On the convergence of Le Page series in Skohorod space

Youri Davydov, Clément Dombry

To cite this version:

Youri Davydov, Clément Dombry. On the convergence of Le Page series in Skohorod space. 2011. hal-00607964

HAL Id: hal-00607964
https://hal.science/hal-00607964
Preprint submitted on 11 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the convergence of Le Page series in Skohorod space

Youri Davydov∗ and Clément Dombry†

Abstract

We consider the problem of the convergence of the so-called Le Page series in the Skohorod space \(D^d = D([0,1],\mathbb{R}^d) \) and provide a simple criterion based on the moments of the increments of the random process involved in the series. This provides a simple sufficient condition for the existence of an \(\alpha \)-stable distribution on \(D^d \) with given spectral measure.

Key words: stable distribution, Le Page series, Skohorod space.

AMS Subject classification. Primary: 60E07 Secondary: 60G52.

1 Introduction

We are interested in the convergence in the Skohorod space \(D^d = D([0,1],\mathbb{R}^d) \) endowed with the \(J_1 \)-topology of random series of the form

\[
X(t) = \sum_{i=1}^{\infty} \Gamma_i^{-1/\alpha} \varepsilon_i Y_i(t), \quad t \in [0,1],
\]

where \(\alpha \in (0,2) \) and

- \((\Gamma_i)_{i \geq 1}\) is the increasing enumeration of the points of a Poisson point process on \([0,+\infty)\) with Lebesgue intensity;

- \((\varepsilon_i)_{i \geq 1}\) is an i.i.d. sequence of real random variables;

∗Université des sciences et technologies de Lille, Laboratoire Paul Painlevé, UMR CNRS 8524, U.F.R. de Mathématiques, Bâtiment M2, 59655 Villeneuve d’Ascq Cedex, France. Email: Youri.Davydov@math.univ-lille1.fr

†Université de Poitiers, Laboratoire LMA, UMR CNRS 6286, Téléport 2, BP 30179, F-86962 Futuroscope-Chasseneuil cedex, France. Email: clement.dombry@math.univ-poitiers.fr
- \((Y_i)_{i \geq 1}\) is an i.i.d. sequence of \(\mathbb{D}^d\)-valued random variables;
- the sequences \((\Gamma_i), (\varepsilon_i)\) and \((Y_i)\) are independent.

Note that a more constructive definition for the sequence \((\Gamma_i)_{i \geq 1}\) is given by

\[
\Gamma_i = \sum_{j=1}^{i} \gamma_j, \quad i \geq 1,
\]

where \((\gamma_i)_{i \geq 1}\) is an i.i.d. sequence of random variables with exponential distribution of parameter 1, and independent of \((\varepsilon_i)\) and \((Y_i)\).

Series of the form (1) are known as Le Page series. For fixed \(t \in [0, 1]\), the convergence in \(\mathbb{R}^d\) of the series (1) is ensured as soon as one of the following conditions is satisfied:

- \(0 < \alpha < 1\), \(\mathbb{E}|\varepsilon_1|^\alpha < \infty\) and \(\mathbb{E}|Y_1(t)|^\alpha < \infty\),
- \(1 \leq \alpha < 2\), \(\mathbb{E}\varepsilon_1 = 0\), \(\mathbb{E}|\varepsilon_1|^\alpha < \infty\) and \(\mathbb{E}|Y_1(t)|^\alpha < \infty\).

Here \(|.|\) denotes the usual Euclidean norm on \(\mathbb{R}\) or on \(\mathbb{R}^d\). The random variable \(X(t)\) has then an \(\alpha\)-stable distribution on \(\mathbb{R}^d\). Conversely, it is well known that any \(\alpha\)-stable distributions on \(\mathbb{R}^d\) admits a representation in terms of Le Page series (see for example Samorodnitsky and Taqqu [9] section 3.9).

There is a vast literature on symmetric \(\alpha\)-stable distributions on separable Banach spaces (see e.g. Ledoux and Talagrand [7] or Araujo and Giné [1]). In particular, any symmetric \(\alpha\)-stable distribution on a separable Banach space can be represented as an almost surely convergent Le Page series (see Corollary 5.5 in [7]). The existence of a symmetric \(\alpha\)-stable distribution with a given spectral measure is not automatic and is linked with the notion of stable type of a Banach space; see Theorem 9.27 in [7] for a precise statement. In [3], Davydov, Molchanov and Zuyev consider \(\alpha\)-stable distributions in the more general framework of abstract convex cones.

The space \(\mathbb{D}^d\) equipped with the norm

\[
\|x\| = \sup\{|x_i(t)|, \quad t \in [0, 1], \quad i = 1, \ldots, d\}, \quad x = (x_1, \ldots, x_d) \in \mathbb{D}^d,
\]

is a Banach space but is not separable. The uniform topology associated with this norm is finer than the \(J_1\)-topology. On the other hand, the space \(\mathbb{D}^d\) with the \(J_1\)-topology is Polish, i.e. there exists a metric on \(\mathbb{D}^d\) compatible with the \(J_1\)-topology that makes \(\mathbb{D}^d\) a complete and separable metric space. However, such a metric can not be compatible with the vector space structure since the addition is not continuous in the \(J_1\)-topology. These properties explains why the general theory of stable distributions on separable Banach space can not be applied to the space \(\mathbb{D}^d\).

Nevertheless, in the case when the series (1) converges, the distribution of the sum \(X\) defines an \(\alpha\)-stable distribution on \(\mathbb{D}^d\). We can determine the associated spectral measure \(\sigma\) on the unit sphere \(S^d = \{x \in \mathbb{D}^d; \|x\| = 1\}\). It is given by

\[
\sigma(A) = \frac{\mathbb{E}(|\varepsilon_1|^\alpha|Y_1||^{\alpha}1_{\{\text{sign}(\varepsilon_1)Y_1/\|Y_1\| \in A\}})}{\mathbb{E}(|\varepsilon_1|^\alpha|Y_1||^{\alpha})}, \quad A \in \mathcal{B}(S^d).
\]
This is closely related to regular variations theory (see Hult and Lindskog [5] or Davis and Mikosch [2]): for all $r > 0$ and $A \in \mathcal{B}({\mathbb{S}^d})$ such that $\sigma(\partial A) = 0$, it holds that
\[
\lim_{n \to \infty} n \mathbb{P}\left(\frac{X}{\|X\|} \in A \right) = r^{-\alpha} \sigma(A),
\]
with
\[
b_n = \inf\{r > 0; \mathbb{P}(\|X\| < r) \leq n^{-1}\}, \quad n \geq 1.
\]
The random variable X is said to be regularly varying in \mathbb{D}^d with index α and spectral measure σ.

In this framework, convergence of the Le Page series (1) in \mathbb{D}^d is known in some particular cases only:

- When $0 < \alpha < 1$, $\mathbb{E}|\epsilon_1|^\alpha < \infty$ and $\mathbb{E}|Y_1|^\alpha < \infty$, the series (1) converges almost surely uniformly in $[0, 1]$ (see example 4.2 in Davis and Mikoch [2]);

- When $1 \leq \alpha < 2$, the distribution of the ϵ_i’s is symmetric, $\mathbb{E}|\epsilon_1|^\alpha < \infty$ and $Y_i(t) = 1_{[0, t]}(U)$ with $(U_i)_{i \geq 1}$ an i.i.d. sequence of random variables with uniform distribution on $[0, 1]$, the series (1) converges almost surely uniformly on $[0, 1]$ and the limit process X is a symmetric α-stable Lévy process (see Rosinski [8]).

The purpose of this note is to complete these results and to provide a general criterion for almost sure convergence in \mathbb{D}^d of the random series (1). Our main result is the following:

Theorem 1 Suppose that $1 \leq \alpha < 2$,
\[
\mathbb{E}\epsilon_1 = 0 \quad , \quad \mathbb{E}|\epsilon_1|^\alpha < \infty \quad \text{and} \quad \mathbb{E}|Y_1|^\alpha < \infty.
\]
Suppose furthermore that there exist $\beta_1, \beta_2 > \frac{1}{2}$ and F_1, F_2 nondecreasing continuous functions on $[0, 1]$ such that, for all $0 \leq t_1 \leq t \leq t_2 \leq 1$,
\[
\mathbb{E}|Y_1(t_2) - Y_1(t_1)|^2 \leq |F_1(t_2) - F_1(t_1)|^{\beta_1}, \tag{2}
\]
\[
\mathbb{E}|Y_1(t_2) - Y_1(t)|^2|Y_1(t) - Y_1(t_1)|^2 \leq |F_2(t_2) - F_2(t_1)|^{2\beta_2}. \tag{3}
\]
Then, the Le Page series (1) converges almost surely in \mathbb{D}^d.

The proof of this Theorem is detailed in the next section. We provide hereafter a few cases where Theorem 1 can be applied.

Example 1 The example considered by Davis and Mikosh [2] follows easily from Theorem 1: let U be a random variable with uniform distribution on $[0, 1]$ and consider $Y_1(t) = 1_{[0, t]}(U)$, $t \in [0, 1]$. Then, for $0 \leq t_1 \leq t \leq t_2 \leq 1$,
\[
\mathbb{E}(Y_1(t_2) - Y_1(t_1))^2 = t_2 - t_1 \quad \text{and} \quad \mathbb{E}(Y_1(t_2) - Y_1(t))^2(Y_1(t) - Y_1(t_1))^2 = 0,
\]
so that conditions (2) and (3) are satisfied.
Example 2 Example 1 can be generalized in the following way: let $p \geq 1$, $(U_i)_{1 \leq i \leq p}$ independent random variables on $[0, 1]$ and $(R_i)_{1 \leq i \leq p}$ random variables on \mathbb{R}^d. Consider

$$Y_1(t) = \sum_{i=1}^{p} R_i \mathbf{1}_{[0,t]}(U_i).$$

Assume that for each $i \in \{1, \ldots, p\}$, the cumulative distribution function F_i of U_i is continuous on $[0, 1]$. Assume furthermore that there is some $M > 0$ such that for all $i \in \{1, \ldots, p\}$

$$\mathbb{E}[R_i^4 | \mathcal{F}_U] \leq M \quad \text{almost surely},$$

where $\mathcal{F}_U = \sigma(U_1, \ldots, U_p)$. This is for example the case when the R_i’s are uniformly bounded by $M^{1/4}$ or when the R_i’s have finite fourth moment and are independent of the U_i’s. Simple computations entails that under condition (4), it holds for all $0 \leq t_1 \leq t \leq t_2 \leq 1$,

$$\mathbb{E}(Y_1(t_2) - Y_1(t_1))^2 \leq M^{1/2}p^2|F(t_2) - F(t_1)|^2$$

and

$$\mathbb{E}(Y_1(t_2) - Y_1(t))^2(Y_1(t) - Y_1(t_1))^2 \leq Mp^4|F(t_2) - F(t_1)|^4.$$

with $F(t) = \sum_{i=1}^{p} F_i(t)$. So conditions (2) and (3) are satisfied and Theorem (1) can be applied in this case.

Example 3 A further natural example is the case when $Y_1(t)$ is a Poisson process with intensity $\lambda > 0$ on $[0, 1]$. Then, for all $0 \leq t_1 \leq t \leq t_2 \leq 1$,

$$\mathbb{E}(Y_1(t_2) - Y_1(t_1))^2 = \lambda|t_2 - t_1| + \lambda^2|t_2 - t_1|^2$$

and

$$\mathbb{E}(Y_1(t_2) - Y_1(t))^2(Y_1(t) - Y_1(t_1))^2 = (\lambda|t_2 - t| + \lambda^2|t_2 - t|^2)(\lambda|t - t_1| + \lambda^2|t - t_1|^2)$$

and we easily see that conditions (2) and (3) are satisfied.

2 Proof

For the sake of clarity, we divide the proof of Theorem 1 into five steps.

Step 1. According to Lemma 1.5.1 in [9], it holds almost surely that for k large enough

$$|\Gamma_k^{-1/\alpha} - k^{-1/\alpha}| \leq 2\alpha^{-1}k^{-1/\alpha} \sqrt{\ln \ln k / k}. \quad (5)$$

This implies the a.s. convergence of the series

$$\sum_{i=1}^{\infty} |\Gamma_i^{-1/\alpha} - i^{-1/\alpha}| \|\varepsilon_i\|Y_i\| < \infty. \quad (6)$$
The series (6) has indeed nonnegative terms, and (5) implies that the following conditional expectation is finite,

\[
E \left[\sum_{i=1}^{\infty} \left| \Gamma_i^{-1/\alpha} - i^{-1/\alpha} \right| |\epsilon_i| \|Y_i\| \right | \mathcal{F}_\Gamma = E|\epsilon_1| E\|Y_1\| \sum_{i=1}^{\infty} \left| \Gamma_i^{-1/\alpha} - i^{-1/\alpha} \right|
\]

where \(\mathcal{F}_\Gamma = \sigma(\Gamma_i, i \geq 1) \).

This proves that (6) holds true and it is enough to prove the a.s. convergence in \(\mathbb{D}^d \) of the series

\[
Z(t) = \sum_{i=1}^{\infty} i^{-1/\alpha} \epsilon_i Y_i(t), \quad t \in [0, 1], \quad (7)
\]

Step 2. Next, consider

\[
\tilde{Z}(t) = \sum_{i=1}^{\infty} i^{-1/\alpha} \tilde{\epsilon}_i Y_i(t), \quad t \in [0, 1]. \quad (8)
\]

with

\[
\tilde{\epsilon}_i = \epsilon_i \mathbf{1}_{|\epsilon_i| \leq i^\alpha}, \quad i \geq 1.
\]

We prove that the series (7) and (8) differ only by a finite number of terms. We have indeed

\[
\sum_{i=1}^{\infty} \mathbb{P}(\tilde{\epsilon}_i \neq \epsilon_i) = \sum_{i=1}^{\infty} \mathbb{P}(|\epsilon_i|^\alpha > i) \leq \mathbb{E}|\epsilon_1|^\alpha < \infty
\]

and the Borel-Cantelli Lemma implies that almost surely \(\tilde{\epsilon}_i = \epsilon_i \) for \(i \) large enough. So, both series (7) and (8) have the same nature and it is enough to prove the convergence in \(\mathbb{D}^d \) of the series (8).

Step 3. As a preliminary for step 4, we prove several estimates involving the moments of the random variables \((\tilde{\epsilon}_i)_{i \geq 1} \). First, for all \(m > \alpha \),

\[
C(\alpha, m) := \sum_{i=1}^{\infty} i^{-m/\alpha} \mathbb{E}(|\tilde{\epsilon}_i|^m) < \infty. \quad (9)
\]

We have indeed

\[
C(\alpha, m) = \sum_{i=1}^{\infty} i^{-m/\alpha} \mathbb{E}(\min(|\epsilon_i|^m, |\epsilon_i|^\alpha))
\]

\[
= \mathbb{E}(\min(|\epsilon_1|^m, \sum_{i=1}^{\infty} i^{-m/\alpha} 1_{|\epsilon_i|^\alpha}))
\]

\[
\leq C \mathbb{E}(|\epsilon_1|^m |\epsilon_1|^{m-\alpha}) = C \mathbb{E}(|\epsilon_1|^\alpha) < \infty
\]
where the constant $C = \sup_{x>0} x^{m/\alpha - 1} \sum_{i \geq x} i^{-m/\alpha}$ is finite since for $m > \alpha$

$$\lim_{x \to \infty} x^{m/\alpha - 1} \sum_{i \geq x} i^{-m/\alpha} = \frac{\alpha}{m - \alpha}. $$

Similarly, we also have

$$C(\alpha, 1) := \sum_{i=1}^{\infty} i^{-1/\alpha}\|\mathbb{E}(\tilde{\varepsilon}_i)\| < \infty. \quad (10)$$

Indeed, the assumption $\mathbb{E}\varepsilon_i = 0$ implies $\mathbb{E}(\tilde{\varepsilon}_i) = \mathbb{E}(\varepsilon_i1_{\{\varepsilon_i|>1\}})$. Hence,

$$\sum_{i=1}^{\infty} i^{-1/\alpha}\|\mathbb{E}(\tilde{\varepsilon}_i)\| \leq \sum_{i=1}^{\infty} i^{-1/\alpha}\mathbb{E}(\varepsilon_i1_{\{\varepsilon_i|>i^{1/\alpha}\}}) = \mathbb{E}\left(\left\{\mathbb{E}(\varepsilon_i1_{\{\varepsilon_i|>i^{1/\alpha}\}})\right\} \right) \leq C'\mathbb{E}|\varepsilon_1|^\alpha < \infty$$

where the constant $C' = \sup_{x>0} x^{1/\alpha - 1} \sum_{i=1}^{x} i^{-1/\alpha}$ is finite.

Step 4. For $n \geq 1$, consider the partial sum

$$\tilde{Z}_n(t) = \sum_{i=1}^{n} i^{-1/\alpha}\tilde{\varepsilon}_i Y_i(t), \quad t \in [0, 1]. \quad (11)$$

We prove that the sequence of processes $(\tilde{Z}_n)_{n\geq1}$ is tight in \mathbb{D}^d. Following Theorem 3 in Gikhman and Skohorod [4] chapter 6 section 3, it is enough to show that there exists $\beta > 1/2$ and a non decreasing continuous function F on $[0, 1]$ such that

$$\mathbb{E}|\tilde{Z}_n(t_2) - \tilde{Z}_n(t_1)|^2 \leq |F(t_2) - F(t_1)|^{2\beta}, \quad (12)$$

for all $0 \leq t_1 \leq t \leq t_2 \leq 1$. Remark that in Gikhman and Skohorod [4], the result is stated only for $F(t) \equiv t$. However, the case of a general continuous non decreasing function F follows easily from a simple change of variable.

We use the notations $Y(t) = (Y^p(t))_{1 \leq p \leq d}$, $[1, n] = \{1, \cdots, n\}$ and
\(i = (i_1, i_2, i_3, i_4) \in [1, n]^4 \). We have

\[
\mathbb{E}[\tilde{Z}_n(t_2) - \tilde{Z}_n(t_1)]^2 \mathbb{E}[\tilde{Z}_n(t) - \tilde{Z}_n(t_1)]^2
= \sum_{i=1}^n i^{-1/\alpha} \mathbb{E}[\tilde{Y}_i(t) - \tilde{Y}_i(t_1)]^2 \left| \sum_{j=1}^n j^{-1/\alpha} \tilde{Y}_j(t_2) - \tilde{Y}_j(t) \right|^2
= \sum_{1 \leq p, q \leq d \leq [1, n]^4} (i_1^2 i_2 i_3 i_4)^{-1/\alpha} \mathbb{E}[\tilde{Y}_{i_1}(t) - \tilde{Y}_{i_1}(t_1)] \mathbb{E}[\tilde{Y}_{i_2}(t_2) - \tilde{Y}_{i_2}(t)] (Y_{i_2}(t) - Y_{i_2}(t_1))(Y_{i_3}(t_2) - Y_{i_3}(t))(Y_{i_4}(t_2) - Y_{i_4}(t))
\leq d^2 \sum_{i \in [1, n]^4} (i_1 i_2 i_3 i_4)^{-1/\alpha} \mathbb{E}[\tilde{Y}_{i_1}(t) - \tilde{Y}_{i_1}(t_1)] \mathbb{E}[\tilde{Y}_{i_2}(t_2) - \tilde{Y}_{i_2}(t)] D_1(t, t_1, t_2)
\]

where

\[
D_1(t, t_1, t_2) = \mathbb{E}[Y_{i_1}(t) - Y_{i_1}(t_1)] |Y_{i_2}(t) - Y_{i_2}(t_1)| |Y_{i_3}(t_2) - Y_{i_3}(t)| |Y_{i_4}(t_2) - Y_{i_4}(t)|.
\]

Consider \(\sim_1 \) the equivalence relation on \(\{1, \cdots, 4\} \) defined by

\[
j \sim_1 j' \quad \text{if and only if} \quad i_j = i_{j'}.
\]

Let \(\mathcal{P} \) be the set of all partitions of \(\{1, \cdots, 4\} \) and \(\tau(i) \) be the partition of \(\{1, 2, 3, 4\} \) given by the equivalence classes of \(\sim_1 \). We introduce these definitions because, since the \(Y_i \)'s are i.i.d., the term \(D_1(t, t_1, t_2) \) depends on \(i \) only through the associated partition \(\tau(i) \). For example, if \(\tau(i) = \{1, 2, 3, 4\} \), i.e. if \(i_1 = i_2 = i_3 = i_4 \), then

\[
D_1(t, t_1, t_2) = \mathbb{E}[Y_1(t) - Y_1(t_1)]^2 |Y_1(t_2) - Y_1(t)|^2.
\]

Or if \(\tau(i) = \{1\} \cup \{2\} \cup \{3\} \cup \{4\} \), i.e. if the indices \(i_1, \cdots, i_4 \) are pairwise distinct, then

\[
D_1(t, t_1, t_2) = (\mathbb{E}[Y_1(t) - Y_1(t_1)] |\mathbb{E}[Y_1(t_2) - Y_1(t)]|^2.
\]

For \(\tau \in \mathcal{P} \), we denote by \(D_\tau(t, t_1, t_2) \) the common value of the terms \(D_1(t, t_1, t_2) \) corresponding to indices \(i \) such that \(\tau(i) = \tau \). Define also

\[
S_{n, \tau} = \sum_{i \in \{1, \cdots, n\}^4; \tau(i) = \tau} (i_1 i_2 i_3 i_4)^{-1/\alpha} |\mathbb{E}[\tilde{Y}_{i_1}(t) - \tilde{Y}_{i_1}(t_1)] |\mathbb{E}[\tilde{Y}_{i_2}(t_2) - \tilde{Y}_{i_2}(t)]|.
\]

With these notations, equation (15) can be rewritten as

\[
\mathbb{E}[\tilde{Z}_n(t_2) - \tilde{Z}_n(t)]^2 |\tilde{Z}_n(t) - \tilde{Z}_n(t_1)|^2 \leq d^2 \sum_{\tau \in \mathcal{P}} S_{n, \tau} D_\tau(t, t_1, t_2).
\]

Under conditions (2) and (3), we will prove that for each \(\tau \in \mathcal{P} \), there exist \(\beta_\tau > 1/2 \), a non decreasing continuous function \(F_\tau \) on \([0, 1]\) and a constant \(S_\tau > 0 \) such that

\[
D_\tau(t, t_1, t_2) \leq |F_\tau(t_1) - F_\tau(t_2)|^{2\beta_\tau}, \quad 0 \leq t_1 \leq t \leq t_2, \quad (17)
\]
and
\[S_{n, \tau} \leq S_{\tau}, \quad n \geq 1. \tag{18} \]

Equations (16), (17) and (18) together imply inequality (12) for some suitable choices of \(\beta > 1/2 \) and \(F \).

It remains to prove inequalities (17) and (18). If \(\tau = \{1, 2, 3, 4\} \),
\[D_{\tau}(t, t_1, t_2) \leq \mathbb{E}|Y_1(t) - Y_1(t_1)|^2|Y_1(t_2) - Y_1(t)|^2 \leq |F_2(t_2) - F_2(t_1)|^{2/3} \]
and
\[S_n^\tau = \sum_{i=1}^n i^{-4/\alpha} \mathbb{E}\tilde{\varepsilon}_i^4 \leq C(\alpha, 4). \]

If \(\tau = \{1\} \cup \{2\} \cup \{3\} \cup \{4\} \), Cauchy-Schwartz inequality entails
\[D_{\tau}(t, t_1, t_2) \leq (\mathbb{E}|Y_1(t) - Y_1(t_1)|^2|Y_1(t_2) - Y_1(t)|^2 \leq |F_1(t_2) - F_1(t_1)|^{2/3} \]
and
\[S_n^\tau \leq \sum_{1 \leq i \neq j \leq n} (i^3 j^3)^{-1/\alpha} \mathbb{E}\tilde{\varepsilon}_i^3 \mathbb{E}\tilde{\varepsilon}_j \leq C(\alpha, 3) C(\alpha, 3). \]

or for \(\tau = \{1, 2\} \cup \{3\} \cup \{4\} \),
\[D_{\tau}(t, t_1, t_2) = \mathbb{E}|Y_1(t) - Y_1(t_1)|^2(\mathbb{E}|Y_1(t_2) - Y_1(t)|^2 \leq |F_1(t) - F_1(t_1)|^{2/3} |F_1(t_2) - F_1(t)|^{2/3} \]
and
\[S_n^\tau \leq \sum_{1 \leq i \neq j \neq k \leq n} (i^2 j^2 k)^{-1/\alpha} \mathbb{E}\tilde{\varepsilon}_i^2 \mathbb{E}\tilde{\varepsilon}_j \mathbb{E}\tilde{\varepsilon}_k \leq C(\alpha, 2) C(\alpha, 1)^2. \]

Similar computations can be checked in all remaining cases. The cardinality of \(\mathcal{P} \) is equal to 13.

Step 5. We prove Theorem 1. For each fixed \(t \in [0, 1] \), Kolmogorov’s three-series Theorem implies that \(\tilde{Z}_n(t) \) converge almost surely as \(n \to \infty \). So the finite-dimensional distributions of \((\tilde{Z}_n)_{n \geq 1} \) converge. The tightness in \(\mathbb{D}^d \) of the sequence has already been proved in step 4, so \((\tilde{Z}_n)_{n \geq 1} \) weakly convergence in \(\mathbb{D}^d \) as \(n \to \infty \). We then apply Theorem 1 in Kallenberg [6] and deduce that \(\tilde{Z}_n \) converges almost surely in \(\mathbb{D}^d \). In view of step 1 and step 2, this yields the almost sure convergence of the series (1). \(\square \)
References

