Global in time solution to the incompressible Euler Equations on R^{n}. An elementary approach.

Ulisse Iotti

To cite this version:

Ulisse Iotti. Global in time solution to the incompressible Euler Equations on R^{n}. An elementary approach.. 2011. hal-00608010v3

HAL Id: hal-00608010 https://hal.science/hal-00608010v3

Preprint submitted on 14 Jul 2011 (v3), last revised 21 Jul 2011 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GLOBAL IN TIME SOLUTION TO THE INCOMPRESSIBLE EULER EQUATIONS ON \mathbb{R}^{n}. AN ELEMENTARY APPROACH.

ULISSE IOTTI

Abstract

In this paper we prove a theorem of global time-extension for the local classical solution of Euler's evolution problem in \mathbb{R}^{n} with $n \geqslant 2$ for incompressible fluids subjected to external forces and regular initial conditions. This will be achieved by expressing the boundedness of the time derivative of the L^{∞} solution norm.

1. Introduction

Let's consider the problem of evolution for the Euler equations in \mathbb{R}^{n}

$$
\begin{cases}\partial_{t} u=-u \cdot \nabla u-\nabla p+f & \left(x \in \mathbb{R}^{n}, t \geqslant 0\right) \tag{1.1}\\ \nabla \cdot u=0 & \left(x \in \mathbb{R}^{n}, t \geqslant 0\right) \\ u(x, 0)=u_{0}(x) & \left(x \in \mathbb{R}^{n}\right)\end{cases}
$$

where:

$$
u(x, t), f(x, t) \in \mathbb{R}^{n}, \quad p(x, t) \in \mathbb{R} \quad u_{0} \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad \nabla \cdot u_{0}=0
$$

$$
\begin{align*}
\left|\partial_{x}^{\alpha} u_{0}(x)\right| & \leqslant C_{\alpha K}(1+|x|)^{-K}, & x & \in \mathbb{R}^{n}, \quad \forall \alpha, K \tag{1.2}\\
\left|\partial_{x}^{\alpha} \partial_{t}^{m} f(x, t)\right| & \leqslant C_{\alpha m K}(1+|x|+t)^{-K}, & (x, t) & \in \mathbb{R}^{n} \times[0, \infty), \forall \alpha, m, K
\end{align*}
$$

The Euler equations describe the time evolution of the speed vector field $u(x, t)$ and the pressure $p(x, t)$ of an incompressible inviscid fluid, depending on the initial velocity $u_{0}(x)$ and the external force $f(x, t)$.

Equation 1.1 represent the Eulerian description of the flow. The Lagrangian formulation of Euler equation 1.1 describes the flow in term of a volume preserving diffeomorphism, the time dependent map $X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$:

$$
\alpha \mapsto X(\alpha, t), \quad X(\alpha, 0)=\alpha
$$

These maps represent marked fluid particle trajectories, α in label of the particle,

[^0]which can be seen as the location of the particle at time $t=0$. The fact that the particle travel with velocity u is expressed in the system of ordinary differential equations,
\[

$$
\begin{equation*}
\frac{\partial}{\partial t} X(\alpha, t)=u(X(\alpha, t), t), \quad X(\alpha, 0)=\alpha \tag{1.4}
\end{equation*}
$$

\]

The Lagrangian formulation of Euler equations and incomprensibility condition given by 1.1 are respectively the Newton's second law and $\operatorname{det}\left(\nabla_{\alpha} X\right)=1$, where $\operatorname{det}\left(\nabla_{\alpha} X\right)$ denotes the determinant of $\nabla_{\alpha} X$ the jacobian matrix of X. [AJM02]
The map X defined by Equation 1.4 is well a volume preserving C^{1}-diffeomorphism from \mathbb{R}^{n} on itself, indeed, since $u \in C^{1}\left(\mathbb{R}^{n} \times[0, T]\right)$, then thanks to CauchyLipschitz Theorem, we deduce that the differential equation 1.4 admits a unique solution $X \in C^{1}\left(\mathbb{R}^{n} \times[0, T]\right)$.

We introduce P the Leray's projection operator with components,

$$
P=I-\nabla \Delta^{-1} \nabla
$$

The operator P is a projection: $P^{2}=P$, annihilates gradients and map into divergence-free vectors; it is a bounded operator on $L^{p}, 1<p<\infty$ and commute with translation. P yields to Helmholtz decomposition, indeed for al $v \in$ $L^{2}\left(\mathbb{R}^{n}\right) \cap C^{\infty}\left(\mathbb{R}^{n}\right)$ has a unique orthogonal decomposition:

$$
\begin{gathered}
v=P v+\nabla q \\
\nabla \cdot(P v)=0, \quad q=\Delta^{-1} \nabla \cdot v \\
P v, \nabla q \in L^{2}\left(\mathbb{R}^{n}\right) \cap C^{\infty}\left(\mathbb{R}^{n}\right)
\end{gathered}
$$

2. Local in time Existence Theorems

In this section we report without proof some results on classical mild solutions, obtained for the first time by Kato and Fujita in the Sobolev spaces $H^{s}\left(\mathbb{R}^{n}\right)$ for $s \geqslant n / 2-1$ [HF64], Theorems based on Picard's contraction principle.

For a systematic treatment of the theorems of existence with demonstrations, for example, see [LR02] [AJM02] (proofs are given only for the homogeneous case but they are easily extendable in case of external force $\left.f(x, t) \in \mathcal{S}\left(\mathbb{R}^{n+1}\right)\right)$.

Definition 2.1. (Divergence-free Sobolev spaces)
Let's define

$$
V^{s}=\left\{v \in H^{s}\left(\mathbb{R}^{n}\right): \nabla \cdot v=0\right\}=P H^{s}\left(\mathbb{R}^{n}\right)
$$

Theorem 2.2 (Existence of local solutions to Euler's problem). Let $s>n / 2+2$. For all $u_{0} \in V^{s}\left(\mathbb{R}^{n}\right)$, there exist $T^{*}>0$ (possibly infinite) and a unique solution

$$
u \in C\left(\left[0, T^{*}\right), V^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left(\left[0, T^{*}\right), V^{s-2}\left(\mathbb{R}^{n}\right)\right)
$$

and

$$
u \in C\left(\left[0, T^{*}\right), C^{2}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left(\left[0, T^{*}\right), C\left(\mathbb{R}^{n}\right)\right)
$$

for Euler's equation on $\mathbb{R}^{n} \times\left(0, T^{*}\right)$ so that $u(\cdot, 0)=u_{0}$.

Theorem 2.3. Solution u described in Theorem 2.2 is $u(\cdot, t) \in C\left(\mathbb{R}^{n}\right)$ for $t \in$ $\left(0, T^{*}\right)$, furthermore, for the maximal time of existence is $T^{*}<\infty$ if and only if

$$
\lim _{t \rightarrow T^{*}}\|u(\cdot, t)\|_{\infty}=\infty
$$

Proposition 2.4. From local solution $u(x, t)$ we gain the pressure term resolving Poisson's problem, which is in turn obtained by taking the divergence from the first Euler equation 1.1.

$$
\left\{\begin{array}{l}
\Delta p=-\nabla \cdot[(u \cdot \nabla) u]+\nabla \cdot f=-\sum_{j, k} \partial_{j} u_{k} \partial_{k} u_{j}+\nabla \cdot f \quad\left(x \in \mathbb{R}^{n}, t \geqslant 0\right) \\
\lim _{|x| \rightarrow 0} p
\end{array}\right.
$$

3. Control of the L^{∞} NORM

Theorem 3.1 (Derivative of the L^{∞} norm). Let u be a solution in $\left[0, T^{*}\right)$ of the problem 1.1 described in the theorem 2.2, be $t \in\left(0, T^{*}\right)$, then

$$
\begin{equation*}
\frac{d\|u(t)\|_{\infty}}{d t} \leqslant\|P f(t)\|_{\infty} \tag{3.1}
\end{equation*}
$$

Proof. In the problem 1.1 the term $-\nabla p$ has the task to cancel all non-zero divergence components which come from the nonlinear term and the one due to external force. By applying Helmholtz's decomposition to $u \cdot \nabla u$ and to f we'll get

$$
\begin{gathered}
u \cdot \nabla u=P(u \cdot \nabla u)+\nabla q_{1} \\
f=P(f)+\nabla q_{2}
\end{gathered}
$$

and it is

$$
-\nabla q_{1}+\nabla q_{2}=\nabla p
$$

We note that where

$$
\nabla \cdot(u \cdot \nabla u)=0 \quad \Rightarrow \quad u \cdot \nabla u=P(u \cdot \nabla u), \quad \nabla q_{1}=0, \quad \nabla p=\nabla q_{2}
$$

particularly, this will be true where $\nabla u=0$, infact

$$
\nabla u=0 \quad \Rightarrow \quad 0=\sum_{j, k} \partial_{j} u_{k} \partial_{k} u_{j}=\nabla \cdot(u \cdot \nabla u)
$$

Let now be $t \in\left(0, T^{*}\right)$, u is a function differentiable in all variables, be \tilde{x} an absolute maximum point for $|u(\cdot, t)|$, then we'll have

$$
\nabla u(\tilde{x}, t)=0
$$

To estimate the derivative of u in (\tilde{x}, t) with respect to time, we are going to substitute in the equation 1.1

$$
\begin{gathered}
\frac{\partial u(\tilde{x}, t)}{\partial t}=-u(\tilde{x}, t) \cdot \nabla u(\tilde{x}, t)-\nabla p(\tilde{x}, t)+P f(\tilde{x}, t)+\nabla q_{2}(\tilde{x}, t)=P f(\tilde{x}, t) \\
\frac{\partial u(\tilde{x}, t)}{\partial t}=P f(\tilde{x}, t)
\end{gathered}
$$

from which follows

$$
\frac{\partial|u(\tilde{x}, t)|}{\partial t} \leqslant|P f(\tilde{x}, t)|
$$

By Theorem 2.2, $u \in C^{1}\left(\left[0, T^{*}\right), C\left(\mathbb{R}^{n}\right)\right)$, then the time derivative of $\|u(t)\|_{\infty}$ exist, thus:

$$
\frac{d\|u(t)\|_{\infty}}{d t}=\lim _{h \rightarrow 0} \frac{\left|u\left(\tilde{x}_{h}, t+h\right)\right|-|u(\tilde{x}, t)|}{h}=\lim _{h \rightarrow 0^{+}} \frac{\left|u\left(\tilde{x}_{h}, t+h\right)\right|-|u(\tilde{x}, t)|}{h}
$$

where $\left|u\left(\tilde{x}_{h}, t+h\right)\right|$ is the absolute maximum at time $(t+h)$ reached at $\tilde{x}_{h} \in \mathbb{R}^{n}$. Evaluating the difference quotient we can write

$$
\begin{gathered}
\frac{\left|u\left(\tilde{x}_{h}, t+h\right)\right|-|u(\tilde{x}, t)|}{h}=\frac{\left|u\left(\tilde{x}_{h}, t+h\right)\right|-\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|+\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|-|u(\tilde{x}, t)|}{h}= \\
\frac{\left|u\left(\tilde{x}_{h}, t+h\right)\right|-\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|}{h}+\frac{\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|-|u(\tilde{x}, t)|}{h}= \\
\quad=L_{1}+L_{2}
\end{gathered}
$$

where \tilde{x}_{h}^{*} is such that

$$
\frac{\partial}{\partial s} X\left(\tilde{x}_{h}^{*}, s\right)=u\left(X\left(\tilde{x}_{h}^{*}, s\right), s+t\right), \quad X\left(\tilde{x}_{h}^{*}, h\right)=\tilde{x}_{h}, \quad X\left(\tilde{x}_{h}^{*}, 0\right)=\tilde{x}_{h}^{*}
$$

Considering L_{1} : we can write

$$
\begin{gathered}
\| u\left(\tilde{x}_{h}, t+h\right)\left|-\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|\right| \leqslant \\
\leqslant|\nabla| u\left(\tilde{x}_{h}, t+h\right)\left|\frac{d \tilde{x}_{h}}{d t}\left(\tilde{x}_{h}, t+h\right)\right||h|+\left|\frac{\partial\left|u\left(\tilde{x}_{h}, t+h\right)\right|}{\partial t}\right||h|+o(|h|)
\end{gathered}
$$

Being \tilde{x}_{h} point of maximum at time $(t+h)$, for what we have seen so far, it is

$$
\nabla\left|u\left(\tilde{x}_{h}, t+h\right)\right|=0, \quad \frac{\partial\left|u\left(\tilde{x}_{h}, t+h\right)\right|}{\partial t} \leqslant\left|P f\left(\tilde{x}_{h}, t+h\right)\right|
$$

furthermore, we have that

$$
\frac{d \tilde{x}_{h}}{d t}\left(\tilde{x}_{h}, t+h\right) \equiv \frac{\partial}{\partial s} X\left(\tilde{x}_{h}^{*}, h\right)=u\left(X\left(\tilde{x}_{h}^{*}, h\right), t+h\right)=u\left(\tilde{x}_{h}, t+h\right)
$$

being the derivative along the flow line passing by \tilde{x}_{h} at time $(t+h)$. $u \in C\left(\mathbb{R}^{n} \times\left[0, T^{*}\right)\right)$ and for $(t+h)<T^{*}$ it is

$$
\left|u\left(\tilde{x}_{h}, t+h\right)\right|<\infty
$$

from which

$$
\nabla\left|u\left(\tilde{x}_{h}, t+h\right)\right| \frac{d \tilde{x}_{h}}{d t}\left(\tilde{x}_{h}, t+h\right)=0
$$

thus

$$
\left\|u\left(\tilde{x}_{h}, t+h\right)\left|-\left|u\left(\tilde{x}_{h}^{*}, t\right) \| \leqslant\left|P f\left(\tilde{x}_{h}, t+h\right)\right|\right| h\right|+o(|h|)\right.
$$

Shifting to limits

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{\| u\left(\tilde{x}_{h}, t+h\right)\left|-\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|\right.}{|h|} \leqslant \\
\leqslant \lim _{h \rightarrow 0}\left|\operatorname{Pf}\left(\tilde{x}_{h}, t+h\right)\right|+\lim _{h \rightarrow 0} \frac{o(|h|)}{h}=\left|\operatorname{Pf}\left(\tilde{x}_{0}^{*}, t\right)\right|
\end{gathered}
$$

where

$$
\tilde{x}_{0}^{*}=\lim _{h \rightarrow 0} X\left(\tilde{x}_{h}^{*}, 0\right)
$$

with

$$
\left|u\left(\tilde{x}_{0}^{*}, t\right)\right|=\left|u\left(\tilde{x}_{0}, t\right)\right|
$$

thus

$$
=\left|P f\left(\tilde{x}_{0}^{*}, t\right)\right| \leqslant\|P f(t)\|_{\infty}
$$

Let's consider now L_{2} : being $|u(\tilde{x}, t)|$ absolute maximum at time t we'll have

$$
\frac{\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|-|u(\tilde{x}, t)|}{h} \leqslant 0 \quad h>0
$$

shifting to limit notation

$$
\lim _{h \rightarrow 0^{+}} \frac{\left|u\left(\tilde{x}_{h}^{*}, t\right)\right|-|u(\tilde{x}, t)|}{h}=\lim _{h \rightarrow 0+} L_{2} \leqslant 0
$$

thus

$$
\begin{aligned}
& \frac{d\|u(t)\|_{\infty}}{d t}=\lim _{h \rightarrow 0^{+}} \frac{\left|u\left(\tilde{x}_{h}, t+h\right)\right|-|u(\tilde{x}, t)|}{h} \leqslant \\
& \leqslant \lim _{h \rightarrow 0^{+}}\left|L_{1}\right|+\lim _{h \rightarrow 0^{+}} L_{2} \leqslant \lim _{h \rightarrow 0^{+}}\left|L_{1}\right| \leqslant\|P f(t)\|_{\infty}
\end{aligned}
$$

Theorem 3.2 (Extension theorem). In the hypotheses of the Theorem 3.1, the solution u can be extended to the whole real axis of time.

Proof. According to Theorem 2.3, the maximal interval of existence $T^{*}<\infty$ if and only if

$$
\lim _{t \rightarrow T^{*}}\|u(\cdot, t)\|_{\infty}=\infty
$$

Let's suppose $T^{*}<\infty$ and $t \in\left(0, T^{*}\right)$, integrating the inequality 3.1 we get

$$
\|u(t)\|_{\infty} \leqslant\left\|u_{0}\right\|_{\infty}+\int_{0}^{t}\|P f(s)\|_{\infty} d s
$$

$f \in C^{\infty}\left(\mathbb{R}^{n+1}\right)$ thus $P f \in C^{\infty}\left(\mathbb{R}^{n+1}\right)$ so

$$
\lim _{t \rightarrow T^{*}} \int_{0}^{t}\|P f(s)\|_{\infty} d s \leqslant T^{*} \max _{s \in\left[0, T^{*}\right]}\|P f(s)\|_{\infty}<\infty
$$

from which

$$
\lim _{t \rightarrow T^{*}}\|u(t)\|_{\infty}<\infty
$$

So, for the theorem 2.3 it must be $T^{*}=\infty$

References

E-mail address: ulisse.iotti.nse@gmail.com

[^0]: Date: 6/07/2011.
 2000 Mathematics Subject Classification. Primary: 35Q31; Secondary 76D03.
 Key words and phrases. Euler equations, Navier-Stokes equations, global existence, regularity, nonlinear PDE, flow, fluid dynamics.

