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GLOBAL IN TIME SOLUTION TO THE INCOMPRESSIBLE

EULER EQUATIONS ON R
n. AN ELEMENTARY APPROACH.

ULISSE IOTTI

Abstract. In this paper we prove a theorem of global time-extension for
the local classical solution of Euler’s evolution problem in Rn with n > 2 for
incompressible fluids subjected to external forces and regular initial conditions.
This will be achieved by expressing the boundedness of the time derivative of
the L

∞ solution norm.

1. Introduction

Let’s consider the problem of evolution for the Euler equations in Rn

(1.1)











∂tu = −u · ∇u −∇p+ f (x ∈ Rn, t > 0)

∇ · u = 0 (x ∈ Rn, t > 0)

u(x, 0) = u0(x) (x ∈ Rn)

where:

u(x, t), f(x, t) ∈ Rn, p(x, t) ∈ R u0 ∈ C∞(Rn), ∇ · u0 = 0

|∂α
x u0 (x)| 6CαK (1 + |x|)

−K
, x ∈ Rn, ∀ α,K(1.2)

|∂α
x ∂

m
t f (x, t)| 6CαmK (1 + |x|+ t)

−K
, (x, t) ∈ Rn × [0,∞), ∀ α,m,K(1.3)

The Euler equations describe the time evolution of the speed vector field u(x, t)
and the pressure p(x, t) of an incompressible inviscid fluid, depending on the initial
velocity u0(x) and the external force f(x, t).

Equation 1.1 represent the Eulerian description of the flow. The Lagrangian
formulation of Euler equation 1.1 describes the flow in term of a volume preserving
diffeomorphism, the time dependent map X : Rn → R

n:

α 7→ X(α, t), X(α, 0) = α
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These maps represent marked fluid particle trajectories, α in label of the particle,
which can be seen as the location of the particle at time t = 0. The fact that the
particle travel with velocity u is expressed in the system of ordinary differential
equations,

(1.4)
∂

∂t
X(α, t) = u(X(α, t), t), X(α, 0) = α

The Lagrangian formulation of Euler equations and incomprensibility condition
given by 1.1 are respectively the Newton’s second law and det(∇αX) = 1, where
det(∇αX) denotes the determinant of ∇αX the jacobian matrix of X . [AJM02]
The map X defined by Equation 1.4 is well a volume preserving C1-diffeomorphism
from R

n on itself, indeed, since u ∈ C1(Rn × [0, T ]), then thanks to Cauchy-
Lipschitz Theorem, we deduce that the differential equation 1.4 admits a unique
solution X ∈ C1(Rn × [0, T ]).

We introduce P the Leray’s projection operator with components,

P = I −∇∆−1∇·

The operator P is a projection: P 2 = P , annihilates gradients and map into
divergence-free vectors; it is a bounded operator on Lp, 1 < p < ∞ and com-
mute with translation. P yields to Helmholtz decomposition, indeed for al v ∈
L2(Rn) ∩ C∞(Rn) has a unique orthogonal decomposition:

v = Pv +∇q

∇ · (Pv) = 0, q = ∆−1∇ · v

Pv,∇q ∈ L2(Rn) ∩C∞(Rn).

2. Local in time Existence Theorems

In this section we report without proof some results on classical mild solutions,
obtained for the first time by Kato and Fujita in the Sobolev spaces Hs(Rn) for
s > n/2− 1 [HF64], Theorems based on Picard’s contraction principle.

For a systematic treatment of the theorems of existence with demonstrations,
for example, see [LR02] [AJM02] (proofs are given only for the homogeneous case
but they are easily extendable in case of external force f(x, t) ∈ S(Rn+1).

Definition 2.1. (Divergence-free Sobolev spaces)
Let’s define

V s = {v ∈ Hs(Rn) : ∇ · v = 0} = PHs(Rn)
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Theorem 2.2 (Existence of local solutions to Euler’s problem). Let s > n/2 − 1.
For all u0 ∈ V s(Rn), there exist T ∗ > 0 (possibly infinite) and a unique solution
u ∈ C1([0, T ∗), V s(Rn)) for Euler’s equation on Rn × (0, T ∗) so that u(·, 0) = u0.
If u0 ∈ C∞(Rn) then u ∈ C∞(Rn).

Theorem 2.3. Solution u described in Theorem 2.2 is u(·, t) ∈ C(Rn) for t ∈
(0, T ∗), furthermore, for the maximal time of existence is T ∗ < ∞ if and only if

lim
t→T∗

‖u(·, t)‖∞ = ∞.

Proposition 2.4. From local solution u(x, t) we gain the pressure term resolving
Poisson’s problem, which is in turn obtained by taking the divergence from the first
Euler equation 1.1.











∆p = −∇ · [(u · ∇)u] +∇ · f = −
∑

j,k

∂juk∂kuj +∇ · f (x ∈ Rn, t > 0)

lim
|x|→0

p

In our case, being u0 ∈ S(Rn) and f ∈ S(Rn+1) we’ll get

(2.1) u ∈ C([0, T ∗), V s(Rn)) ∩ C∞([0, T ∗)×Rn) ∀s > 0

and

(2.2) p ∈ C([0, T ∗), Hs(Rn)) ∩ C∞([0, T ∗)×Rn) ∀s > 0

.

3. Control of the L∞ norm

Theorem 3.1 (Derivative of the L∞ norm). Let u be a solution in [0, T ∗) of the
problem 1.1 described in the theorem 2.2, be t ∈ (0, T ∗), then

(3.1)
d ‖u(t)‖∞

dt
6 ‖Pf(t)‖∞

Proof. In the problem 1.1 the term −∇p has the task to cancel all non-zero diver-
gence components which come from the nonlinear term and the one due to external
force. By applying Helmholtz’s decomposition to u · ∇u and to f we’ll get

u · ∇u = P (u · ∇u) +∇q1
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f = P (f) +∇q2

and it is

−∇q1 +∇q2 = ∇p

We note that where

∇ · (u · ∇u) = 0 ⇒ u · ∇u = P (u · ∇u), ∇q1 = 0, ∇p = ∇q2

particularly, this will be true where ∇u = 0, infact

∇u = 0 ⇒ 0 =
∑

j,k

∂juk∂kuj = ∇ · (u · ∇u)

Let now be t ∈ (0, T ∗), u is a function differentiable in all variables, be x̃ an abso-
lute maximum point for |u(·, t)|, then we’ll have

∇u(x̃, t) = 0

To estimate the derivative of u in (x̃, t) with respect to time, we are going to change
the equation in 1.1

∂u(x̃, t)

∂t
= u(x̃, t) · ∇u(x̃, t)−∇p(x̃, t) + Pf(x̃, t) +∇q2(x̃, t) = Pf(x̃, t)

∂u(x̃, t)

∂t
= Pf(x̃, t)

from which follows
∂ |u(x̃, t)|

∂t
6 |Pf(x̃, t)|

We now want to evaluate the time derivative of ‖u(t)‖∞, thus let’s consider the
difference quotient:

d ‖u(t)‖∞
dt

= lim
h→0

|u(ỹh, t+ h)| − |u(x̃, t)|

h

where |u(ỹh, t+ h)| is the absolute maximum at time (t + h) reached at ỹh ∈ Rn.
Evaluating the difference quotient we can write

|u(ỹh, t+ h)| − |u(x̃, t)|

h
=

|u(ỹh, t+ h)| − |u(ỹ∗h, t)|+ |u(ỹ∗h, t)| − |u(x̃, t)|

h
=

|u(ỹh, t+ h)| − |u(ỹ∗h, t)|

h
+

|u(ỹ∗h, t)| − |u(x̃, t)|

h
=

= L1 + L2

where ỹ∗h is such that

∂

∂s
X(ỹ∗h, s) = u(X(ỹ∗h, s), s), X(ỹ∗h, t+ h) = ỹh
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Considering L1: we can write

||u(ỹh, t+ h)| − |u(ỹ∗h, t)|| 6

6

∣

∣

∣

∣

∇ |u(ỹh, t+ h)|
dỹh

dt
(ỹh, t+ h)

∣

∣

∣

∣

|h|+

∣

∣

∣

∣

∂ |u(ỹh, t+ h)|

∂t

∣

∣

∣

∣

|h|+ o(|h|)

Being ỹh point of maximum at time (t+ h), for what we have seen so far, it is

∇ |u(ỹh, t+ h)| = 0
∂ |u(ỹh, t+ h)|

∂t
6 |Pf(ỹh, t+ h)|

furthermore, we have that

dỹh

dt
(ỹh, t+ h) ≡

∂

∂t
X(ỹ∗h, t+ h) = u(X(ỹ∗h, t+ h), t+ h) = u(ỹh, t+ h)

being the derivative along the flow line passing by ỹh at time (t+ h).
u ∈ C(Rn × [0, T ∗)) and for (t+ h) < T ∗ it is

|u(ỹh, t+ h)| < ∞

from which

∇ |u(ỹh, t+ h)|
dỹh

dt
(ỹh, t+ h) = 0

thus

||u(ỹh, t+ h)| − |u(ỹ∗h, t)|| 6 |Pf(ỹh, t+ h)| |h|+ o(|h|)

Shifting to limits

lim
h→0

||u(ỹh, t+ h)| − |u(ỹ∗h, t)||

|h|
6 lim

h→0
|Pf(ỹh, t+ h)|+lim

h→0

o(|h|)

h
= |Pf(ỹ∗h, t)| 6 ‖Pf(t)‖∞

Let’s consider now L2: let ϕt(s) with s ∈ [0, T ∗ − t), the line path such that for
fixed t

ϕt : ϕt(0) = x̃, ϕt(h) = ỹ∗h

we’ll have

||u(ỹ∗h, t)| − |u(x̃, t)|| 6

∣

∣

∣

∣

∇ |u(x̃, t)|
dϕt

ds
(x̃, 0)

∣

∣

∣

∣

|h|+ o(|h|)

but ∇ |u(x̃, t)| = 0 and by the theorem 2.2 the solution u ∈ C1(Rn × (0, T ∗)), thus
∣

∣

∣

∣

dϕt

ds
(x̃, 0)

∣

∣

∣

∣

< ∞
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we’ll have

||u(ỹ∗h, t)| − |u(x̃, t)|| 6 o(|h|)

shifting to limit notation

lim
h→0

L2 = lim
h→0

|u(ỹ∗h, t)| − |u(x̃, t)|

h
6 lim

h→0

o(|h|)

|h|
= 0

Then
d ‖u(t)‖∞

dt
= lim

h→0

|u(ỹh, t+ h)| − |u(x̃, t)|

h
6 ‖Pf(t)‖∞

�

Theorem 3.2 (Extension theorem). In the hypotheses of the Theorem 3.1, the
solution u can be extended to the whole real axis of time.

Proof. According to Theorem 2.3, the maximal interval of existence T ∗ < ∞ if and
only if

lim
t→T∗

‖u(·, t)‖∞ = ∞.

Let’s suppose T ∗ < ∞ and t ∈ (0, T ∗), integrating the inequality 3.1 we get

‖u(t)‖∞ 6 ‖u0‖∞ +

∫ t

0

‖Pf(s)‖∞ ds

f ∈ C∞(Rn+1) thus Pf ∈ C∞(Rn+1) so

lim
t→T∗

∫ t

0

‖Pf(s)‖∞ ds 6 T ∗ max
s∈[0,T∗]

‖Pf(s)‖∞ < ∞

from which

lim
t→T∗

‖u(t)‖∞ < ∞

So, for the theorem 2.3 it must be T ∗ = ∞ �
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