIBLE EULER EQUATIONS. AN ELEMENTARY APPROACH. 3

and
ue C([0,T"), 02(R”)) N Cl([O, T%),C(R"))

for Euler’s equation on R™ x (0,T*) so that u(-,0) = ug.

Theorem 2.3. Solution w described in Theorem 2.2 is u(-,t) € C(R™) for t €
(0, T*), furthermore, for the mazimal time of existence, it is T* < oo if and only if

Jim (- )], = oo.

Proposition 2.4. From local solution u(x,t) we gain the pressure term resolving
Poisson’s problem, which is in turn obtained by taking the divergence from the first
Euler equation 1.1.

Ap=—-V -[(u-Vu+ V- f=—=> 0juppu; + V- f (x e R",t > 0)
ok

lim p

|z|—0

3. CONTROL OF THE L°° NORM

Theorem 3.1 (Derivative of the L>° norm). Let u be a solution in [0,T*) of the
problem 1.1 described in the theorem 2.2, be t € (0,T*), then

dlfu(®)ll

(3.1) a7 SIPfOl

Proof. In the problem 1.1 the term —Vp has the task to cancel all non-zero diver-
gence components which come from the nonlinear term and the ones due to external
force. By applying Helmholtz’s decomposition to u - Vu and to f we’ll get

u-Vu=Plu-Vu)+ Vg

[ =P(f)+ Vg
and it is
—Vaq1 + Vg2 =Vp
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We note that where
V-(w-Vu)=0 = wu-Vu=Pu-Vu), Vg =0, Vp=Vg
particularly, this will be true where Vu = 0, infact

Vu=0 = OZZajukakuj =V (u-Vu)
gk
Let now be t € (0,7*), u is a function differentiable in all variables, and be & an
absolute maximum point for |u(-,t)|, then we’ll have

Vu(z,t) =0

To estimate the derivative of u in (Z,t) with respect to time, we are going to sub-
stitute in the equation 1.1

T,t
augz, ) _ —u(E,t) - Vu(Z,t) — Vp(Z,t) + Pf(F,1) + Vau(7,t) = Pf(3,1)
ou(Z, t)
=P
ot @t)
from which follows
0 |u(z,t)| N
e Sat A s g P ,t
SO < 1PfG 1)
By Theorem 2.2, u € C*([0,T*), C(R")); then the time derivative of ||u(t)|| ex-

ists, thus :

Ol _ . folnet+ D)= o] _ o fulnt+ ) = ol 0)
dt h—0 h h—0+ h

where |u(Zp,t + h)| is the absolute maximum at time (¢ 4+ h) reached at Zp € R™.
Evaluating the difference quotient we can write

fuCtn, ¢+ )| — Ju(@, O] _ Jul@n t + 0| — [u(@, )] + (@, 0] — |u@, 1)
h h
[l ¢+ )] = [u@, 0] | [0l 0] - lu(@ 0] _
h h o

=L+ Lo
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where 77, is such that

0
X8 = w(X (@ 8), 5+, X(@, ) =, X(5,0) =7
S

Let’s consider L;. We can write

u(@n, t + h)| = [u(Zy, D] <

Olu(Zp,t+h

- dzy, , .
<[V lutant 0 G s ) 0]+ | 2EEL I o)

Being #;, a point of maximum at time (¢ + h), for what we have seen so far, it is

O |u(Zp,t + h)|

V |[u(Zp, t+ h)| =0, 5

< |Pf(Zn,t+ h)]

furthermore, we have

dzy , .

9
ds
being the derivative along the flow line passing by Z, at time (¢t + h).
uwe€ C(R™ x [0,7%)) and for (t+ h) < T* it is

[u(Zp,t + h)| < oo

from which

V [u(@n, t + h)

dxp
—(Zp,t+h)=0
| dt (:L'ha + )

thus
[[u(Zn,t + h)| = |u(@h, t)]| < [Pf(Zn,t+ h)||h] + o(|h])

Shifting to limits

o lu@nst 4 D)) = (@, 1))
h—0 |h|

<

o([h])

<1l T im ——= = T <
< Jim [P (@t + )|+ Jim 22 = P (@, o) < IPF()e
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where
o = lim X (27,0
7 = lim X(#,0)

with

|u(E5, )| = |u(Zo, )]

Let’s consider now Ls. Being |u(Z,t)| absolute maximum at time ¢ we’ll have

|u(@h, )] = [u(@, t)]

<0 h>0
h >

shifting to limit notation

thus

d N e
[0oe _ oy [ulEnt 1) = u(@ 0] _
dt h—0+ h

< lim [Ly| + lim Lo < lim |[Lq| < [[Pf(#)]l o
h—0t h—0t h—0t

Theorem 3.2 (Extension theorem). In the hypotheses of the Theorem 3.1, the
solution u can be extended to the whole real axis of time.

Proof. According to Theorem 2.3, the maximal interval of existence T* < oo if and
only if

li ot = 0.

Tim_ (-, 1), = oc

Let’s suppose T* < oo and t € (0,T*), integrating the inequality 3.1 we get

[u(®)lloo < lluolle +/O 1P f(5)]lo ds

f € C®R"1) thus Pf € C°(R"*!) so

t
lim/HPf(s)||oods<T* max [|[Pf(s)| < oo
0

t—T* s€[0,7%]
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from which

lim
t—T*

u(t)||,, < oo

So, for the theorem 2.3 it must be T* = co O
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