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On the convergence of Le Page series in Skohorod

space

Youri Davydov∗ and Clément Dombry†

Abstract

We consider the problem of the convergence of the so-called Le Page series in the
Skohorod space D

d = D([0, 1],Rd) and provide a simple criterion based on the mo-
ments of the increments of the random process involved in the series. This provides
a simple sufficient condition for the existence of an α-stable distribution on D

d with
given spectral measure.
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1 Introduction

We are interested in the convergence in the Skohorod space D
d = D([0, 1],Rd)

endowed with the J1-topology of random series of the form

X(t) =
∞∑

i=1

Γ
−1/α
i εiYi(t), t ∈ [0, 1], (1)

where α ∈ (0, 2) and

- (Γi)i≥1 is the increasing enumeration of the points of a Poisson point process
on [0,+∞) with Lebesgue intensity;

- (εi)i≥1 is an i.i.d. sequence of real random variables;
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- (Yi)i≥1 is an i.i.d. sequence of Dd-valued random variables;

- the sequences (Γi), (εi) and (Yi) are independent.

Note that a more constructive definition for the sequence (Γi)i≥1 is given by

Γi =

i∑

j=1

γj, i ≥ 1,

where (γi)i≥1 is an i.i.d. sequence of random variables with exponential distribution
of parameter 1, and independent of (εi) and (Yi).

Series of the form (1) are known as Le Page series. For fixed t ∈ [0, 1], the con-
vergence in R

d of the series (1) is ensured as soon as one of the following conditions
is satisfied:

- 0 < α < 1, E|ε1|
α < ∞ and E|Y1(t)|

α < ∞,

- 1 ≤ α < 2, Eε1 = 0, E|ε1|
α < ∞ and E|Y1(t)|

α < ∞.

Here |.| denotes the usual Euclidean norm on R or on R
d. The random variable

X(t) has then an α-stable distribution on R
d. Conversely, it is well known that any

α-stable distributions on R
d admits a representation in terms of Le Page series (see

for example Samorodnitsky and Taqqu [9] section 3.9).
There is a vast literature on symmetric α-stable distributions on separable Ba-

nach spaces (see e.g. Ledoux and Talagrand [7] or Araujo and Giné [1]). In par-
ticular, any symmetric α-stable distribution on a separable Banach space can be
represented as an almost surely convergent Le Page series (see Corollary 5.5 in [7]).
The existence of a symmetric α-stable distribution with a given spectral measure is
not automatic and is linked with the notion of stable type of a Banach space; see
Theorem 9.27 in [7] for a precise statement. In [3], Davydov, Molchanov and Zuyev
consider α-stable distributions in the more general framework of abstract convex
cones.

The space D
d equipped with the norm

‖x‖ = sup{|xi(t)|, t ∈ [0, 1], i = 1, · · · , d}, x = (x1, · · · , xd) ∈ D
d,

is a Banach space but is not separable. The uniform topology associated with this
norm is finer than the J1-topology. On the other hand, the space D

d with the J1-
topology is Polish, i.e. there exists a metric on D

d compatible with the J1-topology
that makes D

d a complete and separable metric space. However, such a metric
can not be compatible with the vector space structure since the addition is not
continuous in the J1-topology. These properties explains why the general theory of
stable distributions on separable Banach space can not be applied to the space D

d.
Nevertheless, in the case when the series (1) converges, the distribution of the

sum X defines an α-stable distribution on D
d. We can determine the associated

spectral measure σ on the unit sphere S
d = {x ∈ D

d; ‖x‖ = 1 }. It is given by

σ(A) =
E

(
|ε1|

α‖Y1‖
α
1{sign(ε1)Y1/‖Y1‖∈A}

)

E(|ε1|α‖Y1‖α)
, A ∈ B(Sd).
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This is closely related to regular variations theory (see Hult and Lindskog [5] or
Davis and Mikosch [2] ): for all r > 0 and A ∈ B(Sd) such that σ(∂A) = 0, it holds
that

lim
n→∞

nP
( X

‖X‖
∈ A

∣∣∣ ‖X‖ > rbn

)
= r−ασ(A),

with
bn = inf{r > 0; P(‖X‖ < r) ≤ n−1}, n ≥ 1.

The random variable X is said to be regularly varying in D
d with index α and

spectral measure σ.
In this framework, convergence of the Le Page series (1) in D

d is known in some
particular cases only:

- When 0 < α < 1, E|ε1|
α < ∞ and E‖Y1‖

α < ∞, the series (1) converges
almost surely uniformly in [0, 1] (see example 4.2 in Davis and Mikoch [2]);

- When 1 ≤ α < 2, the distribution of the εi’s is symmetric, E|ε1|
α < ∞

and Yi(t) = 1[0,t](U) with (Ui)i≥1 an i.i.d. sequence of random variables with
uniform distribution on [0, 1], the series (1) converges almost surely uniformly
on [0, 1] and the limit process X is a symmetric α-stable Lévy process (see
Rosinski [8]).

The purpose of this note is to complete these results and to provide a general
criterion for almost sure convergence in D

d of the random series (1). Our main result
is the following:

Theorem 1 Suppose that 1 ≤ α < 2,

Eε1 = 0 , E|ε1|
α < ∞ and E‖Y1‖

α < ∞.

Suppose furthermore that there exist β1, β2 > 1
2 and F1 ,F2 nondecreasing continuous

functions on [0, 1] such that, for all 0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E|Y1(t2)− Y1(t1)|
2 ≤ |F1(t2)− F1(t1)|

β1 , (2)

E|Y1(t2)− Y1(t)|
2|Y1(t)− Y1(t1)|

2 ≤ |F2(t2)− F2(t1)|
2β2 . (3)

Then, the Le Page series (1) converges almost surely in D
d.

The proof of this Theorem is detailled in the next section. We provide hereafter
a few cases where Theorem 1 can be applied.

Example 1 The example considered by Davis and Mikosh [2] follows easily from
Theorem 1: let U be a random variable with uniform distribution on [0, 1] and
consider Y1(t) = 1[0,t](U), t ∈ [0, 1]. Then, for 0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E(Y1(t2)− Y1(t1))
2 = t2 − t1 and E(Y1(t2)− Y1(t))

2(Y1(t)− Y1(t1))
2 = 0,

so that conditions (2) and (3) are satisfied.
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Example 2 Example 1 can be generalized in the following way: let p ≥ 1, (Ui)1≤i≤p

independent random variables on [0, 1] and (Ri)1≤i≤p random variables on R
d. Con-

sider

Y1(t) =

p∑

i=1

Ri1[0,t](Ui).

Assume that for each i ∈ {1, · · · , p}, the cumulative distribution function Fi of Ui

is continuous on [0, 1]. Assume furthermore that there is some M > 0 such that for
all i ∈ {1, · · · , p}

E[R4
i | FU ] ≤ M almost surely, (4)

where FU = σ(U1, · · · , Up). This is for example the case when the Ri’s are uniformly
bounded by M1/4 or when the Ri’s have finite fourth moment and are independent
of the Ui’s. Simple computations entails that under condition (4), it holds for all
0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E(Y1(t2)− Y1(t1))
2 ≤ M1/2p2|F (t2)− F (t1)|

2

and
E(Y1(t2)− Y1(t))

2(Y1(t)− Y1(t1))
2 ≤ Mp4|F (t2)− F (t1)|

4.

with F (t) =
∑p

i=1 Fi(t). So conditions (2) and (3) are satisfied and Theorem (1)
can be applied in this case.

Example 3 A further natural example is the case when Y1(t) is a Poisson process
with intensity λ > 0 on [0, 1]. Then, for all 0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E(Y1(t2)− Y1(t1))
2 = λ|t2 − t1|+ λ2|t2 − t1|

2

and

E(Y1(t2)− Y1(t))
2(Y1(t)− Y1(t1))

2 = (λ|t2 − t|+ λ2|t2 − t|2)(λ|t− t1|+ λ2|t− t1|
2)

and we easily see that conditions (2) and (3) are satisfied.

2 Proof

For the sake of clarity, we divide the proof of Theorem 1 into five steps.

Step 1. According to Lemma 1.5.1 in [9], it holds almost surely that for k large
enough

|Γ
−1/α
k − k−1/α| ≤ 2α−1k−1/α

√
ln ln k

k
. (5)

This implies the a.s. convergence of the series

∞∑

i=1

|Γ
−1/α
i − i−1/α| |εi| ‖Yi‖ < ∞. (6)
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The series (6) has indeed nonnegative terms, and (5) implies that the following
conditionnal expectation is finite,

E

[
∞∑

i=1

|Γ
−1/α
i − i−1/α| |εi| ‖Yi‖

∣∣∣ FΓ

]
= E|ε1|E‖Yi‖

∞∑

i=1

|Γ
−1/α
i − i−1/α|

where FΓ = σ(Γi, i ≥ 1).
This proves that (6) holds true and it is enough to prove the a.s. convergence in

D
d of the series

Z(t) =
∞∑

i=1

i−1/αεiYi(t), t ∈ [0, 1], (7)

Step 2. Next, consider

Z̃(t) =
∞∑

i=1

i−1/αε̃iYi(t), t ∈ [0, 1]. (8)

with
ε̃i = εi1{|εi|α≤i}, i ≥ 1.

We prove that the series (7) and (8) differ only by a finite number of terms. We
have indeed

∞∑

i=1

P (ε̃i 6= εi) =

∞∑

i=1

P (|εi|
α > i) ≤ E|ε1|

α < ∞

and the Borel-Cantelli Lemma implies that almost surely ε̃i = εi for i large enough.
So, both series (7) and (8) have the same nature and it is enough to prove the
convergence in D

d of the series (8).

Step 3. As a preliminary for step 4, we prove several estimates involving the moments
of the random variables (ε̃i)i≥1. First, for all m > α,

C(α,m) :=
∞∑

i=1

i−m/α
E(|ε̃i|

m) < ∞. (9)

We have indeed

C(α,m) =

∞∑

i=1

i−m/α
E(|εi|

m
1{|εi|≤i1/α})

= E

(
|ε1|

m
∞∑

i=1

i−m/α
1{i≥|ε1|α}

)

≤ CE(|ε1|
m|ε1|

α−m) = CE(|ε1|
α) < ∞
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where the constant C = supx>0 x
m/α−1

∑
i≥x i

−m/α is finite since for m > α

lim
x→∞

xm/α−1
∞∑

i≥x

i−m/α =
α

m− α
.

Similarly, we also have

C(α, 1) :=
∞∑

i=1

i−1/α|E(ε̃i)| < ∞. (10)

Indeed, the assumption Eεi = 0 implies E(ε̃i) = E(εi1{|εi|α>i}). Hence,

∞∑

i=1

i−1/α|E(ε̃i)| ≤

∞∑

i=1

i−1/α
E(|ε1|1{|ε1|>i1/α})

= E

(
|ε1|

[|ε1|α]∑

i=1

i−1/α
)

≤ E

(
|ε1|C

′(|ε1|
α)1−1/α

)
= C ′

E|ε1|
α < ∞

where the constant C ′ = supx>0 x
1/α−1

∑[x]
i=1 i

−1/α is finite.

Step 4. For n ≥ 1, consider the partial sum

Z̃n(t) =
n∑

i=1

i−1/αε̃iYi(t), t ∈ [0, 1]. (11)

We prove that the sequence of processes (Z̃n)n≥1 is tight in D
d. Following Theorem

3 in Gikhman and Skohorod [4] chapter 6 section 3, it is enough to show that there
exists β > 1/2 and a non decreasing continuous function F on [0, 1] such that

E|Z̃n(t2)− Z̃n(t)|
2|Z̃n(t)− Z̃n(t1)|

2 ≤ |F (t2)− F (t1)|
2β , (12)

for all 0 ≤ t1 ≤ t ≤ t2 ≤ 1. Remark that in Gikhman and Skohorod [4], the result is
stated only for F (t) ≡ t. However, the case of a general continuous non decreasing
function F follows easily from a simple change of variable.

We use the notations Y (t) = (Y p(t))1≤p≤d, [[1, n]] = {1, · · · , n} and
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i = (i1, i2, i3, i4) ∈ [[1, n]]4. We have

E|Z̃n(t2)− Z̃n(t)|
2|Z̃n(t)− Z̃n(t1)|

2

= E

∣∣∣
n∑

i=1

i−1/αε̃i(Yi(t)− Yi(t1))
∣∣∣
2∣∣∣

n∑

j=1

j−1/αε̃j(Yj(t2)− Yj(t))
∣∣∣
2

=
∑

1≤p,q≤d

∑

i∈[[1,n]]4

(i1i2i3i4)
−1/α

E(ε̃i1 ε̃i2 ε̃i3 ε̃i4)E[(Y
p
i1
(t)− Y p

i1
(t1)) (13)

(Y p
i2
(t)− Y p

i2
(t1))(Y

q
i3
(t2)− Y q

i3
(t))(Y q

i4
(t2)− Y q

i4
(t))] (14)

≤ d2
∑

i∈[[1,n]]4

(i1i2i3i4)
−1/α|E(ε̃i1 ε̃i2 ε̃i3 ε̃i4)|Di(t, t1, t2) (15)

where

Di(t, t1, t2) = E|Yi1(t)− Yi1(t1)||Yi2(t)− Yi2(t1)||Yi3(t2)− Yi3(t)||Yi4(t2)− Yi4(t)|.

Consider ∼i the equivalence relation on {1, · · · , 4} defined by

j ∼i j
′ if and only if ij = ij′ .

Let P be the set of all partitions of {1, · · · , 4} and τ(i) be the partition of {1, 2, 3, 4}
given by the equivalence classes of ∼i. We introduce these definitions because, since
the Yi’s are i.i.d., the term Di(t, t1, t2) depends on i only through the associated
partition τ(i). For example, if τ(i) = {1, 2, 3, 4}, i.e. if i1 = i2 = i3 = i4, then

Di(t, t1, t2) = E|Y1(t)− Y1(t1)|
2|Y1(t2)− Y1(t)|

2.

Or if τ(i) = {1} ∪ {2} ∪ {3} ∪ {4}, i.e. if the indices i1, · · · , i4 are pairwise distinct,
then

Di(t, t1, t2) = (E|Y1(t)− Y1(t1)|E|Y1(t2)− Y1(t)|)
2.

For τ ∈ P, we denote by Dτ (t, t1, t2) the common value of the terms Di(t, t1, t2)
corresponding to indices i such that τ(i) = τ . Define also

Sn,τ =
∑

i∈{1,··· ,n}4;τ(i)=τ

(i1i2i3i4)
−1/α|E(ε̃i1 ε̃i2 ε̃i3 ε̃i4)|.

With these notations, equation (15) can be rewritten as

E|Z̃n(t2)− Z̃n(t)|
2|Z̃n(t)− Z̃n(t1)|

2 ≤ d2
∑

τ∈P

Sn,τDτ (t, t1, t2). (16)

Under conditions (2) and (3), we will prove that for each τ ∈ P, there exist βτ > 1/2,
a non decreasing continuous function Fτ on [0, 1] and a constant Sτ > 0 such that

Dτ (t, t1, t2) ≤ |Fτ (t1)− Fτ (t2)|
2βτ , 0 ≤ t1 ≤ t ≤ t2, (17)
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and
Sn,τ ≤ Sτ , n ≥ 1. (18)

Equations (16),(17) and (18) together imply inequality (12) for some suitable choices
of β > 1/2 and F .

It remains to prove inequalities (17) and (18). If τ = {1, 2, 3, 4},

Dτ (t, t1, t2) ≤ E|Y1(t)− Y1(t1)|
2|Y1(t2)− Y1(t)|

2 ≤ |F2(t2)− F2(t1)|
2β2

and

Sτ
n =

n∑

i=1

i−4/α
Eε̃4i ≤ C(α, 4).

If τ = {1} ∪ {2} ∪ {3} ∪ {4}, Cauchy-Schwartz inequality entails

Dτ (t, t1, t2) ≤ (E|Y1(t)− Y1(t1)|E|Y1(t2)− Y1(t)|)
2 ≤ |F1(t2)− F1(t1)|

2β1

and

Sτ
n ≤

∑

i∈{1,··· ,n}4;τ(i)=τ

(i1i2i3i4)
−1/α|Eε̃i1 ||Eε̃i2 ||Eε̃i3 ||Eε̃i4 | ≤ C(α, 1)4.

Similarly, for τ = {1, 2, 3} ∪ {4},

Dτ (t, t1, t2) = E|Y1(t)− Y1(t1)|
2|Y1(t2)− Y1(t)|E|Y1(t2)− Y1(t)|

≤ |F1(t)− F1(t1)|
β1/2|F2(t2)− F2(t1)|

β2 |F1(t2)− F1(t)|
β1/2

≤ |(F1 + F2)(t2)− (F1 + F2)(t1)|
β1+β2

and
Sτ
n ≤

∑

1≤i 6=j≤n

(i3j)−1/α
E|ε̃i|

3|Eε̃j | ≤ C(α, 3)C(α, 3).

or for τ = {1, 2} ∪ {3} ∪ {4},

Dτ (t, t1, t2) = E|Y1(t)− Y1(t1)|
2(E|Y1(t2)− Y1(t)|)

2

≤ |F1(t)− F1(t1)|
β1 |F1(t2)− F1(t)|

β1

≤ |F1(t2)− F1(t1)|
2β1

and
Sτ
n ≤

∑

1≤i 6=j 6=k≤n

(i2jk)−1/α
E|ε̃i|

2|Eε̃j||Eε̃k| ≤ C(α, 2)C(α, 1)2.

Similar computations can be checked in all remaining cases. The cardinality of P is
equal to 13.

Step 5. We prove Theorem 1. For each fixed t ∈ [0, 1], Kolmogorov’s three-series The-
orem implies that Z̃n(t) converge almost surely as n → ∞. So the finite-dimensional
distributions of (Z̃n)n≥1 converge. The tightness in D

d of the sequence has already

been proved in step 4, so (Z̃n)n≥1 weakly convergence in D
d as n → ∞. We then

apply Theorem 1 in Kallenberg [6] and deduce that Z̃n converges almost surely in
D

d. In view of step 1 and step 2, this yields the almost sure convergence of the series
(1). �
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