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We consider the problem of the convergence of the so-called Le Page series in the Skohorod space D d = D([0, 1], R d ) and provide a simple criterion based on the moments of the increments of the random process involved in the series. This provides a simple sufficient condition for the existence of an α-stable distribution on D d with given spectral measure.

Introduction

We are interested in the convergence in the Skohorod space D d = D([0, 1], R d ) endowed with the J 1 -topology of random series of the form

X(t) = ∞ i=1 Γ -1/α i ε i Y i (t), t ∈ [0, 1], (1) 
where α ∈ (0, 2) and -(Γ i ) i≥1 is the increasing enumeration of the points of a Poisson point process on [0, +∞) with Lebesgue intensity; -(ε i ) i≥1 is an i.i.d. sequence of real random variables; * Université des sciences et technologies de Lille, Laboratoire Paul Painlevé, UMR CNRS 8524, U.F.R. de Mathématiques, Bâtiment M2, 59655 Villeneuve d'Ascq Cedex, France. Email: Youri.Davydov@math.univ-lille1.fr † Université de Poitiers, Laboratoire LMA, UMR CNRS 6286, Téléport 2, BP 30179, F-86962 Futuroscope-Chasseneuil cedex, France. Email: clement.dombry@math.univ-poitiers.fr 1 -(Y i ) i≥1 is an i.i.d. sequence of D d -valued random variables; -the sequences (Γ i ), (ε i ) and (Y i ) are independent.

Note that a more constructive definition for the sequence (Γ i ) i≥1 is given by

Γ i = i j=1 γ j , i ≥ 1,
where (γ i ) i≥1 is an i.i.d. sequence of random variables with exponential distribution of parameter 1, and independent of (ε i ) and (Y i ).

Series of the form (1) are known as Le Page series. For fixed t ∈ [0, 1], the convergence in R d of the series ( 1) is ensured as soon as one of the following conditions is satisfied:

-0 < α < 1, E|ε 1 | α < ∞ and E|Y 1 (t)| α < ∞, -1 ≤ α < 2, Eε 1 = 0, E|ε 1 | α < ∞ and E|Y 1 (t)| α < ∞.
Here |.| denotes the usual Euclidean norm on R or on R d . The random variable X(t) has then an α-stable distribution on R d . Conversely, it is well known that any α-stable distributions on R d admits a representation in terms of Le Page series (see for example Samorodnitsky and Taqqu [9] section 3.9).

There is a vast literature on symmetric α-stable distributions on separable Banach spaces (see e.g. Ledoux and Talagrand [START_REF] Ledoux | Probability in Banach spaces[END_REF] or Araujo and Giné [START_REF] Araujo | The central limit theorem for real and Banach valued random variables[END_REF]). In particular, any symmetric α-stable distribution on a separable Banach space can be represented as an almost surely convergent Le Page series (see Corollary 5.5 in [START_REF] Ledoux | Probability in Banach spaces[END_REF]). The existence of a symmetric α-stable distribution with a given spectral measure is not automatic and is linked with the notion of stable type of a Banach space; see Theorem 9.27 in [START_REF] Ledoux | Probability in Banach spaces[END_REF] for a precise statement. In [START_REF] Davydov | Strictly stable distributions on convex cones[END_REF], Davydov, Molchanov and Zuyev consider α-stable distributions in the more general framework of abstract convex cones.

The space D d equipped with the norm

x = sup{|x i (t)|, t ∈ [0, 1], i = 1, • • • , d}, x = (x 1 , • • • , x d ) ∈ D d ,
is a Banach space but is not separable. The uniform topology associated with this norm is finer than the J 1 -topology. On the other hand, the space D d with the J 1topology is Polish, i.e. there exists a metric on D d compatible with the J 1 -topology that makes D d a complete and separable metric space. However, such a metric can not be compatible with the vector space structure since the addition is not continuous in the J 1 -topology. These properties explains why the general theory of stable distributions on separable Banach space can not be applied to the space D d . Nevertheless, in the case when the series (1) converges, the distribution of the sum X defines an α-stable distribution on D d . We can determine the associated spectral measure σ on the unit sphere S d = {x ∈ D d ; x = 1 }. It is given by

σ(A) = E |ε 1 | α Y 1 α 1 {sign(ε 1 )Y 1 / Y 1 ∈A} E(|ε 1 | α Y 1 α ) , A ∈ B(S d ).
This is closely related to regular variations theory (see Hult and Lindskog [START_REF] Hult | Regular variation for measures on metric spaces[END_REF] or Davis and Mikosch [START_REF] Davis | Extreme value theory for space-time processes with heavy-tailed distributions[END_REF] ): for all r > 0 and A ∈ B(S d ) such that σ(∂A) = 0, it holds that lim

n→∞ nP X X ∈ A X > rb n = r -α σ(A), with b n = inf{r > 0; P( X < r) ≤ n -1 }, n ≥ 1.
The random variable X is said to be regularly varying in D d with index α and spectral measure σ.

In this framework, convergence of the Le Page series (1) in D d is known in some particular cases only:

-When 0 < α < 1, E|ε 1 | α < ∞ and E Y 1 α < ∞, the series (1) converges
almost surely uniformly in [0, 1] (see example 4.2 in Davis and Mikoch [START_REF] Davis | Extreme value theory for space-time processes with heavy-tailed distributions[END_REF]);

-When 1 ≤ α < 2, the distribution of the ε i 's is symmetric, E|ε 1 | α < ∞ and Y i (t) = 1 [0,t] (U ) with (U i ) i≥1 an i.i.d
. sequence of random variables with uniform distribution on [0, 1], the series (1) converges almost surely uniformly on [0, 1] and the limit process X is a symmetric α-stable Lévy process (see Rosinski [START_REF] Rosiński | Series representations of Lévy processes from the perspective of point processes[END_REF]).

The purpose of this note is to complete these results and to provide a general criterion for almost sure convergence in D d of the random series (1). Our main result is the following:

Theorem 1 Suppose that 1 ≤ α < 2, Eε 1 = 0 , E|ε 1 | α < ∞ and E Y 1 α < ∞.
Suppose furthermore that there exist β 1 , β 2 > 1 2 and F 1 ,F 2 nondecreasing continuous functions on [0, 1] such that, for all

0 ≤ t 1 ≤ t ≤ t 2 ≤ 1, E|Y 1 (t 2 ) -Y 1 (t 1 )| 2 ≤ |F 1 (t 2 ) -F 1 (t 1 )| β 1 , (2) E|Y 1 (t 2 ) -Y 1 (t)| 2 |Y 1 (t) -Y 1 (t 1 )| 2 ≤ |F 2 (t 2 ) -F 2 (t 1 )| 2β 2 . (3)
Then, the Le Page series (1) converges almost surely in D d .

The proof of this Theorem is detailled in the next section. We provide hereafter a few cases where Theorem 1 can be applied.

Example 1

The example considered by Davis and Mikosh [START_REF] Davis | Extreme value theory for space-time processes with heavy-tailed distributions[END_REF] follows easily from Theorem 1: let U be a random variable with uniform distribution on [0, 1] and consider

Y 1 (t) = 1 [0,t] (U ), t ∈ [0, 1]. Then, for 0 ≤ t 1 ≤ t ≤ t 2 ≤ 1, E(Y 1 (t 2 ) -Y 1 (t 1 )) 2 = t 2 -t 1 and E(Y 1 (t 2 ) -Y 1 (t)) 2 (Y 1 (t) -Y 1 (t 1 )) 2 = 0,
so that conditions (2) and (3) are satisfied.

Example 2 Example 1 can be generalized in the following way: let p ≥ 1, (U i ) 1≤i≤p independent random variables on [0, 1] and (R i ) 1≤i≤p random variables on R d . Consider

Y 1 (t) = p i=1 R i 1 [0,t] (U i ). Assume that for each i ∈ {1, • • • , p}, the cumulative distribution function F i of U i is continuous on [0, 1]. Assume furthermore that there is some M > 0 such that for all i ∈ {1, • • • , p} E[R 4 i | F U ] ≤ M almost surely, (4) 
where

F U = σ(U 1 , • • • , U p
). This is for example the case when the R i 's are uniformly bounded by M 1/4 or when the R i 's have finite fourth moment and are independent of the U i 's. Simple computations entails that under condition (4), it holds for all

0 ≤ t 1 ≤ t ≤ t 2 ≤ 1, E(Y 1 (t 2 ) -Y 1 (t 1 )) 2 ≤ M 1/2 p 2 |F (t 2 ) -F (t 1 )| 2 and E(Y 1 (t 2 ) -Y 1 (t)) 2 (Y 1 (t) -Y 1 (t 1 )) 2 ≤ M p 4 |F (t 2 ) -F (t 1 )| 4 .
with F (t) = p i=1 F i (t). So conditions ( 2) and ( 3) are satisfied and Theorem (1) can be applied in this case.

Example 3 A further natural example is the case when Y 1 (t) is a Poisson process with intensity λ > 0 on [0, 1]. Then, for all 0 ≤ t 1 ≤ t ≤ t 2 ≤ 1, E(Y 1 (t 2 ) -Y 1 (t 1 )) 2 = λ|t 2 -t 1 | + λ 2 |t 2 -t 1 | 2 and E(Y 1 (t 2 ) -Y 1 (t)) 2 (Y 1 (t) -Y 1 (t 1 )) 2 = (λ|t 2 -t| + λ 2 |t 2 -t| 2 )(λ|t -t 1 | + λ 2 |t -t 1 | 2 )
and we easily see that conditions (2) and (3) are satisfied.

Proof

For the sake of clarity, we divide the proof of Theorem 1 into five steps.

Step 1. According to Lemma 1.5.1 in [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF], it holds almost surely that for k large enough

|Γ -1/α k -k -1/α | ≤ 2α -1 k -1/α ln ln k k . (5) 
This implies the a.s. convergence of the series

∞ i=1 |Γ -1/α i -i -1/α | |ε i | Y i < ∞. (6) 
The series (6) has indeed nonnegative terms, and (5) implies that the following conditionnal expectation is finite,

E ∞ i=1 |Γ -1/α i -i -1/α | |ε i | Y i F Γ = E|ε 1 | E Y i ∞ i=1 |Γ -1/α i -i -1/α |
where F Γ = σ(Γ i , i ≥ 1). This proves that ( 6) holds true and it is enough to prove the a.s. convergence in D d of the series

Z(t) = ∞ i=1 i -1/α ε i Y i (t), t ∈ [0, 1], (7) 
Step 2. Next, consider

Z(t) = ∞ i=1 i -1/α εi Y i (t), t ∈ [0, 1]. (8) 
with εi = ε i 1 {|ε i | α ≤i} , i ≥ 1.
We prove that the series ( 7) and ( 8) differ only by a finite number of terms. We have indeed

∞ i=1 P (ε i = ε i ) = ∞ i=1 P (|ε i | α > i) ≤ E|ε 1 | α < ∞
and the Borel-Cantelli Lemma implies that almost surely εi = ε i for i large enough. So, both series ( 7) and ( 8) have the same nature and it is enough to prove the convergence in D d of the series (8).

Step 3. As a preliminary for step 4, we prove several estimates involving the moments of the random variables

(ε i ) i≥1 . First, for all m > α, C(α, m) := ∞ i=1 i -m/α E(|ε i | m ) < ∞. (9) 
We have indeed

C(α, m) = ∞ i=1 i -m/α E(|ε i | m 1 {|ε i |≤i 1/α } ) = E |ε 1 | m ∞ i=1 i -m/α 1 {i≥|ε 1 | α } ≤ CE(|ε 1 | m |ε 1 | α-m ) = CE(|ε 1 | α ) < ∞ where the constant C = sup x>0 x m/α-1 i≥x i -m/α is finite since for m > α lim x→∞ x m/α-1 ∞ i≥x i -m/α = α m -α .
Similarly, we also have

C(α, 1) := ∞ i=1 i -1/α |E(ε i )| < ∞. ( 10 
)
Indeed, the assumption

Eε i = 0 implies E(ε i ) = E(ε i 1 {|ε i | α >i} ). Hence, ∞ i=1 i -1/α |E(ε i )| ≤ ∞ i=1 i -1/α E(|ε 1 |1 {|ε 1 |>i 1/α } ) = E |ε 1 | [|ε 1 | α ] i=1 i -1/α ≤ E |ε 1 |C ′ (|ε 1 | α ) 1-1/α = C ′ E|ε 1 | α < ∞
where the constant

C ′ = sup x>0 x 1/α-1 [x] i=1 i -1/α is finite.
Step 4. For n ≥ 1, consider the partial sum

Z n (t) = n i=1 i -1/α εi Y i (t), t ∈ [0, 1]. (11) 
We prove that the sequence of processes ( Z n ) n≥1 is tight in D d . Following Theorem 3 in Gikhman and Skohorod [START_REF] Iosif | The theory of stochastic processes. I. Classics in Mathematics[END_REF] chapter 6 section 3, it is enough to show that there exists β > 1/2 and a non decreasing continuous function

F on [0, 1] such that E| Z n (t 2 ) -Z n (t)| 2 | Z n (t) -Z n (t 1 )| 2 ≤ |F (t 2 ) -F (t 1 )| 2β , (12) 
for all 0 ≤ t 1 ≤ t ≤ t 2 ≤ 1. Remark that in Gikhman and Skohorod [START_REF] Iosif | The theory of stochastic processes. I. Classics in Mathematics[END_REF], the result is stated only for F (t) ≡ t. However, the case of a general continuous non decreasing function F follows easily from a simple change of variable.

We use the notations

Y (t) = (Y p (t)) 1≤p≤d , [[1, n]] = {1, • • • , n} and i = (i 1 , i 2 , i 3 , i 4 ) ∈ [[1, n]] 4 . We have E| Z n (t 2 ) -Z n (t)| 2 | Z n (t) -Z n (t 1 )| 2 = E n i=1 i -1/α εi (Y i (t) -Y i (t 1 )) 2 n j=1 j -1/α εj (Y j (t 2 ) -Y j (t)) 2 = 1≤p,q≤d i∈[[1,n]] 4 (i 1 i 2 i 3 i 4 ) -1/α E(ε i 1 εi 2 εi 3 εi 4 )E[(Y p i 1 (t) -Y p i 1 (t 1 )) (13) 
(Y p i 2 (t) -Y p i 2 (t 1 ))(Y q i 3 (t 2 ) -Y q i 3 (t))(Y q i 4 (t 2 ) -Y q i 4 (t))] (14) 
≤ d 2 i∈[[1,n]] 4 (i 1 i 2 i 3 i 4 ) -1/α |E(ε i 1 εi 2 εi 3 εi 4 )|D i (t, t 1 , t 2 ) (15) 
where

D i (t, t 1 , t 2 ) = E|Y i 1 (t) -Y i 1 (t 1 )||Y i 2 (t) -Y i 2 (t 1 )||Y i 3 (t 2 ) -Y i 3 (t)||Y i 4 (t 2 ) -Y i 4 (t)|.
Consider ∼ i the equivalence relation on {1, • • • , 4} defined by j ∼ i j ′ if and only if i j = i j ′ .

Let P be the set of all partitions of {1, • • • , 4} and τ (i) be the partition of {1, 2, 3, 4} given by the equivalence classes of ∼ i . We introduce these definitions because, since the Y i 's are i.i.d., the term D i (t, t 1 , t 2 ) depends on i only through the associated partition τ (i). For example, if

τ (i) = {1, 2, 3, 4}, i.e. if i 1 = i 2 = i 3 = i 4 , then D i (t, t 1 , t 2 ) = E|Y 1 (t) -Y 1 (t 1 )| 2 |Y 1 (t 2 ) -Y 1 (t)| 2 . Or if τ (i) = {1} ∪ {2} ∪ {3} ∪ {4}, i.e. if the indices i 1 , • • • , i 4 are pairwise distinct, then D i (t, t 1 , t 2 ) = (E|Y 1 (t) -Y 1 (t 1 )|E|Y 1 (t 2 ) -Y 1 (t)|) 2 .
For τ ∈ P, we denote by D τ (t, t 1 , t 2 ) the common value of the terms D i (t, t 1 , t 2 ) corresponding to indices i such that τ (i) = τ . Define also

S n,τ = i∈{1,••• ,n} 4 ;τ (i)=τ (i 1 i 2 i 3 i 4 ) -1/α |E(ε i 1 εi 2 εi 3 εi 4 )|.
With these notations, equation (15) can be rewritten as

E| Z n (t 2 ) -Z n (t)| 2 | Z n (t) -Z n (t 1 )| 2 ≤ d 2 τ ∈P S n,τ D τ (t, t 1 , t 2 ). (16) 
Under conditions (2) and (3), we will prove that for each τ ∈ P, there exist β τ > 1/2, a non decreasing continuous function F τ on [0, 1] and a constant S τ > 0 such that

D τ (t, t 1 , t 2 ) ≤ |F τ (t 1 ) -F τ (t 2 )| 2βτ , 0 ≤ t 1 ≤ t ≤ t 2 , (17) 
and

S n,τ ≤ S τ , n ≥ 1. (18) 
Equations ( 16),( 17) and (18) together imply inequality (12) for some suitable choices of β > 1/2 and F . It remains to prove inequalities (17) and (18). If τ = {1, 2, 3, 4},

D τ (t, t 1 , t 2 ) ≤ E|Y 1 (t) -Y 1 (t 1 )| 2 |Y 1 (t 2 ) -Y 1 (t)| 2 ≤ |F 2 (t 2 ) -F 2 (t 1 )| 2β 2 and S τ n = n i=1 i -4/α Eε 4 i ≤ C(α, 4). If τ = {1} ∪ {2} ∪ {3} ∪ {4}, Cauchy-Schwartz inequality entails D τ (t, t 1 , t 2 ) ≤ (E|Y 1 (t) -Y 1 (t 1 )|E|Y 1 (t 2 ) -Y 1 (t)|) 2 ≤ |F 1 (t 2 ) -F 1 (t 1 )| 2β 1 and S τ n ≤ i∈{1,••• ,n} 4 ;τ (i)=τ (i 1 i 2 i 3 i 4 ) -1/α |Eε i 1 ||Eε i 2 ||Eε i 3 ||Eε i 4 | ≤ C(α, 1) 4 .
Similarly, for τ = {1, 2, 3} ∪ {4}, Similar computations can be checked in all remaining cases. The cardinality of P is equal to 13.

D τ (t, t 1 , t 2 ) = E|Y 1 (t) -Y 1 (t 1 )| 2 |Y 1 (t 2 ) -Y 1 (t)|E|Y 1 (t 2 ) -Y 1 (t)| ≤ |F 1 (t) -F 1 (t 1 )| β 1 /2 |F 2 (t 2 ) -F 2 (t 1 )| β 2 |F 1 (t 2 ) -F 1 (t)| β 1 /2 ≤ |(F 1 + F 2 )(t 2 ) -(F 1 + F 2 )(t 1 )|
Step 5. We prove Theorem 1. For each fixed t ∈ [0, 1], Kolmogorov's three-series Theorem implies that Z n (t) converge almost surely as n → ∞. So the finite-dimensional distributions of ( Z n ) n≥1 converge. The tightness in D d of the sequence has already been proved in step 4, so ( Z n ) n≥1 weakly convergence in D d as n → ∞. We then apply Theorem 1 in Kallenberg [START_REF] Kallenberg | Series of random processes without discontinuities of the second kind[END_REF] and deduce that Z n converges almost surely in D d . In view of step 1 and step 2, this yields the almost sure convergence of the series (1).

  β 1 +β 2 D τ (t, t 1 , t 2 ) = E|Y 1 (t) -Y 1 (t 1 )| 2 (E|Y 1 (t 2 ) -Y 1 (t)|) 2 ≤ |F 1 (t) -F 1 (t 1 )| β 1 |F 1 (t 2 ) -F 1 (t)| β 1 ≤ |F 1 (t 2 ) -F 1 (t 1 )| 2β 1

	and
	S τ n ≤
	1≤i =j≤n
	and
	S τ n ≤
	1≤i =j =k≤n

(i 3 j) -1/α E|ε i | 3 |Eε j | ≤ C(α, 3)C(α, 3). or for τ = {1, 2} ∪ {3} ∪ {4}, (i 2 jk) -1/α E|ε i | 2 |Eε j ||Eε k | ≤ C(α, 2)C(α, 1) 2 .