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SELF-IMPROVING PROPERTIES FOR ABSTRACT POINCARÉ
TYPE INEQUALITIES

FRÉDÉRIC BERNICOT AND JOSÉ MARÍA MARTELL

Abstract. We study self-improving properties in the scale of Lebesgue spaces of
generalized Poincaré inequalities in the Euclidean space. We present an abstract
setting where oscillations are given by certain operators (e.g., approximations of the
identity, semigroups or mean value operators) that have off-diagonal decay in some
range. Our results provide a unified theory that is applicable to the classical Poincaré
inequalities and furthermore it includes oscillations defined in terms of semigroups
associated with second order elliptic operators as those in the Kato conjecture. In
this latter situation we obtain a direct proof of the John-Nirenberg inequality for
the associated BMO and Lipschitz spaces of [HMay, HMM].
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1. Introduction

There are various inequalities in analysis that encode intrinsic self-improving prop-
erties of the oscillations of the functions involved. For instance, the classical John-
Nirenberg inequality (see [JN]) states that for every f ∈ L1

loc(R
n) such that

−
∫

Q

|f − fQ| dx ≤ C

for every cube Q, (i.e., f ∈ BMO), the oscillations |f − fQ| are exponentially inte-
grable. In particular, for every 1 < p < ∞,

−
∫

Q

|f − fQ|p dx ≤ C.

Therefore, the oscillations |f − fQ|, which are a priori in L1(Q), turn out to be in the
“better” space Lp(Q). The same occurs with the well-known fact that (1, 1)-Poincaré
inequality in Rn, n ≥ 2,

−
∫

Q

|f − fQ| dx ≤ C rQ−
∫

Q

|∇f | dx,

implies that, for all 1 ≤ p < n,
(

−
∫

Q

|f − fQ|p
∗

dx

)1/p∗

≤ C rQ

(

−
∫

Q

|∇f |p dx
)1/p

,

where p∗ = pn
n−p

. Again, if f is such that ∇f ∈ Lp
loc(R

n), the fact that the oscillation is

in Lp(Q) yields that the oscillation is indeed in the smaller space Lp∗(Q). B. Franchi,
C. Pérez and R.L. Wheeden in [FPW] gave a unified approach to these kinds of
estimates. Namely, they start with inequalities of the form

∫

|f − fQ| dx ≤ a(Q, f), (1.1)

where a is a functional depending on the cube Q, and sometimes on the function f .
Using the Calderón-Zygmund theory and the good-λ inequalities introduced by D.L.
Burkholder and R.F. Gundy [BG] these authors present a general method that gives
Lp(Q) integrability of the oscillation |f − fQ| under mild geometric conditions on the
functional a. Thus, inequality (1.1) encodes an intrinsic self-improvement on Lp for
p > 1.

Generalizations of the previous estimates have been already studied. One can define
new oscillations by replacing the averaging operator fQ by some other operator AtQf
(here tQ is a parameter defined in terms of the sidelength of Q that “scales” At to
Q) where A := (At)t>0 is a semigroup (or, more in general, some “approximation of
the identity”). In the particular case where the kernels of the operators have enough
decay (i.e., the family A satisfies L1 − L∞ off-diagonal estimates) this new way of
measuring the oscillation allowed the second author [Mar] to introduce a new sharp
maximal operators by simply replacing |f − fQ| by |f − AtQf |. This gave raise to
a new BMO space introduced by X.T. Duong and L. Yan [DY1], [DY2] which also
enjoys the John-Nirenberg inequality. This ultimately says that an L1(Q) estimate for
|f −AtQf | implies Lp(Q) estimates for these new oscillations. When the family A is a
semigroup generated by a second order divergence form elliptic operator with complex
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coefficients, S. Hofmann and S. Mayboroda in [HMay] establish the John-Nirenberg
inequality for the associated BMO space using an indirect argument passing through
the Carleson measure characterization of that space. We also refer the reader to [BZ3]
for a recent work where the first author and J. Zhao obtain such properties with more
abstract operators and describe some applications to Hardy spaces.

The study of generalized Poincaré inequalities á la [FPW] for these new oscillations
associated with a family A with L1 − L∞ decay has been recently studied by N.
Badr, A. Jiménez-del-Toro and the second author in the papers [Jim, JM, BJM]. The
exponential self-improving (which corresponds to the case where the functionals a
above are quasi-increasing) is considered in [Jim] and covers in particular the John-
Nirenberg inequality for theBMO space of [DY1]. The Lp self-improving is thoroughly
studied in [JM, BJM] where different applications to generalized (pseudo) Poincaré
inequalities with oscillations |f − AtQf | are given.

In this paper, continuing the previous line of research we present a final result
to the study of self-improving of generalized Poincaré inequalities. The main goal
is to describe an abstract setting containing existing results for oscillations based
both on the average operators and on an approximation of the identity satisfying off-
diagonal estimates. More precisely, our main result is written in an abstract way with
oscillations depending on a family A := (AQ)Q that is indexed by the cubes and that
satisfy off-diagonal estimates in some range [p0, q0] with 1 ≤ p0 < q0 ≤ ∞. These
estimates contain the “cancelation” provided by the compositions (1 − AQ1)AQ2 for
cubes Q1 ⊂ Q2 and this is one of the original ideas in the paper.

We can recover the results in [FPW] where p0 = 1, q0 = ∞ and AQ is essentially
the averaging operator on Q —here the fact that the operators are allowed to depend
on Q in place of its sidelength is crucial— and also the results in [Jim, JM] where
again p0 = 1, q0 = ∞ and AQ = AtQ as explained above. Besides, our results are

applicable to semigroups e−t L with L being a second order divergence form elliptic
operator with complex. In such a case we obtain a direct proof of the John-Nirenberg
inequality for the BMO space defined in [HMay]. We also obtain similar estimates for
the corresponding Lipschitz spaces introduced in [HMM] and this allows us to define
these spaces using Lp averages (in place of L2 as done in [HMM]) of the oscillations.
Also our results can be applied to derive some generalized Poincaré inequalities with
right hand sides that are dyadic expansions taking into account the lack o f localization
of the semigroups.

The plan of the paper is as follows. In Section 2 we present some preliminar-
ies. Section 3 contains the main result Theorem 3.1 and its generalizations. Among
them we point out Theorems 3.7 and 3.8 where we remove the commutative condi-
tion assumed on the oscillation operators and in the latter we further impose some
localization property that allows us to recover the results from [FPW]. Additionally
Theorem 3.11 contains some extension of the main result with Muckenhoupt weights
in the estimates. Applications are presented in Section 4. We first consider John-
Nirenberg inequalities for general BMO spaces. We also propose some functionals
and oscillation operators that fulfill the required hypotheses. All these are applied to
the case of second order divergence form elliptic operators obtaining the new di rect
proof of the John-Nirenberg inequality for the associated BMO space from [HMay],
the new analogous result for the associated Lipschitz spaces from [HMM] and some
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“expanded” Poincaré type inequalities. Finally Section 5 is devoted to the proofs of
the main and auxiliary results.

2. Preliminaries

Let us consider the Euclidean space Rn with the Lebesgue measure dx and the
distance |x − y| = |x − y|∞ = max1≤i≤n |xi − yi|. Without loss of generality, we
assume that the cubes are of the form

∏n
i=1

[

ai, ai + ℓ(Q)
)

, with ai ∈ R and where
ℓ(Q) denotes the sidelength of Q. Given a cube Q ⊂ Rn we denote its center by xQ

and its sidelength by ℓ(Q). For any λ > 1, we denote by λQ the cube concentric with
Q so that ℓ(λQ) = λ ℓ(Q). We write Lp for Lp(Rn,R) or Lp(Rn,C). The average of
f ∈ L1(Q) in Q is denoted by

fQ = −
∫

Q

f(x) dx =
1

|Q|

∫

Q

f(x) dx.

The localized and normalized “norm” of a Banach or a quasi-Banach function space
X is written as

‖f‖X,Q = ‖f‖X(Q,dx/|Q|)

Examples of spaces X are Lp,∞, Lp or more general Marcinkiewicz and Orlicz spaces.

Let us denote by Q the collection of all cubes in Rn. We write M for the maximal
Hardy-Littlewood function:

Mf(x) = sup
Q∈Q
x∈Q

−
∫

Q

|f |dx.

For p ∈ [1,∞), we set Mpf(x) = M(|f |p)(x)1/p.

2.1. Oscillation operators. Let B := (BQ)Q∈Q be a family of linear operators in-
dexed by the collection Q. The reader may find convenient to think of BQ as be-
ing some kind of “oscillation operator” on the cube Q. For each cube Q, we set
AQ := I − BQ and AQ could be thought as an approximation of the identity.

Example 1. The classical oscillation operator is defined as

BQf := f −
(

−
∫

Q

f dx

)

χQ.

In this case, AQf =
(

−
∫

Q
f dx

)

χQ is the averaging operator on Q. We consider a variant

of this example in Section 3.1.1 below.

Example 2. Given a differential operator −L that generates a semigroup e−t L, we can
choose the oscillations

BQf := f − e−ℓ(Q)mLf or BQf := (I − e−ℓ(Q)mL)Nf

depending on the order m of L and with N ≥ 1.

We refer the reader to [BZ1, Section 3] for some other oscillation operators and
to [BZ2] for a specific example applied to the problem of maximal regularity. Let
us notice that a different notation is used in [Jim, JM, BJM], where there are some
family of operators St that play the role of generalized approximations of the identity
under the assumption that the kernels decay fast enough and the operators commute.
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In such a case we can define AQ = StQ and BQ = I − StQ where tQ = ℓ(Q)m for some
positive constant m.

Definition 2.1. Let 1 ≤ p0 ≤ q0 ≤ ∞ and B := (BQ)Q∈Q be as before. We say that
B is O(p0, q0) if the following conditions hold:

(a) The operators BQ commute: BQBR = BR BQ for every Q,R ∈ Q.

(b) The operators BQ are uniformly bounded on Lp0(Rn):

‖BQf‖Lp0(Rn) ≤ Cp0 ‖f‖Lp0(Rn), for all Q ∈ Q. (2.1)

(c) The operators AQ satisfy Lp0 − Lq0 off-diagonal estimates at the scale Q: there
exist fast decay coefficients αk, k ≥ 2, such that for all cubes Q, we have

(

−
∫

2Q

|AQ(f χ4Q)|q0 dx

)1/q0

≤ α2

(

−
∫

4Q

|f |p0 dx
)1/p0

. (2.2)

and for all j ≥ 1,

(

−
∫

2jQ

∣

∣AQ(f χRn\2j+1 Q)
∣

∣

q0
dx

)1/q0

≤
∑

k≥2

αk+j

(

−
∫

2k+jQ

|f |p0 dx
)1/p0

. (2.3)

(d) The operators BR AQ satisfy Lp0 − Lq0 off-diagonal estimates at the lower scale:
there exist fast decay coefficients βk, k ≥ 2, such that for all cubes R ⊂ Q,

(

−
∫

2R

|BRAQf |q0 dx

)1/q0

≤
∑

k≥1

βk+1

(

−
∫

2k+1Q

|f |p0 dx
)1/p0

. (2.4)

Let us observe that when q0 = ∞ one has to change the Lq0-norms by the corre-
sponding essential suprema. Notice also that by Jensen’s inequality O(p0, q0) implies
O(p1, q1) for all p0 ≤ p1 ≤ q1 ≤ q0. Let us observe that (2.2) and (2.3) with j = 1
yield

(

−
∫

2Q

|AQf |q0 dx

)1/q0

≤
∑

k≥2

αk

(

−
∫

2kQ

|f |p0 dx
)1/p0

. (2.5)

Besides for all j ≥ 1, Jensen’s inequality, (2.1) and (2.3) imply the following Lp0 −Lp0

off-diagonal estimates:

(

−
∫

2jQ

|AQf |p0 dx

)1/p0

≤ C

(

−
∫

2j+1Q

|f |p0 dx
)1/p0

+
∑

k≥2

αk+j

(

−
∫

2k+jQ

|f |p0 dx
)1/p0

.

(2.6)

Remark 2.2. When q0 = ∞ one can show that (d) follows from (b) and (c), details are
left to the reader.

Remark 2.3. In Definition 2.1, it is implicitly assumed that the operators BQ and AQ

are well defined for functions in Lp0
loc(R

n), we just need to write f =
∑∞

l=2 fl with
f1 = f χ4Q and fl = 2l+1Q \ 2l Q for l ≥ 2. Note that (b) implies that BQfl, AQfl are
in Lp0(Rn). Furthermore (2.5) yields AQfl, BQfl ∈ Lq0(2Q).
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2.2. Functionals. We consider functionals

a : Q×F −→ [0,∞),

where F is a certain family of functions in Lp0
loc(R

n). When the dependence on the
functions is not of our interest, we simply write a(Q). Next, we define the geometric
conditions Dr, first introduced in [FPW], [MP] to study self-improving properties of
generalized Poincaré inequalities associated to classical oscillations.

Definition 2.4. Let µ be a Borel measure and let a be a functional as before.

(a) Given 1 ≤ r < ∞, we say that a satisfies the Dr(µ) condition or a ∈ Dr(µ) (if
µ is the Lebesgue measure we simply write Dr) if there exists a finite constant
Ca ≥ 1 such that for each cube Q and any family {Qi}i ⊂ Q of pairwise disjoint
cubes,

∑

i

a(Qi)
r µ(Qi) ≤ Cr

a a(Q)r µ(Q).

The infimum of the constants Ca is denoted by ‖a‖Dr(µ).

(b) We say that a satisfies the D∞ condition or a ∈ D∞ if a is quasi-increasing, that
is, there exists a constant Ca ≥ 1 such that for all cubes R ⊂ Q,

a(R) ≤ Ca a(Q).

The infimum of the constants Ca is denoted by ‖a‖D∞ .

(c) We say that a is doubling if there exists a constant Ca > 0 such that for every
cube Q,

a(2Q) ≤ Ca a(Q).

(d) We say that a ∈ D0 if it is locally quasi-increasing, that is, there exists a constant
Ca ≥ 1 such that for all cubes R ⊂ Q with ℓ(Q) ≤ 4 ℓ(R),

a(R) ≤ Ca a(Q).

As an immediate consequence of Hölder’s inequality, one sees that the Dr(µ) con-
ditions are decreasing. That is, if 1 ≤ r < s < ∞, then Ds(µ) ⊂ Dr(µ) and
‖a‖Dr(µ) ≤ ‖a‖Ds(µ). This property will be used several times during the proofs.
Note also that if a ∈ D∞ then a ∈ Dr(µ) with ‖a‖Dr(µ) ≤ ‖a‖D∞ for any Borel mea-
sure µ and 1 ≤ r < ∞. We also notice that D1(µ) ⊂ D0 for any Borel doubling
measure µ: if Q ⊂ R is such that ℓ(R) ≤ 4 ℓ(Q) we have R ⊂ 8Q and therefore

a(Q) = µ(Q)−1 a(Q)µ(Q) ≤ ‖a‖D1(µ) µ(Q)−1 a(R)µ(R)

≤ ‖a‖D1(µ) µ(Q)−1 a(R)µ(8Q) ≤ ‖a‖D1(µ) Cµa(R).

All these together yield that if µ is a doubling Borel measure, then for every 1 ≤ r ≤
s < ∞ we have

D∞ ⊂ Ds(µ) ⊂ Dr(µ) ⊂ D1(µ) ⊂ D0.

3. Main results

In what follows F is a given family of functions in Lp0
loc(R

n) (for a more general
family F see Remark 5.5 below). We now state our main result.
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Theorem 3.1. Fix 1 ≤ p0 < q < q0 ≤ ∞ and B := (BQ)Q∈Q in O(p0, q0). Given

f ∈ F and a functional a, let us assume that for every k ≥ 0 and every cube Q,
(

−
∫

2kQ

|BQf |p0
)1/p0

≤ a(2kQ). (3.1)

There exist fast decay coefficients {γ̃k}k≥1 such that if we define

ã(Q) =
∞
∑

k=1

γ̃k a(2
k Q) (3.2)

and ã ∈ Dq, then for every cube Q,

‖BQf‖Lq,∞,Q . ã(2Q). (3.3)

Remark 3.2. When the operators BQ = Bℓ(Q) are given by semigroups or approxi-
mations of the identity admitting an integral representation with kernels that have
enough pointwise decay we recover the results in [JM]. This case corresponds to p0 = 1
and q0 = ∞.

Remark 3.3. Let us observe that if a is doubling (and the sequences in O(p0, q0) decay
fast enough), it then suffices to assume that a ∈ Dq (in place of ã ∈ Dq) and we
conclude that

‖BQf‖Lq,∞,Q . a(Q).

This follows from the general result since we easily obtain a ≈ ã.

Remark 3.4. When the operators BQ = Bℓ(Q) only depend on the sidelength of the
cube and one further assumes a ∈ Dp0 , then (3.1) (with a constant in front of a(2k Q))
is a direct consequence of the case k = 0 and a ∈ Dp0. To see this, we decompose
2kQ as a union of disjoint cubes with sidelength Q, apply the case k = 0 and use the
condition a ∈ Dp0 to sum over those cubes (see [JM, Lemma 5.1] for a detailed proof).

Corollary 3.5. Under the assumptions of Theorem 3.1, Kolmogorov’s inequality

yields the following strong-type inequalities: for any r ∈ [p0, q) we have

‖BQf‖Lr ,Q .

∞
∑

k=2

γk a(2
k Q) (3.4)

with some fast decay coefficients (γk)k.

In some applications one cannot check that ã ∈ Dq: the overlap of the cubes 2k Qi

introduces some growing coefficients that lead to show that one has a Dq condition
with a new functional ā on the right hand side, where

ā(Q) =

∞
∑

k=2

γ̄k a(2
k Q),

and γ̄k ≫ γ̃k. In this way, one can modify the proof and obtain a similar conclusion
with a worse sequence on the right hand side. The following result contains this as a
particular case:
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Theorem 3.6. Under the assumptions of Theorem 3.1 assume that there is another

functional ā such that the pair (ã, ā) ∈ Dq: there exists C(ã,ā) ≥ 1 such that for each

cube Q and any family {Qi}i ⊂ Q of pairwise disjoint cubes,
∑

i

ã(Qi)
q |Qi| ≤ Cq

(ã,ā) ā(Q)q |Q|. (3.5)

Then for every cube Q,

‖BQf‖Lq,∞,Q . ā(2Q). (3.6)

3.1. Some improvements.

3.1.1. About the commutative assumption. In Definition 2.1 we require that the op-
erators AQ (or BQ) commute. From the proof is follows that the commutativity is
only used in Proposition 5.4. More precisely, it is easy to see (details are left to the
interested reader) that it suffices to have that BR commutes with BRAQ and BRA

2
Q

for all cubes R ⊂ Q. Then (a) in Definition 2.1 could be replaced by this weaker (but
less useful) condition and still get the same conclusion.

Another possible way to avoid (a) is to assume that ARAQf(x) = AQf(x) for
x ∈ 2R and for every R ⊂ Q. In that case, we do not need to assume neither (a)
nor (d). Furthermore, in that situation the proof and formulation can be simplified
in such a way that we can work with BQ in place of B2

Q —in passing we notice that

we have needed to carry out our proof with B2
Q precisely because of the first term in

(5.13) which is going to vanish in the proof of the following result.

Theorem 3.7. Fix 1 ≤ p0 < q < q0 ≤ ∞ and let us assume that B := (BQ)Q∈Q

satisfies (b) and (c) in Definition 2.1. Assume further than

ARAQf(x) = AQf(x), x ∈ 2R, (3.7)

for all R ⊂ Q. Given f ∈ F and a functional a, let us assume that (3.1) holds. If

a ∈ Dq then for every cube Q, we have

‖BQf‖Lq,∞,Q .
∑

k≥1

ηk a(2
k Q) (3.8)

with η1 = 1 and ηk = αk 2
k n/p0 for k ≥ 2.

Next we present a version of the previous result on which the operators AQ are local
and therefore in (3.1) it suffices to assume just the case k = 1. As we see below this
is well suited for the classical oscillations operators.

Theorem 3.8. Fix 1 ≤ p0 < q < q0 ≤ ∞ and let us assume that B := (BQ)Q∈Q

satisfies (b) and (c) in Definition 2.1. Assume further than (3.7) holds and that the

operators AQ are “local” in the following sense: for any cube Q,

AQf = χ2QAQ(fχ2Q). (3.9)

Given f ∈ F and a functional a, let us assume that for every cube Q the following

holds:

‖BQf‖Lp0 ,2Q ≤ a(2Q). (3.10)

If a ∈ Dq, then for every cube Q, we have

‖BQf‖Lq,∞,Q . a(2Q). (3.11)



SELF-IMPROVING PROPERTIES FOR ABSTRACT POINCARÉ TYPE INEQUALITIES 9

Remark 3.9. Let us observe that by the localization property of AQ (3.9), (2.3) holds
trivially since the left hand side vanishes for every j ≥ 1. Thus, (c) in Definition 2.1
reduces to the on-diagonal term (2.2) (with 2Q in place of 4Q in the right hand side).

Corollary 3.10. Given f ∈ L1
loc(R

n) and a functional a ∈ Dq, 1 < q < ∞, assume

that for every cube Q, we have

−
∫

Q

|f − fQ| ≤ a(Q). (3.12)

Then for every cube Q,

‖f − fQ‖Lq,∞,Q ≤ C a(2Q).

This result should be compared with those in [FPW]. In the general case of the
spaces of homogeneous type [FPW] obtains a(C Q) in the right hand side for some
dimensional constant C > 1. However, in the Euclidean setting with the ∞-distance
(i.e., where the balls are the cubes) the right hand side is improved to Q. This
is because they work with the localized dyadic Hardy-Littlewood maximal function
and use the corresponding Calderón-Zygmund decomposition. Our proof uses the
regular Hardy-Littlewood maximal function and the Whitney decomposition, since
this is better adapted to operators that do not localized, as those that satisfy the
off-diagonal decay in Definition 2.1. This explains why we obtain 2Q.

Proof. Given a cube Q we set

AQf(x) = fQ χ2Q(x), BQf(x) = f(x)−AQf(x) = f(x)− fQ χ2Q(x),

where we write fQ to denote the average of f on Q. We take p0 = 1, q0 = ∞. We
are going to show that all the required hypotheses in Theorem 3.8 hold and then our
desired estimate follows from that result.

Note that we trivially obtain (b) in Definition 2.1:

‖BQf‖L1(Rn) ≤ ‖f‖L1(Rn) + |fQ| |2Q| ≤ (1 + 2n) ‖f‖L1(Rn).

On the other hand it is easy to see that (c) also holds, by Remark 3.9 it suffices to
show (2.2):

‖AQ(f χ4Q)‖L∞(2Q) = |fQ| ≤ −
∫

Q

|f | dx.

Regarding (3.7), for all R ⊂ Q and x ∈ 2R,

ARAQf(x) = fQ AR(χ2Q)(x) = fQ (χ2Q)R = fQ = AQf(x).

Note also that, by definition, (3.9) holds. Finally we see that (3.12) implies (3.10):

−
∫

2Q

|BQf(x)| dx = −
∫

2Q

|f(x)− fQ| dx ≤ −
∫

2Q

|f(x)− f2Q| dx+ |fQ − f2Q|

≤ a(2Q) + 2n−
∫

2Q

|f(x)− f2Q| dx ≤ (1 + 2n) a(2Q).

�
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3.1.2. Weighted estimates. A weight w is a non-negative locally integrable function.
For any measurable set E, we write w(E) =

∫

E
w(x) dx and

−
∫

Q

f dw = −
∫

Q

f(x) dw(x) =
1

w(Q)

∫

Q

f(x)w(x) dx.

We use the following notation:

‖f‖Lp(w),Q = ‖f‖Lp(Q, w dx
w(Q)

) and ‖f‖Lp,∞(w),Q = ‖f‖Lp,∞(Q, w dx
w(Q)

).

Let us recall the definition of the Muckenhoupt classes of weights. We say that a
weight w ∈ Ap, 1 < p < ∞, if there exists a positive constant C such that for every
cube Q,

(

−
∫

Q

w dx

)(

−
∫

Q

w1−p′ dx

)p−1

≤ C.

For p = 1, we say that w ∈ A1 if there is a positive constant C such that for every
cube Q,

−
∫

Q

w dx ≤ C w(y), for a.e. y ∈ Q.

We write A∞ = ∪p≥1Ap. We also need to introduce the reverse Hölder classes. A
weight w ∈ RHp, 1 < p < ∞, if there is a constant C such that for every cube Q,

(

−
∫

Q

wp dx

)1/p

≤ C

(

−
∫

Q

w dx

)

.

It is well known that A∞ = ∪r>1RHr. Thus, for q = 1 it is understood that RH1 =
A∞. Notice also that if w ∈ RHp then Hölder’s inequality yields that for any cube Q
and for any measurable set E ⊂ Q, we have

w(E)

w(Q)
≤ C

( |E|
|Q|

)1/p′

. (3.13)

Theorem 3.1 can be extended to spaces with A∞ weights as follows:

Theorem 3.11. Fix 1 ≤ p0 < q < q0 ≤ ∞ and B := (BQ)Q∈Q in O(p0, q0). Given

f ∈ F and a functional a, let us assume that (3.1) holds. Given w ∈ RH(q0/q)′, there

exist fast decay coefficients {γ̃k}k≥1 such that if we define

ã(Q) =

∞
∑

k=1

γ̃k a(2
k Q) (3.14)

and ã ∈ Dq(w), then for every cube Q,

‖BQf‖Lq,∞(w),Q . ã(2Q). (3.15)

Proceeding as in Corollary 3.5, from this result we easily obtain weighted strong-
type inequalities and in the left hand side inequality of (3.15) we can replace Lq,∞(w)
by Lr(w) for every p0 ≤ r < q. Besides, as in Theorem 3.6, we can consider a weighted
extension of the previous result, where we assume that (ã, ā) ∈ Dq(w), and obtain the
corresponding Lq,∞(w) estimate. Also, one can extend Theorems 3.7 and 3.8 to this
setting. The precise statements and proofs are left to interested reader.

We would like to emphasize that we start from the unweighted estimate (3.1) and
conclude (3.15) which is a weighted estimate for the oscillation BQf .
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For a particular version of these results with p0 = 1, q0 = ∞ see [JM, Theorem 3.3].
Notice that in that case the assumption on w reduces to w ∈ A∞.

3.1.3. Exponential self-improvement. As recalled in the introduction, the John-Niren-
berg inequality gives an exponential integrability of the oscillations for a function
belonging to BMO. In [MP] it was shown that if (1.1) holds and a ∈ D∞ then |f−fQ|
is exponentially integrable in Q. This was extended to the oscillations |f − Atf | in
[Jim] (see also [DY1] for the BMO case) assuming fast decay for the kernels. In our
setting we show that the exponential self-improvement follows in the case q0 = ∞ and
a ∈ D∞ (this should be compared with [Jim] where p0 = 1, q0 = ∞ and AQ = AtQ).

Before stating our result let us recall the definition of the localized and normalized
Luxemburg norms associated to the space expL:

‖f‖expL,Q = inf

{

λ > 0 : −
∫

Q

(

exp

( |f(x)|
λ

)

− 1

)

dx ≤ 1

}

.

Analogously, we define ‖f‖expL(w),Q replacing dx by dw.

Theorem 3.12. Fix 1 ≤ p0 < ∞ and B = (BQ)Q∈Q in O(p0,∞). Given f ∈ F and

a functional a, let us assume that (3.1) holds. If a ∈ D∞ then for every cube Q we

have

‖BQf‖expL,Q .
∑

k≥1

ηk a(2
k Q), (3.16)

with η1 = 1, ηk = αk, k = 2, 3, 4 and ηk = max{αk, αk−3} for k ≥ 5. Furthermore, for

every w ∈ A∞ we have

‖BQf‖expL(w),Q .
∑

k≥1

ηk a(2
k Q). (3.17)

It trivially follows from the proof that we have a version of Theorems 3.7 and 3.8 in
the present context. The latter leads to an analogue of Corollary 3.10 that recovers
[MP].

4. Applications

In this section we present some applications of our main result. First, we see that
under some conditions assumed on the family of oscillations B = (BQ)Q∈Q then the
associated BMOp spaces are p-independent, and this can be seen as an abstract John-
Nirenberg result.

In addition, we take into account that our main results are ruled by two different
objects and their corresponding properties. Namely, we have the oscillation operators
B := (BQ)Q∈Q for which we need to study the range where the off-diagonal proper-
ties in O(p0, q0) hold, and we have the functionals a for which we need to consider
their membership to the summability classes Dr. Therefore, we consider these tasks
separately in Sections 4.2 and 4.3. Finally in Section 4.4 we combine them to obtain
self-improving results.
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4.1. Abstract John-Nirenberg inequalities. Let B = (BQ)Q∈Q ∈ O(p0, q0). For

p ∈ [p0, q0), we define the Lp-sharp maximal function M#
B,p on F as follows: for every

function f ∈ F

M#
B,pf(x) := sup

x∈Q

(

−
∫

Q

|BQf |pdx
)1/p

.

Then we can define the BMOp
B spaces related to the collection of oscillation operators

B as

BMOp
B :=

{

f ∈ F : M#
B,pf ∈ L∞

}

equipped with the corresponding seminorm

‖f‖BMOp
B

:=
∥

∥M#
p f
∥

∥

L∞ .

Clearly, for every p < q we have M#
B,pf(x) ≤ M#

B,qf(x) and thus ‖f‖BMOp
B

≤
‖f‖BMOq

B

.

We have the following “John-Nirenberg property”:

Corollary 4.1. Let 1 ≤ p0 < q0 ≤ ∞ and assume that we are in one of the two

following situations:

(i) The operators BQ = Bℓ(Q) only depend on the sidelength of the cube Q and B =
(BQ)Q∈Q ∈ O(p0, q0).

(ii) B = (BQ)Q∈Q satisfies (b) and (c) in Definition 2.1, (3.7) and the “localization”

property (3.9).

For every p0 < p < q0 we have ‖f‖BMO
p0
B

≈ ‖f‖BMOp
B

and consequently BMOp
B =

BMOp0
B . Moreover, given 1 ≤ p0 < p < s < q0 ≤ ∞, for every f ∈ BMOp0

B , we have

M#
B,pf(x) . Ms

(

M#
B,p0

f
)

(x), for a.e. x ∈ Rn. (4.1)

Proof. Assuming momentarily (4.1), we have that M#
B,pf(x) . ‖f‖BMO

p0
B

and thus

‖f‖BMOp
B

≤ ‖f‖BMO
p0
B

. The converse estimate is trivial as observed above, and there-

fore the first part of the statement is proved.

To show (4.1), let us define the following functional:

a(Q) := ess inf
Q

Ms

(

M#
B,p0

f
)

,

and notice that a(Q) ≤ ‖f‖BMO
p0
B

< ∞. It is clear that a is doubling, indeed a(2Q) ≤
a(Q). We take q, p < q < s and see that a ∈ Dq: given a family of pairwise disjoint
cubes {Qi}i ⊂ Q, we have

∑

i

a(Qi)
q |Qi| =

∑

i

ess inf
Qi

(

Ms

(

M#
B,p0

f
))q |Qi| ≤

∑

i

∫

Qi

Ms

(

M#
B,p0

f
)

(x)q dx

≤
∫

Q

M
(

(M#
B,p0

f)s
)

(x)q/s dx . ess inf
x∈Q

M
(

(M#
B,p0

f)s
)

(x)q/s |Q| = a(Q)q |Q|,

where we have used that q < s and the well-known fact that
(

M
(

(M#
B,p0

f)s
))q/s ∈ A1

since M
(

(M#
B,p0

f)s
)

< ∞ a.e.
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By definition of the sharp maximal function we have

(

−
∫

Q

|BQf |p0
)1/p0

≤ ess inf
x∈Q

M#
B,p0

f(x) ≤
(

−
∫

Q

(M#
B,p0

f)s dx

)1/s

≤ ess inf
x∈Q

Ms

(

M#
B,p0

f
)

(x) = a(Q),

and therefore (3.1) holds for k = 0.

In situation (i), where the operators BQ = Bℓ(Q) only depend on the sidelength of
the cube, it follows that (3.1) holds for all k ≥ 1 by Remark 3.4 and the fact that
a ∈ Dq ⊂ Dp0 since p0 < q. Then can apply Theorem 3.1 and Remark 3.3 to obtain
‖BQf‖Lq,∞,Q . a(Q).

In the context of local operators AQ, situation (ii), by Theorem 3.8, we need to
show (3.10) (i.e., (3.1) with k = 1). Indeed, using (3.7), we have

BQf(x) = f(x)−AQ(A2Qf)(x)−AQ(B2Qf)(x) = B2Qf(x)−AQ(B2Qf)(x), x ∈ 2Q.

Hence, using the “localization” property (3.9), (2.2), and proceeding as before we get

(

−
∫

2Q

|BQf |p0
)1/p0

≤ (1 + 2−n/p0 α2)

(

−
∫

2Q

|B2Qf |p0
)1/p0

. a(2Q).

Next, we apply Theorem 3.8 to obtain ‖BQf‖Lq,∞,Q . a(2Q) ≤ a(Q).

In either scenario we have shown that ‖BQf‖Lq,∞,Q . a(Q). This and Kolmogorov’s
inequality (since p < q) give that for every Q ∋ x,

(

−
∫

Q

|BQf |pdx
)1/p

≤ C ess inf
Q

Ms

(

M#
B,p0

f
)

≤ CM
(

Ms

(

M#
B,p0

f
))

(x).

Taking the supremum over all the cubes Q ∋ x and using that Ms

(

M#
B,p0

f
)

∈ A1

since s > 1 we obtain as desired (4.1). �

Remark 4.2. In the recent paper [BZ3], John-Nirenberg inequalities for BMO spaces
are also under consideration using a “Hardy space point of view”. There the authors
impose that the operators BQ are bounded from BMOp0 to BMOq0 , more precisely
for all cubes R ⊂ Q

(

−
∫

2R

|BRAQf |q0 dx
)1/q0

. ‖f‖BMOp0
. (4.2)

It is interesting to point out that (4.2) is similar in nature to (d) in Definition 2.1,
although the last one is weaker since the right hand side of (2.4) is just an Lp0-average
in place of an Lp0-oscillation. We also note that commutativity was not assumed
in [BZ3] although property (4.2) reflects some kind of commutativity between the
oscillations with a gain of integrability. These two different points of view, the one
presented here where commutativity between the BQ’s is required, and the one in
[BZ3] with stronger properties assumed on the oscillations, seem to be quite similar.
It would be interesting to combine both methods and provided a unified approach.
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4.2. Examples of functionals. In this section we consider some functionals a and
study their membership to the classes Dr. The examples that we consider are taken
from [JM] (see also [BJM]) and we refer the reader to that reference for full details.
Let us notice that the names that are assigned to these examples will become clear in
Section 4.4

Example 3 (BMO and Lipschitz). We consider the functionals a(Q) = |Q|α/n with
α ≥ 0. For the classical oscillations a is associated to BMO for α = 0 and to the
Lipschitz (Morrey-Campanato) spaces for α > 0. It is trivial that a ∈ D∞ and then
a ∈ Dr for all 1 ≤ r < ∞ and a ∈ Dr(w) for all 1 < r < ∞ and w ∈ A∞. Note
also that a is clearly doubling. A more general example of a functional in D∞ is
a(Q) = ϕ(a(Q)) with ϕ non-decreasing and non-negative (see [JM] for the motivation
and more details).

Example 4 (Fractional averages). These are related to the concept of higher gradient
introduced by J. Heinonen and P. Koskela in [HK1], [HK2]. Given λ ≥ 1, 0 < α < n,
and a weight u ∈ A∞ (see Section 3.1.2 for the precise definition), we set

a(Q) = ℓ(Q)α
(

u(Q)

|Q|

)1/s

.

If s ≥ n/α then a ∈ D∞ and therefore a ∈ Dr for all 1 ≤ r < ∞. Otherwise,
1 ≤ s < n/α, in [FPW], it is shown that a ∈ Dr for 1 < r < sn/(n− α s) for general
weights u. Assuming further u ∈ A∞ they also proved that a ∈ D sn

n−α s
+ǫ for some

ǫ > 0 (depending on u) and that a is doubling.

Example 5 (Reduced Poincaré inequalities). Given 1 ≤ p < ∞ and 0 ≤ h ∈ Ls
loc(R

n),
1 ≤ s < ∞ we take

a(Q) = ℓ(Q)

(

−
∫

Q

hs dx

)1/s

.

Setting s∗ := s n/(n−s) if 1 ≤ s < n and s∗ := ∞ if s ≥ n one can show that a ∈ Ds∗

(see [FPW], [JM]).

If we applied Theorem 3.1 we would need to see that the corresponding expanded
functional ã satisfy a Dq condition. In doing that, it was shown in [JM], [BJM] that
one needs to change the sequence defining ã. This leads to use Theorem 3.6 (in place
of Theorem 3.1) and therefore the applications that may arise from these functionals
are essentially those contained in the following example about expanded Poincaré
inequalities.

Example 6 (Expanded Poincaré inequalities). We consider an expansion of the func-
tionals in the previous example:

a(Q) =
∞
∑

k=0

γk ℓ(2
k Q)

(

−
∫

2k Q

hs dx

)1/s

.

Again a ∈ D∞ if s ≥ n. For 1 ≤ s < n, when trying to obtain the Dq condition
we need to take into account the overlap of the dilated cubes —the cubes {Qi}i are
disjoint but we have to consider their dilations {2k Qi}i for all k ≥ 0. This leads to
change the sequence γk and so we end up with a Dq condition for a pair of functionals
(see (3.5) above).
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Lemma 4.3. For every 1 ≤ q < s∗ we have that (a, ā) ∈ Dq where

ā(Q) =
∑

k≥0

γ̄k ℓ(2
k Q)

(

−
∫

2k Q

hs dx

)1/s

,

with γ̄0 = C γ0 and γ̄k = 2−k n ( 1
s
− 1

q
)+ ∑∞

l=k−1 γl 2
l n ( 1

s
− 1

q
)+
, k ≥ 1.

Here we have set t+ := max(t, 0). This result (essentially obtained in [JM], see also
[BJM]), follows at once from Lemma 4.4 with w ≡ 1 and θ = 1.

Given w ∈ A1 we can also consider the functional

aw(Q) =

∞
∑

k=0

γk ℓ(2
k Q)

(

−
∫

2k Q

hs dw

)1/s

.

If s ≥ n, aw ∈ D∞ follows from (5.29) below —which in turn implies that the func-
tional ℓ(Q) (−

∫

Q
hs dw)1/s is quasi-increasing. For 1 ≤ s < n, we have the following

extension of Lemma 4.3:

Lemma 4.4. Given w ∈ A1, there exists θ = θ(w), 0 < θ ≤ 1, such that for every

1 ≤ q < s∗, we have (aw, āw) ∈ Dq(w) where

āw(Q) =
∑

k≥0

γ̄k ℓ(2
k Q)

(

−
∫

2k Q

hs dw

)1/s

,

with γ̄0 = C γ0 and γ̄k = 2−k n ( 1−θ
s

+θ( 1
s
− 1

q
)+) ∑∞

l=k−1 γl 2
l n ( 1−θ

s
+θ( 1

s
− 1

q
)+)

, k ≥ 1.

Let us observe that θ is such that w ∈ RH(1/θ)′ (see (5.29)) and therefore if w ≡ 1
we can take θ = 1.

4.3. Oscillation operators. As we have already observed in Corollary 3.10, our
main results can be applied to the classical oscillations associated to the averaging
operators and thus we can recover some results from [FPW]. Furthermore, in this
section we show that the abstract framework (described in Definition 2.1) includes the
case where the operators AQ come from a semigroup satisfying off-diagonal estimates.
As mentioned before, we work with cubes but the arguments presented below adapt
easily to balls.

Given 1 ≤ p0 ≤ q0 ≤ ∞, we say that a family of linear operators {Tt}t>0 satisfies
Lp0(Rn)−Lq0(Rn) off-diagonal estimates, if there exist C, c > 0 such that for all closed
sets E, F and functions f supported on F ,

(
∫

E

|Ttf |q0 dx

)1/q0

≤ C t
−n

2

(

1
p0

− 1
q0

)

e−c d(E,F )2

t

(
∫

F

|f |p0 dx
)1/p0

. (4.3)

Note that for q0 = ∞ we replace the Lq0(Rn) norm by the L∞(Rn) norm. The value
of c has no interest to us provided it remains positive. Thus, we will freely use the
same c from line to line.

Let L be an operator on Rn generating a semigroup e−tL. Given N ≥ 1 and a cube
Q, we set

BQ,N :=
(

I − e−ℓ(Q)2L
)N

and AQ,N := I − BQ,N .
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Proposition 4.5. Let 1 ≤ p0 < q0 ≤ ∞. Given L as before, if {e−t L}t≥0 satisfies

Lp0(Rn) − Lq0(Rn) off-diagonal estimates and is strongly continuous on Lp(Rn) for

some p ∈ [p0, q0], p < ∞, then for all N ≥ 1 the family BN = {BQ,N}Q∈Q satisfies

(a), (b), (c) in Definition 2.1 with αk = C e−c 4k . Moreover, if {(t L)k e−t L}t>0 satisfies

Lp0(Rn)− Lq0(Rn) off-diagonal estimates for 0 ≤ k ≤ N with N ≥ n/(2 q0), then (d)

holds with βk = C e−c 4k . Consequently, BN is O(p0, q0).

Remark 4.6. By [AM, Proposition 4.4] and since {e−t L}t≥0 satisfies L
p0(Rn)−Lq0(Rn)

off-diagonal estimates, we have that if there exists p ∈ [p0, q0], p < ∞, such that
{e−t L}t≥0 is strongly continuous on Lp(Rn), then it is strongly continuous on Lr(Rn)
for all r ∈ [p0, q0], r < ∞. In particular, for every function f ∈ Lr(Rn), e−tLf −→ f
in Lr(Rn) as t → 0+.

Remark 4.7. Let us note that in place of the semigroup, we can produce similar
arguments with more general operator L “of order m” by considering

BQ,N :=
(

I − e−ℓ(Q)mL
)N

or the resolvants AQ,N := (I + ℓ(Q)mL)−N , provided they satisfy the previous off-
diagonal estimates.

4.4. Second order divergence form elliptic operators. We refer the reader to
[Aus] for the particular case of second order divergence form elliptic operators L:

Lf(x) = − div(A(x)∇f(x))

with a bounded n × n matrix valued function A : Rn −→ Mn(C) satisfying the
following ellipticity condition: there exist two constants Λ ≥ λ > 0 such that

λ |ξ|2 ≤ ReA(x) ξ · ξ̄ and |A(x) ξ · ζ̄| ≤ Λ |ξ| |ζ |,
for all ξ, ζ ∈ Cn and almost every x ∈ Rn. We have used the notation ξ · ζ =
ξ1 ζ1 + · · ·+ ξn ζn and therefore ξ · ζ̄ is the usual inner product in Cn.

The operator −L generates a C0-semigroup {e−t L}t>0 of contractions on L2(Rn).
There exist p−, p+, with 1 ≤ p− < 2 < p+ ≤ ∞, such that {e−t L}t>0 —and also
{(t L)k e−t L}t>0, k ≥ 1— satisfies Lp0(Rn)−Lq0(Rn) off-diagonal estimates for all p− <
p0 ≤ q0 < p+. It is also strongly continuous on L2(Rn). Consequently, Proposition 4.5
applies and this allows us to obtain the following result from our main result Theorem
3.1 (and also from Corollary 3.5):

Corollary 4.8. Let L be a second order divergence form elliptic operator as above.

Fix N > n/(2 p+) and p, q such that p− < p < q < p+. Given f ∈ F and a functional

a, we assume that for every k ≥ 0 and every cube Q,
(

−
∫

2k Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f(x)
∣

∣

p
dx

)1/p

≤ a(2k Q). (4.4)

If we define ã as in (3.2) with γ̃k = C e−c 4k (cf. Remark 5.6) and ã ∈ Dq, we have

that
∥

∥

(

I − e−ℓ(Q)2L
)N

f‖Lq,∞,Q . ã(2Q).

Consequently, for every p < r < q,
(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f(x)
∣

∣

r
dx

)1/r

. ã(2Q).
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Remark 4.9. Notice that in a similar way we can obtain versions of Theorems 3.6 and
3.11. We also observe that as mentioned in Remark 3.4 if a ∈ Dp then it suffices to
assume (4.4) only in the case k = 0.

Next, we are going to apply Corollary 4.8 and the results mentioned in the previous
remark to the functionals we have considered above.

4.4.1. John-Nirenberg inequality for BMO and Lipschitz spaces associated to L. Given
α ≥ 0, and N > n/(2 p+) we take F := M

N,∗
α,L where M

N,∗
α,L = ∩ǫ>0

(

M
ǫ,N
α,L

)∗
and M

ǫ,N
α,L is

the collection of f ∈ L2(Rn) such that f is in the range of Lk in L2(Rn), k = 1, . . . , N
and

‖f‖
M

ǫ,N
α,L

= sup
j≥0

2j (
n
2
+α+ǫ)

N
∑

k=0

‖L−kf‖L2(Sj(Q0)) < ∞.

Here Q0 is the unit cube centered at the origin, S0(Q0) = Q0 and Sj(Q0) = 2j Q0 \
2j−1Q0, j ≥ 1. It is shown in [HMay], [HMM] that

(

I − e−ℓ(Q)2L
)N

f is globally

well defined in the sense of distributions and also that
(

I − e−ℓ(Q)2L
)N

f ∈ L2
loc(R

n)
for every f ∈ F . This means that according to Remark 5.5 we can apply our main
results, and in particular, Corollary 4.8 holds with this family F .

Given p− < p < p+, we say that an element f ∈ F belongs to Λα,p
L if

‖f‖Λα,p
L

:= sup
Q⊂Rn

|Q|−α/n

(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f(x)
∣

∣

p
dx

)1/p

< ∞.

Let us notice that when α = 0 we write as usual Λ0,p
L = BMOp

L. For the particular
case p− = 1, p+ = ∞, [DY1] and [DDY] introduced these spaces obtaining the cor-
responding John-Nirenberg (i.e., exponential integrability) estimates, see [Jim], [JM]
and [BJM] for a different approach. The general case with p = 2 and α = 0 was
studied in [HMay], in which case the corresponding space is denoted by BMOL, and
it was shown that BMOp

L = BMOL for every p− < p < p+. This John-Nirenberg
inequality is obtained using duality and the Carleson measure characterization of the
space BMOL. It was also shown that BMOL is the dual of the Hardy space H1

L∗ . For
α > 0 and p = 2, [HMM] establishes that Λα

L = Λα,2
L is the dual of the Hardy space

Hs
L∗ for 0 < s < 1 and α = n(1/s− 1).

Using Corollary 4.8 we are going to show that the spaces Λα,p
L are independent

of p and in fact that for every p− < p < p+ we have the following John-Nirenberg
inequality

‖f‖Λα,p
L

≈ ‖f‖Λα
L
.

Therefore our techniques allow us to give a direct proof of the John-Nirenberg inequal-
ity that reproves the result in [HMay] when α = 0 without using any characterization
or duality properties of the space BMOL. For α > 0, our John-Nirenberg inequality
is new.

We can combine this with [HMM, Theorem 3.52], describing the duality between
Hardy spaces Hp

L and Lipschitz spaces:

(Hs
L∗)∗ = Λα,p

L , 0 < s < 1, α = n(1/s− 1).

As just discussed, this relation does not depend on p ∈ (p−, p+). By this way, it
follows that the Hardy space Hs

L∗ can be built on (Hs
L∗ , p, ǫ, N)-molecules (as defined
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in [HMM, (3.6)]), as long as p ∈ (p′+, p
′
−) —notice that p′+ = p−(L

∗) and p′− = p+(L
∗).

Hence, the Hardy space Hs
L∗ does not depend on this exponent p (as stated without

proof in [HMM]).

We explain how to obtain the claimed estimate from Corollary 4.8. Notice that it
suffices to show that for every p− < p0 ≤ 2 ≤ q0 < p+ we have

‖f‖Λα,p0
L

≤ ‖f‖Λα,q0
L

≤ C ‖f‖Λα,p0
L

.

The first estimate is trivial by Jensen’s inequality. In order to obtain the second
estimate we fix f ∈ F , and we can assume by homogeneity that ‖f‖Λα,p0

L
= 1. Next

we take a(Q) = |Q|α/n and by Example 3 we know that a ∈ D∞ and consequently is
in Dr for every 1 < r < ∞. Also, since a is doubling we have that ã ≈ a. By Remark
4.9 it suffices to check that (4.4) holds for k = 0, and this is nothing but the fact that
‖f‖Λα,p0

L
= 1. Thus, Corollary 4.8 gives right away the desired estimate. We would

like to point out that, as explained above, F is a family of distributions such that
(

I − e−ℓ(Q)2L
)N

f is globally well defined in the sense of distributions and belongs to
L2
loc(R

n) ⊂ Lp0
loc(R

n) since p0 ≤ 2. Therefore, Remark 5.5 applies.

4.4.2. Fractional averages. Given u ∈ A∞, 0 < α < n, p− < p < p+, and N >
n/(2 p+), let f ∈ Lp

loc(R
n) be such that, for every cube,

(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f(x)
∣

∣

p
dx

)1/p

≤ ℓ(Q)α
(

u(Q)

|Q|

)1/s

=: a(Q).

One could also take f ∈ F as above but for simplicity we prefer to work with functions.
Note that a is doubling since so is u, therefore ã ≈ a. Then from Corollary 4.8 and
proceeding as before we can conclude the following:

(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f(x)
∣

∣

q
dx

)1/q

. ℓ(Q)α
(

u(Q)

|Q|

)1/s

,

in one of the following situations

(a) s ≥ n/α, p− < p < q < p+;

(b) 1 ≤ s < n/α, p+ ≤ s n
n−α s

, p− < p < q < p+;

(c) 1 ≤ s < n/α, p− < p < q ≤ s n
n−α s

< p+;

By Example 4 we know that a ∈ D∞ in case (a), consequently a ∈ Dr for every
1 < r < ∞, and a ∈ D s n

n−α s
+ǫ for some ǫ > 0 depending on u in cases (b), (c). By

Remark 4.9 it suffices to check that (4.4) holds for k = 0, and this what we have
assumed. Consequently, Corollary 4.8 gives the desired estimates.

4.4.3. Expanded Poincaré inequalities. Given p− < p < p+, and N > n/(2 p+), let
f ∈ Lp

loc(R
n) and 0 ≤ h ∈ Ls

loc be such that, for every cube,
(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f
∣

∣

p
dx

)1/p

≤
∞
∑

j=0

ηj ℓ(2
j Q)

(

−
∫

2jQ

hs dx

)1/s

=: a(Q), (4.5)

where {ηj}j≥0 is a fast decay sequence (typical examples are ηj = C 2−j σ with σ > 0

or ηj = C e−c 4j ).
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If s ≥ n we have observed above that a ∈ D∞ and consequently ã ∈ D∞, hence
a, ã ∈ Dr for every 1 < r < ∞. By Remark 4.9 we obtain that (4.4) holds for all
k ≥ 0. Then Corollary 4.8 gives for every p− < p < q < p+,

(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f
∣

∣

q
dx

)1/q

≤
∞
∑

j=2

η̃j−1 ℓ(2
j Q)

(

−
∫

2jQ

hs dx

)1/s

,

where η̃j = C
∑j

k=1 e
−c 4k ηj−k, j ≥ 1.

If 1 ≤ s < n, for simplicity, we assume that η1 > 0 and also that ηk is quasi-
decreasing, i.e., ηk ≤ C ηj for every j ≤ k. Notice that we can always replace ηk
by supj≥k ηk and this new sequence is decreasing and satisfies η1 > 0. This happens
unless a(Q) is only defined by the term j = 0 which goes back to the reduced Poincaré
inequalities which as shown above satisfies a ∈ Ds and therefore the following lemma
holds, details are left to the reader. We need the following auxiliary result which says
that (modulo a multiplicative constant) (4.4) follows from the case k = 0 which is our
assumption.

Lemma 4.10. Given a as above, let us assume that 1 ≤ p ≤ s < n. Then for every

k ≥ 0, we have
(

−
∫

2k Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f
∣

∣

p
dx

)1/p

≤ C a(2k Q).

Next using that γ̃k = C e−c 4k and we can compute ã:

ã(Q) = C
∞
∑

j=1

e−c 4j a(2j Q) =
∞
∑

j=1

η̃j ℓ(2
j Q)

(

−
∫

2jQ

hs dx

)1/s

where η̃j = C
∑j

k=1 e
−c 4k ηj−k. As observed above Lemma 4.3 gives that (ã, ā) ∈ Dq,

for 1 ≤ q < s∗, where

ā(Q) =

∞
∑

j=1

γ̄j ℓ(2
j Q)

(

−
∫

2j Q

hs dx

)1/s

,

and γ̄j = 2−j n ( 1
s
− 1

q
)+ ∑∞

l=j−1 η̃l 2
l n ( 1

s
− 1

q
)+ (for γ̄1 we set η̃0 = 0). Using all these and

Remark 4.9 we obtain that (4.5) implies
(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f
∣

∣

q
dx

)1/q

. ā(2Q) =

∞
∑

j=2

γ̄j−1 ℓ(2
j Q)

(

−
∫

2j Q

hs dx

)1/s

, (4.6)

in one of the following situations:

(a) p− < p ≤ s < n, p+ ≤ s∗, p− < p < q < p+;

(b) p− < p ≤ s < n, p− < p < q < s∗ < p+;

For instance, if ηj = C 2−σ j with σ > 0, then it is easy to see that η̃j ≈ ηj for j ≥ 1

and thus γ̄j ≈ 2−j σ provided σ > n(1/s− 1/q)+. If ηj = C e−c 4j then η̃j . e−c′ 2j and

then we can take γ̄j ≈ e−c′′ 2j .

As observed in [JM, Section 4.3] the previous estimates give some global pseudo-
Poincaré inequalities. Indeed we can easily follow the computations there to obtain
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that our initial assumption (4.5) (which yields (4.6)) implies that, for all t > 0,
∥

∥

(

I − e−tL
)N

f
∥

∥

Lq(Rn)
. t

n
2
( 1
q
− 1

s∗
) ‖h‖Ls(Rn),

provided p, q, s satisfy either (a) or (b), s ≤ q and {γ̄j 2j}j≥1 ∈ ℓ1.

Next, we see that (4.5) (which is an unweighted estimate) gives some generalized
weighted Poincaré inequalities. Assume that (4.5) holds and take w ∈ A1. Then we
easily obtain

(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f
∣

∣

p
dx

)1/p

.

∞
∑

j=0

ηj ℓ(2
j Q)

(

−
∫

2jQ

hs dw

)1/s

=: aw(Q).

Notice that we indeed have a(Q) . aw(Q).

As observed above, if s ≥ n then aw ∈ D∞. Then proceeding as above we obtain
that the weighted version of Corollary 4.8 gives for every p− < p < q < p+ and every
w ∈ A1 ∩RH(p+/q)′ ,

(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f
∣

∣

q
dw

)1/q

≤
∞
∑

j=2

η̃j−1 ℓ(2
j Q)

(

−
∫

2jQ

hs dw

)1/s

,

where η̃j = C
∑j

k=1 e
−c 4k ηj−k, j ≥ 1.

Consider next the case 1 ≤ s ≤ n (here we also assume the previous conditions on
the sequence {ηk}k). Applying Lemma 4.10 and the fact a(Q) . aw(Q) we conclude
that (4.4) holds for all k ≥ 0. Then we can compute ãw(Q) and use Lemma 4.4
to obtain that (ãw, āw) ∈ Dq(w) for 1 ≤ q < s∗. All these and the two-functional
weighted version of Corollary 4.8 give that (4.5) implies that in one of the following
situations

(a) p− < p ≤ s < n, p+ ≤ s∗, p− < p < q < p+;

(b) p− < p ≤ s < n, p− < p < q < s∗ < p+;

if w ∈ A1 ∩ RH(p+/q)′ , then
(

−
∫

Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f
∣

∣

q
dw

)1/q

. ā(2Q) =

∞
∑

j=2

γ̄j−1 ℓ(2
j Q)

(

−
∫

2j Q

hs dw

)1/s

,

with γ̄j = 2−j n ( 1−θ
s

+θ( 1
s
− 1

q
)+) ∑∞

l=j−1 η̃l 2
l n ( 1−θ

s
+θ( 1

s
− 1

q
)+) and η̃j = C

∑j
k=1 e

−c 4k ηj−k,

j ≥ 1, η̃0 = 0. We notice that as in [JM, Section 4.3] the obtained estimates also imply
weighted global pseudo-Poincaré inequalities. In the present case in either scenario
(a) or (b), assuming that q = s and that the coefficients γ̄j decay fast enough we can
conclude that for all t > 0

∥

∥

(

I − e−tL
)N

f
∥

∥

Ls(w)
. t

1
2 ‖h‖Ls(w).

Similar results for weights in Ar can be obtained in the same fashion. The precise
formulations and statements are left to the interest reader.

We conclude this section by observing how to obtain (4.5) with different choices of
h. Using that e−t L1 ≡ 1 and proceeding as in [JM, Section 4.2] one can easily see
that the (p, p) Poincaré inequality and the off-diagonal estimates of e−t L yield (4.5)

with h = |∇f |, s = p, ηj = e−c 4j —we would like to call the reader’s attention to the
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fact that such estimates could be obtained in contexts where Poincaré inequalities are
unknown or they do not hold using the ideas in [BJM, Proposition 4.5]. On the other
hand, following the proof of [BJM, Proposition 4.5 (a)] one can easily obtain that (4.5)

holds with s = p (and then we can always take s ≥ p), h =
√
Lf and ηj = 2−j (2N−n).

5. Proofs of the main results

In this section we prove our main results and also some of auxiliary results from
the applications.

5.1. Proof of Theorem 3.1. We refer the reader to [Jim], [JM], [BJM] for similar
results in the case p0 = 1 and q0 = ∞ and with AQ associated to a semigroup or
a generalized approximation of the identity. Here we borrow some ideas from these
references.

Let us first observe that without loss of generality we can assume that q0 < ∞:
indeed we can replace q0 by q̃0, chosen in such a way that q < q̃0 < ∞, since we have
that O(p0, q0) implies O(p0, q̃0).

Next we obtain version of (3.1) for B2
Q = BQBQ:

Lemma 5.1. Assuming (3.1) and O(p0, q0), then, for every j ≥ 1, we have
(

−
∫

2jQ

∣

∣B2
Qf
∣

∣

p0

)1/p0

≤ C a(2j+1Q) +
∑

k≥2

αk+ja(2
k+jQ).

Proof. We first notice that O(p0, q0) implies O(p0, p0). Then (2.6) and (3.1) give
(

−
∫

2jQ

|AQBQf |p0
)1/p0

≤ C

(

−
∫

2j+1Q

|BQf |p0
)1/p0

+
∑

k≥2

αk+j

(

−
∫

2k+jQ

|BQf |p0
)1/p0

≤ C a(2j+1Q) +
∑

k≥2

αk+ja(2
k+jQ).

This, the following algebraic formula

B2
Q = BQBQ = BQ − AQBQ, (5.1)

and (3.1) yield at once the desired estimate

�

Next we show that (3.3) follows from the corresponding estimate for B2
Q:

Lemma 5.2. Under the assumptions of Theorem 3.1, suppose that

‖B2
Qf‖Lq,∞,Q .

∞
∑

k=1

γ̃k a(2
k+1Q), (5.2)

with γ̃k & αk+1 for k ≥ 1. Then (3.3) follows.

Proof. We proceed as in the previous proof using that O(p0, q0) implies O(p0, q) since
p0 ≤ q < q0. From (2.5) and (3.1) we obtain
(

−
∫

Q

|AQBQf |q
)1/q

≤ 2n/q
(

−
∫

2Q

|AQBQf |q
)1/q

≤ 2n/q
∑

k≥2

αk

(

−
∫

2kQ

|BQf |p0
)1/p0
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≤ 2n/q
∑

k≥2

αka(2
kQ) .

∞
∑

k=1

γ̃k a(2
k+1Q). (5.3)

We conclude the proof by invoking (5.1) which together with (5.2) and the trivial
estimate ‖ · ‖Lq,∞,Q ≤ ‖ · ‖Lq ,Q yield the desired inequality. �

Let {γ̃k}k≥0 be a fast decay sequence to be chosen (see Remark 5.6) and define ã
by means of it. We are going to show that

‖B2
Qf‖Lq,∞,Q . ã(2Q). =

∞
∑

k=1

γ̃k a(2
k+1Q) (5.4)

Then Lemma 5.2 implies the desired estimate (3.3) provided γ̃k & αk+1 (see Remark
5.6).

We fix a cube Q and assume that ã(2Q) < ∞, otherwise there is nothing to prove.
Let G(x) =

∣

∣B2
Qf(x)

∣

∣χ2Q(x). By the Lebesgue differentiation theorem, it suffices to

estimate ‖Mp0G‖Lq,∞,Q where Mp0G(x) = M(Gp0)(x)1/p0 . Hence, we study the level
sets Ωt = {x ∈ Rn : Mp0G(x) > t}, t > 0.

We first estimate the Lp0-norm of G by using Lemma 5.1 with j = 1:
(

−
∫

2Q

Gp0 dx

)
1
p0

=

(

−
∫

2Q

|B2
Qf(x)|p0 dx

)
1
p0

≤ C a(4Q) +
∑

k≥2

αk+1a(2
k+1Q) ≤ ã(2Q).

(5.5)
In particular, G ∈ Lp0 because ã(2Q) < ∞. Thus, using that M is of weak type
(1, 1), we obtain for some numerical constant c0

|Ωt| .
1

tp0
‖G‖p0Lp0 <

cp00 ã(2Q)p0

tp0
|Q|. (5.6)

Next, let s > 1 be large enough to be chosen. We claim that the following good-λ
inequality holds: given 0 < λ < 1, for all t > 0,

|Ωs t ∩Q| ≤ c

[(

λ

s

)p0

+ s−q0

]

|Ωt ∩Q|+ c

(

c0 ã(2Q)

λ t

)q

|Q|, (5.7)

where c only depends on n and ‖ã‖Dq0
.

Assuming this momentarily, we then proceed as follows. We fix N > 0. The
previous inequality implies

sup
0<t≤N/s

tq
|Ωs t ∩Q|

|Q| ≤ c

[(

λ

s

)p0

+ s−q0

]

sup
0<t≤N/s

tq
|Ωt ∩Q|

|Q| + c

(

c0 ã(2Q)

λ

)q

≤ c

[(

λ

s

)p0

+ s−q0

]

sup
0<t≤N

tq
|Ωt ∩Q|

|Q| + c

(

c0 ã(2Q)

λ

)q

.

Therefore,

sup
0<t≤N

tq
|Ωt ∩Q|

|Q| ≤ c
[

sq−p0λp0 + sq−q0
]

sup
0<t≤N

tq
|Ωt ∩Q|

|Q| + c sq
(

c0 ã(2Q)

λ

)q

. (5.8)

Observe that

sup
0<t≤N

tq
|Ωt ∩Q|

|Q| ≤ N q < ∞.
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We take s large enough and then λ small enough such that

c
[

sq−p0λp0 + sq−q0
]

≤ 1

2
.

Hence, we can hide the first term in the right side of (5.8) and get

sup
0<t≤N

tq
|Ωt ∩Q|

|Q| . ã(2Q)q,

with an implicit constant independent of the cube Q and on N . Taking limits as
N → ∞, we conclude that

‖Mp0G‖Lq,∞,Q . ã(2Q).

This estimate and the Lebesgue differentiation theorem give (5.4) as observed at the
beginning of the proof.

We now show (5.7). We split the proof in two cases. When t is large, we shall
use the Whitney covering lemma adapted to the cube Q and some auxiliary results
for the operators BQ. When t is small, the estimate is straightforward. Indeed if
0 < t ≤ c0 ã(2Q) and 0 < λ < 1,

|Ωs t ∩Q| ≤ |Q| <
(

c0 ã(2Q)

λ t

)q

|Q|,

and this clearly implies (5.7).

Suppose now that t > c0 ã(2Q). We need to build a dyadic grid in Rn adapted
to the fixed cube Q that consists of translations and dilations of the dyadic classical
structure (we refer to Theorem 5.2 and Subsection 5.1.1 of [JM] for details about
constructing this dyadic grid and for the main properties). Let {Qt

i}i be a family of
Whitney cubes (associated to such dyadic grid scaled to Q): such a collection exists
since Ωt is open and by (5.6) we have Ωt ( Rn. Moreover, as a consequence of (5.6)
and t > c0 ã(Q), we also have |Ωt| < |Q|, and consequently for all i

ℓ(Qt
i) < ℓ(Q). (5.9)

Next we are going to estimate |Ωs t ∩ Q|. First, using that the level sets are nested,
we obtain that

|Ωs t ∩Q| = |Ωs t ∩ Ωt ∩Q| ≤
∑

i

∣

∣

{

x ∈ Qt
i ∩Q : Mp0G(x) > s t

}
∣

∣ .

From now on, we only consider those cubes Qt
i such that Qt

i ∩ Q 6= Ø and since the
cubes Qt

i are dyadic with respect to the cube Q, (5.9) implies that Qt
i ⊂ Q. We first

localize G. If x ∈ Qt
i, we have

Mp0G(x) ≤ Mp0(Gχ2Qt
i
)(x) +Mp0(Gχ(2Qt

i)
c)(x) ≤ Mp0(Gχ2Qt

i
)(x) + 23n/p0 t,

since, by [JM, Lemma 5.3], Mp0(Gχ(2Qt
i)

c)(x) ≤ 23n/p0t for all x ∈ Qt
i. Therefore, if

s > 2 · 23n/p0,
|Ωs t ∩Q| ≤

∑

i:Qt
i⊂Q

∣

∣

{

x ∈ Qt
i : Mp0(Gχ2Qt

i
)(x) > (s− 23n/p0) t

}
∣

∣

≤
∑

i:Qt
i⊂Q

∣

∣

{

x ∈ Qt
i : Mp0(Gχ2Qt

i
)(x) > s t/2

}
∣

∣ . (5.10)
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Note that although in the previous estimate G is localized to 2Qt
i, this function still

involves the cube Q on its term B2
Qf . Using that

Mp0(Gχ2Qt
i
) = Mp0

(

|B2
Qf |χ2Qt

i

)

≤ Mp0

(

|B2
Qt

i
f |χ2Qt

i

)

+Mp0

(

|B2
Qt

i
f −B2

Qf |χ2Qt
i

)

,

we obtain

|Ωs t ∩Q| ≤
∑

i:Qt
i⊂Q

∣

∣

{

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f |χ2Qt

i

)

(x) > s t/4
}
∣

∣

+
∑

i:Qt
i⊂Q

∣

∣

{

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f −B2

Qf |χ2Qt
i

)

(x) > s t/4
}
∣

∣ = I + II.

The following auxiliary results, whose proofs are deferred until Section 5.1.1, allow
us to estimate I and II.

Proposition 5.3. The term I can be estimated as follows:

I .

(

λ

s

)p0

|Ωt ∩Q|+
(

ã(2Q)

λt

)q

|Q|.

Proposition 5.4. We have the following estimate:
(

−
∫

2Qt
i

∣

∣B2
Qt

i
f −B2

Qf
∣

∣

q0 dx

)1/q0

. ã(2Q) + t.

Using the strong-type (q0, q0) of the maximal function Mp0, the last proposition and
the fact that ã(2Q) . t, we have

II .
1

(st)q0

∑

i:Qt
i⊂Q

∫

2Qt
i

∣

∣B2
Qt

i
f −B2

Qf
∣

∣

q0
dx .

1

(st)q0

∑

i:Qt
i⊂Q

(ã(2Q) + t)q0 |Qt
i|

. s−q0
∑

i:Qt
i⊂Q

|Qt
i| . s−q0|Ωt ∩Q|.

This together with Proposition 5.3 lead to

|Ωs t ∩Q| ≤ c

[(

λ

s

)p0

+ s−q0

]

|Ωt ∩Q| + c

(

ã(2Q)

λt

)q

|Q|

for some numerical constant c (independent on λ and q). This completes the proof of
(5.7) in this second case ã(2Q) . t. �

5.1.1. Proofs of the auxiliary results. We refer the reader to the proof of Theorem 3.1
for the notation used in this section. We begin by proving Proposition 5.3.

Proof of Proposition 5.3. We note that

I =
∑

i:Qt
i⊂Q

∣

∣

{

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f |χ2Qt

i

)

(x) > s t/4
}
∣

∣ =
∑

i∈Γ1

· · ·+
∑

i∈Γ2

· · · := Σ1 + Σ2,

where

Γ1 :=
{

i : Qt
i ⊂ Q, −

∫

2Qt
i

|B2
Qt

i
f |p0 dx ≤ (λ t)p0

}
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and

Γ2 :=
{

i : Qt
i ⊂ Q, −

∫

2Qt
i

|B2
Qt

i
f |p0 dx > (λ t)p0

}

.

For the term corresponding to Γ1, we use that the maximal function is of weak type
(1, 1), the definition of the set Γ1 and then the fact that the cubes Qt

i are pairwise
disjoint and they are all contained in Ωt ∩Q:

Σ1 .
1

(s t)p0

∑

i∈Γ1

∫

2Qt
i

|B2
Qt

i
f |p0 dx .

(

λ

s

)p0
∑

i∈Γ1

|Qt
i| .

(

λ

s

)p0

|Ωt ∩Q|.

This corresponds to the first part of the desired inequality. For the indices i ∈ Γ2 we
use Lemma 5.1:

(λ t) <

(

−
∫

2Qt
i

|B2
Qt

i
f |p0 dx

)1/p0

≤ C a(4Qt
i) +

∞
∑

k=2

αk+1 a(2
k+1Qt

i) ≤ ã(Qt
i). (5.11)

Then, taking into account that ã ∈ Dq and that {Qt
i}i ⊂ Q ⊂ 2Q is a collection of

pairwise disjoint cubes, we obtain

Σ2 ≤
∑

i∈Γ2

|Qt
i| ≤

∑

i∈Γ2

(

ã(Qt
i)

λt

)q

|Qt
i| .

(

ã(2Q)

λt

)q

|Q|. (5.12)

�

Proof of Proposition 5.4. We first observe that

B2
Qt

i
− B2

Q = B2
Qt

i
(I − B2

Q)− (I − B2
Qt

i
)B2

Q, (5.13)

and estimate each term separately, here we use I to denote the identity operator.
Using the commutative property (a) of Definition 2.1, we have

B2
Qt

i
(I − B2

Q) = (BQt
i
AQ)(2 I − AQ)BQt

i
.

This, (2.4) and (2.6) yield

(

−
∫

2Qt
i

∣

∣B2
Qt

i
(I − B2

Q)f(x)
∣

∣

q0dx

)1/q0

≤
∑

k≥1

βk+1

(

−
∫

2k+1Q

|(2 I − AQ)BQt
i
f(x)|p0 dx

)1/p0

≤
∑

k≥1

2 βk+1

(

−
∫

2k+1Q

|BQt
i
f(x)|p0 dx

)1/p0

+
∑

k≥1

C βk+1

(

−
∫

2k+2Q

|BQt
i
f(x)|p0 dx

)1/p0

+
∑

k≥1

∑

l≥2

βk+1 αk+l+1

(

−
∫

2k+l+1Q

|BQt
i
f(x)|p0 dx

)1/p0

.
∑

k≥2

β̃k

(

−
∫

2kQ

|BQt
i
f(x)|p0 dx

)1/p0

.
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Here we have used that {βk}k≥1 ∈ ℓ1 and we have also set β̃2 = β2, β̃3 = max{β2, β3},
and β̃k = max{βk−1, βk, αk} for k ≥ 4. Next we pick ki such that

2ki ℓ(Qt
i) ≤ ℓ(Q) < 2ki+1 ℓ(Qt

i). (5.14)

Thus, since ℓ(Qt
i) < ℓ(Q) and Qt

i is a dyadic sub-cube of Q, we obtain ℓ(Qt
i) ≤ ℓ(Q)/2

and
ki ≥ 1, 2ki Qt

i ⊂ 2Q and Q ⊂ 2ki+2Qt
i. (5.15)

All these and (3.1) give

(

−
∫

2kQ

|BQt
i
f(x)|p0 dx

)1/p0

≤ 4n/p0

(

−
∫

2k+ki+2Qt
i

|BQt
i
f(x)|p0 dx

)1/p0

≤ 4n/p0a(2k+ki+2Qt
i).

Using this estimate and the fact that ã ∈ Dq ⊂ D0, we conclude that
(

−
∫

2Qt
i

∣

∣B2
Qt

i
(I − B2

Q)f(x)
∣

∣

q0dx

)1/q0

.
∑

k≥2

β̃ka(2
k+ki+2Qt

i) . ã(2kiQt
i) . ã(2Q).

(5.16)

On the other hand,

(

−
∫

2Qt
i

∣

∣(I − B2
Qt

i
)B2

Qf(x)
∣

∣

q0dx

)1/q0

≤
(

−
∫

2Qt
i

∣

∣(I −B2
Qt

i
)
(

χ2kiQt
i
B2

Qf)(x)
∣

∣

q0dx

)1/q0

+

(

−
∫

2Qt
i

∣

∣(I − B2
Qt

i
)
(

χ(2kiQt
i)

cB2
Qf)(x)

∣

∣

q0
dx

)1/q0

= I1 + I2.

Notice that I − B2
Qt

i
= AQt

i
(2 I −AQt

i
). Using first (2.5) and then (2.6) we obtain

(

−
∫

2Qt
i

∣

∣(I −B2
Qt

i
)h(x)

∣

∣

q0
dx

)1/q0

≤
∑

k≥2

αk

(

−
∫

2k Qt
i

∣

∣(2 I − AQt
i
)h(x)

∣

∣

p0
dx

)1/p0

≤ 2
∑

k≥2

αk

(

−
∫

2k Qt
i

|h(x)|p0dx
)1/p0

+ C
∑

k≥2

αk

(

−
∫

2k+1 Qt
i

|h(x)|p0dx
)1/p0

+
∑

k≥2

∑

l≥2

αk αl+k

(

−
∫

2l+k Qt
i

|h(x)|p0dx
)1/p0

.
∑

k≥2

α̂k

(

−
∫

2k Qt
i

|h(x)|p0dx
)1/p0

, (5.17)

where we have used that {αk}k≥2 ∈ ℓ1 and we have taken α̂2 = α2 and α̂k =
max{αk−1, αk} for k ≥ 3.

We use (5.17) to estimate I1. Notice that 2ki Qt
i ⊂ 2Q implies that if x ∈ 2kiQt

i,
then |B2

Qf(x)| = G(x). Hence,

I1 ≤
∑

k≥2

α̂k

(

−
∫

2kQt
i

∣

∣χ2kiQt
i
(x)B2

Qf(x)
∣

∣

p0
dx

)1/p0
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≤
∑

k≥2

α̂k

(

−
∫

2kQt
i

G(x)p0dx

)1/p0

. t
∑

k≥2

α̂k . t.

Here we have used that α̂k is a fast decay sequence and also that from the Whitney
covering lemma it follows that 10Qt

i ∩ Ωc
t 6= Ø and therefore, for every k ≥ 0,

(

−
∫

2kQt
i

G(x)p0dx

)1/p0

≤ 10n/p0t, (5.18)

see [JM, Theorem 5.2, Lemma 5.3]. On the other hand, to estimate I2 we use again
(5.17), that 2k Qt

i ⊂ 2k Q and Lemma 5.1:

I2 ≤
∑

k≥2

α̂k

(

−
∫

2kQt
i

∣

∣χ(2kiQt
i)

c(x)B2
Qf(x)

∣

∣

p0
dx

)1/p0

≤
∑

k>ki

α̂k

(

−
∫

2kQt
i

∣

∣B2
Qf(x)

∣

∣

p0
dx

)1/p0

.
∑

k>ki

α̂k2
ki n/p0

(

−
∫

2kQ

∣

∣B2
Qf(x)

∣

∣

p0
dx

)1/p0

≤
∑

k≥2

α̂k2
k n/p0a(2k+1Q) +

∑

k≥2

∑

l≥2

α̂k2
k n/p0 αl+k a(2

l+kQ)

.
∑

k≥3

α̃ka(2
kQ)

≤ ã(2Q).

where α̃3 = α̂2 = α2 and

α̃k = max{2k n/p0 α̂k−1, αk} = max{2k n/p0 αk−2, 2
k n/p0 αk−1, αk}

for k ≥ 4. Here we have used that {2kn/p0 α̂k}k≥2 ∈ ℓ1, which in turn is equivalent to
{2kn/p0 αk}k≥2 ∈ ℓ1.

Gathering the obtained estimates the proof is complete. �

Remark 5.5. For some applications it may be interesting to extend the class of “func-
tions” in our main results. We have assumed (for simplicity) that F is a given family
of functions in Lp0

loc(R
n). However, the previous proof can be carried out with no

change and thus Theorem 3.1 remains valid if F is a family of distributions such that
BQf is globally well defined in the sense of distributions and BQf ∈ Lp0

loc(R
n) for every

f ∈ F . The same applies to Theorems 3.6, 3.7, 3.8 and 3.11. Details are left to the
reader.

Remark 5.6. From the proof we can easily see how γ̃k is chosen. The sequences {αk}k≥1

and {βk}k≥1 are given in O(p0, q0). We have used that {αk}k≥2 and {βk}k≥2 are in ℓ1.
We have set (modulo multiplying constants)

β̃2 = β2, β̃3 = max{β2, β3}, α̃2 = 0, α̃3 = α2,
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and, for k ≥ 4,

β̃k = max{βk−1, βk, αk}, α̃k = max
{

2
k n
p0 αk−2, 2

k n
p0 αk−1, αk

}

.

Then we define ã using the coefficients γ̃k (details are left to the reader):

γ̃1 & 1, γ̃2 & max{1, α2, α3}, γ̃3 & max{α2, α3, α4}, γ̃4 & max{α3, α4, α5, β2},
and for k ≥ 5

γ̃k & max{αk−2, 2
k n/p0 αk−1, 2

k n/p0 αk, αk+1, βk−3, βk−2}.
Note that this choice guarantees that γ̃k & αk+1.

Let us notice that in the applications below αk ≈ βk, both sequences are quasi-
decreasing and also 2k n/p0 αk . αk−1. Then we have γ̃1 & 1, γ̃2 & max{1, α2},
γ̃k & α2 for k = 3, 4 and γ̃k & αk−3 for k ≥ 5.

Remark 5.7. Notice that in the proof we have used the condition ã ∈ Dq in (5.12).
However, in the last inequality of (5.11) we can replace the last term by the smaller
functional â(Qt

i) defined by â(Q) = a(4Q)+
∑∞

k=2 αk+1 a(2
k+1Q). In this way, we can

replace the hypothesis ã ∈ Dq by â ∈ Dq and obtain the same inequality (5.12) after
using that â(2Q) . ã(2Q). Let us observe in (5.16) we have also used a ∈ Dq in a
very mild manner via the D0 condition. Thus, we would need to add the hypothesis
that the functional

∑

k≥0 β̃k a(2
k Q) is in D0. As observed this follows, for instance,

if that functional satisfies some Dr condition or more in particular if a ∈ D0. In
applications it could be easier to check these new hypotheses, since the coefficients αk

decay faster than γ̃k.

5.2. Proof of Theorem 3.6. The proof of this result (including the choice of γ̃k in
Remark 5.6) is very similar to the argument given above, so we just give the main
changes. We first emphasize that (3.5) implies

ã(Q) . ā(Q) (5.19)

for any cube Q (we just take a family consisting only of the cube Q).

We follow the proof of Theorem 3.1. As done in Lemma 5.2 it suffices to obtain
that

‖B2
Qf‖Lq,∞,Q . ā(2Q), (5.20)

provided γ̃k & αk+1. Note that the last term in (5.3) is ã(2Q) and (5.19) implies
ã(2Q) . ā(2Q). Then we proceed as in the previous proof, fix Q and assume that
the right hand side of (3.6) is finite, that is, ā(2Q) < ∞. As just observed ã(2Q) ≤
ā(2Q) < ∞. We define G and Ωt as before and we observe that (5.5) and (5.6) hold.
We are going to obtain the following good-λ inequality: given 0 < λ < 1, for all t > 0,

|Ωs t ∩Q| ≤ c

[(

λ

s

)p0

+ s−q0

]

|Ωt ∩Q|+ c

(

c0 ā(2Q)

λ t

)q

|Q|. (5.21)

With this in hand we can obtain that ‖Mp0G‖Lq,∞,Q . ā(2Q) which in turns yields
(5.20).

As before (5.21) is trivial when 0 < t . ā(2Q). Otherwise we repeat the previous
steps and it suffices to obtain that, under the present hypotheses, Propositions 5.3
and 5.4 hold replacing ã by ā. Regarding Proposition 5.3, the estimate for Σ1 is the
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same. For Σ2 we still get (5.11) which together with (3.5) yield the following analogue
of (5.12):

Σ2 ≤
∑

i∈Γ2

|Qt
i| ≤

∑

i∈Γ2

(

ã(Qt
i)

λt

)q

|Qt
i| .

(

ā(2Q)

λt

)q

|Q|.

Regarding Proposition 5.4 we note that in (5.16) we have used that ã ∈ Dq ⊂ D0.
In this case the same computations yield
(

−
∫

2Qt
i

∣

∣B2
Qt

i
(I −B2

Q)f(x)
∣

∣

q0
dx

)1/q0

≤
∑

k≥1

β̃ka(2
k+ki+3Qt

i) ≤ ã(2kiQt
i) . ā(2Q).

In the last inequality we have used (3.5) and the facts that 2kiQt
i ⊂ 2Q and |2kiQt

i| ≈
|2Q| by (5.15) and (5.14). The rest of the argument remains the same and at the end
of the proof we use (5.19) to obtain I2 . ã(2Q) . ā(2Q). �

5.3. Proof of Theorem 3.7. The proof follows the same scheme as before, the main
difference is that we replace everywhere B2

Q by BQ. We set ã(Q) equal to the right
hand side of (3.8) and assume that ã(Q) < ∞. Let us set G(x) = |BQf(x)|χ2Q(x)
and define the corresponding Ωt. Then we get the following substitute of (5.5):

(

−
∫

2Q

Gp0 dx

)1/p0

=

(

−
∫

2Q

|BQf(x)|p0 dx
)1/p0

≤ a(2Q) ≤ ã(Q). (5.22)

Note that this implies that G ∈ Lp0 and also (5.6) with ã(Q) in place of ã(2Q). Then
we show that for s large enough and every 0 < λ < 1 and t > 0,

|Ωs t ∩Q| ≤ c

[(

λ

s

)p0

+ s−q0

]

|Ωt ∩Q|+ c

(

c0 ã(Q)

λ t

)q

|Q|.

This implies as before the desired estimate.

To obtain the good-λ inequality we only consider the case t & ã(Q) (the other case
is trivial). The proof follows the same path (replacing B2

R by BR) and then we have
to estimate

I :=
∑

i:Qt
i⊂Q

∣

∣

{

x ∈ Qt
i : Mp0

(

|BQt
i
f |χ2Qt

i

)

(x) > s t/4
}
∣

∣

and
II :=

∑

i:Qt
i⊂Q

∣

∣

{

x ∈ Qt
i : Mp0

(

|BQt
i
f − BQf |χ2Qt

i

)

(x) > s t/4
}
∣

∣.

For I we proceed as in Proposition 5.3 (with BQi
replacing B2

Qi
). The estimate for

Σ1 is the same. For Σ2 we have that if i ∈ Γ2, then

(λ t) <

(

−
∫

2Qt
i

|BQt
i
f |p0 dx

)1/p0

≤ a(2Qt
i). (5.23)

As in [JM, Section 5.1] we have that the family {2Qt
i}i ⊂ 2Q splits into cn (with

cn ≤ 144n) families Ej of pairwise disjoint cubes. Then we use that a ∈ Dq in each
family to conclude that

Σ2 ≤
∑

i∈Γ2

|Qt
i| ≤

cn
∑

j=1

∑

Qi∈Ej

(

a(2Qt
i)

λt

)q

|2Qt
i|
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≤ ‖a‖qDq
cn

(

a(2Q)

λt

)q

|2Q| .
(

ã(Q)

λt

)q

|Q|.

The main changes come into the estimate of II. We adapt the proof of Proposition
5.4 as follows: note that for x ∈ 2Qt

i by (3.7) and since Qt
i ⊂ Q we obtain

BQt
i
(I − BQ)f(x) = (I −AQt

i
)AQf(x) = AQf(x)−AQt

i
AQf(x) = 0

Then, for every x ∈ 2Qt
i,

BQt
i
f(x)−BQf(x) = BQt

i
(I −BQ)f(x)− (I −BQt

i
)BQf(x) = −AQt

i
BQf(x). (5.24)

Let us observe that the term that has disappeared corresponds to the first term in
(5.13), and to estimate that quantity we used (a) and (d) in Definition 2.1,

Next we pick ki as before and use (2.5) (which follows from (c)) to obtain that

(

−
∫

2Qt
i

∣

∣BQt
i
f(x)− BQf(x)

∣

∣

q0dx

)1/q0

=

(

−
∫

2Qt
i

∣

∣AQt
i
BQf(x)

∣

∣

q0dx

)1/q0

≤
∑

k≥2

αk

(

−
∫

2kQt
i

|BQf(x)|p0dx
)1/p0

=
∑

k≤ki

· · ·+
∑

k>ki

· · · = I1 + I2.

For I1 we notice that 2kiQt
i ⊂ 2Q and then BQf(x) = G(x) for x ∈ 2kQt

i, k ≤ ki and
therefore

I1 ≤
∑

k≤ki

αk

(

−
∫

2kQt
i

|G(x)|p0dx
)1/p0

. t
∑

k≥2

αk . t.

Here the second inequality follows as in (5.18) and we have use that {αk}k≥2 ∈ ℓ1.

For I2 we use that 2k Qt
i ⊂ 2k Q, hence (3.1) yields

I2 ≤
∑

k>ki

αk2
ki n/p0

(

−
∫

2kQ

∣

∣BQf(x)
∣

∣

p0
dx

)1/p0

≤
∑

k≥2

αk2
k n/p0a(2kQ) ≤ ã(Q). (5.25)

Gathering all the obtained estimates the proof is completed.

�

5.4. Proof of Theorem 3.8. Proceeding as in the previous proof we set ã(Q) =
C a(2Q) which is assumed to be finite and define G. Note that we have the analogue
of (5.5) as a consequence of (3.10):

(

−
∫

2Q

Gp0 dx

)1/p0

=

(

−
∫

2Q

|BQf(x)|p0 dx
)1/p0

≤ a(2Q) ≤ ã(Q).

We obtain the very same good-λ inequality as follows. In the case t & ã(Q) we have
to estimate I and II with the same definition. To estimate I we proceed as before
and Σ1 is controlled in the same way. For Σ2 we observe that (3.10) also implies (5.23)
and then the rest of argument is the same.

In this case the estimate for II is much easier. We use (5.24) (which follows from
(3.7)), (3.9) and the fact that 2Qt

i ⊂ 2Q to obtain that, for every x ∈ 2Qt
i,

BQt
i
f(x)− BQf(x) = −AQt

i
BQf(x) = −AQt

i

(

(BQf)χ2Qt
i

)

(x) = −AQt
i
(Gχ2Qt

i
)(x)
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Then (2.2) and (5.18) yield

(

−
∫

2Qt
i

∣

∣BQt
i
f(x)− BQf(x)

∣

∣

q0dx

)1/q0

≤ α2

(

−
∫

2Qt
i

|G(x)|p0dx
)1/p0

≤ 10n/p0 α2 t.

Gathering the obtained estimates the proof is complete. �

5.5. Proof of Theorem 3.11. The proof follows the scheme of the proof of Theorem
3.1 and therefore we only point out the main changes.

Let us first observe that without loss of generality we can assume that q0 < ∞:
indeed we can replace q0 by q̃0, chosen in such a way that q < q̃0 < ∞ and w ∈ RH(q̃0/q)′

since we have that O(p0, q0) implies O(p0, q̃0) and also that if w ∈ RH1 = A∞ then
w ∈ RHr for some r very close to 1. Next we recall the following well-known fact
about reverse Hölder classes: w ∈ RH(q0/q)′ implies that there exists 1 < r < q0/q
such that w ∈ RHr′. We will use this below.

We first note that under the present assumptions Lemma 5.1 holds. On the other
hand, we need to adapt the proof of Lemma 5.2 to our current settings. Notice that
(5.3) holds with q0 in place of q on the left hand. This and the fact that w ∈ RH(q0/q)′

imply

‖AQBQf‖Lq,∞(w),Q ≤ ‖AQBQf‖Lq(w),Q ≤ Cw ‖AQBQf‖Lq0 ,Q .

∞
∑

k=1

γ̃k a(2
k+1Q).

Then we obtain that (3.15) follows from

‖B2
Qf‖Lq,∞(w),Q .

∞
∑

k=1

γ̃k a(2
k+1Q), (5.26)

with γ̃k & αk+1 for k ≥ 1.

As in the proof of Theorem 3.1 we define ã so that the right hand side of (5.26)
is ã(2Q). We take the same function G and observe that (5.5) and (5.6) hold. We
are going to show that for some large enough s > 1 the following weighted good-λ
inequality holds: given 0 < λ < 1, for all t > 0,

w(Ωs t ∩Q) ≤ c

[

(

λ

s

)p0 q/q0

+ s−q0/r

]

w(Ωt ∩Q) + c

(

c0 ã(2Q)

λ t

)q

w(Q). (5.27)

Once this is obtained the desired estimate follows as before where in this case we have
to pick s large enough and λ small enough such that

c
[

sq−p0 q/q0λp0 q/q0 + sq−q0/r
]

≤ 1

2
.

Note that this can be done since 1 < r < q0/q yields q − q0/r < 0.

Next we obtain (5.27). The case 0 < t . ã(2Q) is trivial. Otherwise, for t & ã(2Q)
we proceed as before replacing the Lebesgue measure by w and we conclude that

w(Ωs t ∩Q) ≤
∑

i:Qt
i⊂Q

w
({

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f |χ2Qt

i

)

(x) > s t/4
})
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+
∑

i:Qt
i⊂Q

w
({

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f − B2

Qf |χ2Qt
i

)

(x) > s t/4
})

= I + II.

We first estimate II. We claim that Proposition 5.4 holds under the present as-
sumptions. Indeed, a careful examination of the proof shows that the only estimate
that needs to be checked is the last inequality in (5.16) where we used that ã ∈ Dq to
obtain that ã ∈ D0. Here, we have ã ∈ Dq(w) and this also implies ã ∈ D0 since w dx
is a doubling measure (see the comments after Definition 2.4).

Next we use (3.13) with the exponent p = r′ given above, the strong-type (q0, q0)
(with respect to the Lebesgue measure) of Mp0, Proposition 5.4 and the fact that
ã(2Q) . t:

II =
∑

i:Qt
i⊂Q

w
({

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f −B2

Qf |χ2Qt
i

)

(x) > s t/4
})

w(Qt
i)

w(Qt
i)

.
∑

i:Qt
i⊂Q

(
∣

∣

{

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f − B2

Qf |χ2Qt
i

)

(x) > s t/4
}
∣

∣

|Qt
i|

)1/r

w(Qt
i)

.
∑

i:Qt
i⊂Q

(

1

(s t)q0
−
∫

2Qt
i

∣

∣B2
Qt

i
f −B2

Qf
∣

∣

q0 dx

)1/r

w(Qt
i)

.
∑

i:Qt
i⊂Q

(

(

ã(2Q) + t
)q0

(s t)q0

)1/r

w(Qt
i)

. s−q0/r w(Ωt ∩Q).

To complete the proof of (5.27) we just need to use the analogue of Proposition 5.3
given next. �

Proposition 5.8. The term I can be estimated as follows:

I .

(

λ

s

)p0 q/q0

w(Ωt ∩Q) +

(

ã(2Q)

λt

)q

w(Q).

Proof of Proposition 5.8. We follow the proof of Proposition 5.3. We take the same
sets Γ1, Γ2 and define the corresponding sums Σ1, Σ2. For Σ1 we use (3.13) with
p = (q0/q)

′, that the maximal function is of weak type (1, 1), the definition of the set
Γ1 and then the fact that the cubes Qt

i are pairwise disjoint and they are all contained
in Ωt ∩Q:

Σ1 =
∑

i:Qt
i∈Γ1

w
({

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f |χ2Qt

i

)

(x) > s t/4
})

w(Qt
i)

w(Qt
i)

.
∑

i:∈Γ1

(
∣

∣

{

x ∈ Qt
i : Mp0

(

|B2
Qt

i
f |χ2Qt

i

)

(x) > s t/4
}
∣

∣

|Qt
i|

)q/q0

w(Qt
i)

.
∑

i:∈Γ1

(

1

(s t)p0
−
∫

2Qt
i

|B2
Qt

i
f |p0 dx

)q/q0

w(Qt
i)
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.

(

λ

s

)p0 q/p0
∑

i∈Γ1

w(Qt
i)

.

(

λ

s

)p0 q/p0

w(Ωt ∩Q).

This corresponds to the first part of the desired inequality.

For the indices i ∈ Γ2 we use Lemma 5.1, which as mentioned above holds in
the present situation, and obtain (5.11). Then, using that ã ∈ Dq(w) and that
{Qt

i}i ⊂ Q ⊂ 2Q is a collection of pairwise disjoint cubes, we conclude that

Σ2 ≤
∑

i∈Γ2

w(Qt
i) ≤

∑

i∈Γ2

(

ã(Qt
i)

λt

)q

w(Qt
i) .

(

ã(2Q)

λt

)q

w(Q).

�

5.6. Proof of Theorem 3.12, (3.16). We use the previous ideas and combine them
with [Jim], [MP]. The proof follows that of Theorem 3.7 (working with BQ in place of
B2

Q) and thus we skip some details. We can assume that ‖a‖D∞ = 1. Indeed, if we set
â(Q) = supP⊂Q a(P ) we trivially have a(Q) ≤ â(Q) ≤ ‖a‖D∞ a(Q) and ‖â‖D∞ = 1.
Thus we can work with â and the resulting estimate will immediately implies that for
a.

Set ã(Q) equal to the right hand side of (3.16) and assume that it is finite. Notice
that trivially ã ∈ D∞ with ‖ã‖D∞ = 1. Let G(x) = |BQf(x)|χ2Q(x) and Ω = {x ∈
Rn : Mp0G(x) > ã(Q)}. Then, by taking the implicit constant in (3.16) large enough,
we have

|Ω| . 1

ã(Q)p0

∫

2Q

|BQf(x)|p0 dx .

(

a(2Q)

ã(Q)

)p0

|Q| ≤ e−1 |Q|.

This gives in particular that Ω is a proper subset of Rn and then we can cover it as
before by a family of Whitney cubes {Qi}i associated to the dyadic grid induced by
Q. Let us write

ϕ(t) = sup
R∈Q

|E(R, t)|
|R| , E(R, t) = {x ∈ R : |BRf(x)| > t ã(R)},

where it is understood that E(R, t) = Ø if ã(R) = ∞. If t > 1 then for a.e. x ∈ E(Q, t)
we have that x ∈ Ω. Thus,

|E(Q, t)| = |E(Q, t) ∩ Ω| =
∑

i

|E(Q, t) ∩Qi|.

We can restrict the previous sum to those Qi’s with Qi∩Q 6= Ø (since E(Q, t) ⊂ Q) in
which case we have Qi ⊂ Q (here we use that Qi are cubes in the dyadic grid induced
by Q and also that |Qi| ≤ |Ω| < |Q|). We claim that

‖BQf − BQi
f‖L∞(Qi) ≤ C0 ã(Q). (5.28)

Assuming this momentarily, for a.e. x ∈ E(Q, t)∩Qi we have by the previous estimate

t ã(Q) < |BQf(x)| ≤ |BQf(x)− BQi
f(x)|+ |BQi

f(x)| ≤ C0 ã(Q) + |BQi
f(x)|.
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Besides, since a ∈ D∞ with ‖a‖D∞ = 1 we have ã(Qi) ≤ ã(Q). Using all these, we
have, for every t > C0,

|E(Q, t)| ≤
∑

i:Qi⊂Q

|{x ∈ Qi : |BQi
f(x)| > (t− C0)ã(Q)}

≤
∑

i:Qi⊂Q

|{x ∈ Qi : |BQi
f(x)| > (t− C0)ã(Qi)}

≤ ϕ(t− C0)
∑

i:Qi⊂Q

|Qi|

≤ ϕ(t− C0) |Ω|
≤ ϕ(t− C0) e

−1 |Q|.
Thus we have shown that |E(Q, t)|/|Q| ≤ ϕ(t − C0) e

−1 for every t > C0 and for
every cube Q for which ã(Q) < ∞. Notice that the same estimates holds trivially if
ã(Q) = ∞ since in such a case |E(Q, t)| = 0. Then we can take the supremum over all
cubes an conclude that ϕ(t) ≤ ϕ(t− C0) e

−1 for every t > C0. Iterating this estimate
and using that ϕ(t) ≤ 1 for every t ≥ 0 we obtain ϕ(t) ≤ e1−t/C0 for all t ≥ 0. With
this in hand we can obtain the desired estimate. If ã(Q) = ∞ there is nothing to
prove. Otherwise, we have |E(Q, t)|/|Q| ≤ ϕ(t) ≤ e1−t/C0 for all t ≥ 0 and therefore
by taking A = C0(e+ 1) > C0 we have

−
∫

Q

(

exp

( |BQf(x)|
A ã(Q)

)

− 1

)

dx =

∫ ∞

0

et
|E(Q,A t)|

|Q| dt

≤ e

∫ ∞

0

e
−t ( A

C0
−1)

dt = e

∫ ∞

0

e−e t dt = 1.

This gives as desired ‖BQf‖expL,Q ≤ A ã(Q).

To complete the proof we need to show our claim (5.28). This is an L∞ analogue
of Proposition 5.4. Following the ideas in the proof of Theorem 3.7 and using the
commutative condition we clearly have

BQt
i
f(x)−BQf(x) = BQi

(I−BQ)f(x)−(I−BQi
)BQf(x) = AQBQi

f(x)−AQi
BQf(x),

and we estimate each term in turn. We take ki as in (5.14) so that (5.15) holds. For
the first term we use that Qi ⊂ Q and (2.5) with q0 = ∞:

‖AQBQi
f‖L∞(Qi) ≤ ‖AQBQi

f‖L∞(2Q) ≤
∑

k≥2

αk

(

−
∫

2kQ

|BQi
f |p0 dx

)1/p0

.

Notice that (5.14) and (5.15) imply

2k Q ⊂ 2k+ki+2Qi ⊂ 2k+3Q, |2k Q| ≈ |2k+ki+2Qi| ≈ |2k+3Q|.
This, (3.1) and the fact that a ∈ D∞ yield

‖AQBQi
f‖L∞(Qi) .

∑

k≥2

αk

(

−
∫

2k+ki+2 Qi

|BQi
f |p0 dx

)1/p0

≤
∑

k≥2

αk a(2
k+ki+2Qi) ≤

∑

k≥2

αk a(2
k+3Q) ≤ ã(Q).
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Next, the second term is treated essentially as in the proof of Theorem 3.7: we use
(2.5) with q0 = ∞

‖AQi
BQf‖L∞(Qi) ≤ ‖AQi

BQf‖L∞(2Qi) ≤
∑

k≥2

αk

(

−
∫

2k Qi

|BQf |p0 dx
)1/p0

=
∑

k≤ki

· · ·+
∑

k>ki

· · · = I1 + I2.

For I1, using that 2kiQt
i ⊂ 2Q we obtain BQf(x) = G(x) for x ∈ 2kQt

i, k ≤ ki and
therefore

I1 ≤
∑

k≤ki

αk

(

−
∫

2kQt
i

|G(x)|p0dx
)1/p0

. ã(Q)
∑

k≥2

αk . ã(Q).

The second inequality follows from (5.18) taking into account that here the level sets
are done with t = ã(Q), and we have use that {αk}k≥2 ∈ ℓ1.

For I2 we use that for every if k > ki we have 2k Qi ⊂ 2k−ki+1Q with |2k Qi| ≈
|2k−ki+1Q|. Hence (3.1) and a ∈ D∞ yields

I2 ≤
∑

k>ki

αk

(

−
∫

2k−ki+1Q

∣

∣BQf(x)
∣

∣

p0dx

)1/p0

≤
∑

k>ki

αka(2
k−ki+1Q) .

∑

k≥2

αka(2
kQ) ≤ ã(Q).

Gathering all the obtained estimates the proof is completed.

�

5.7. Proof of Theorem 3.12, (3.17). The proof is essentially the same and we only
point out the few changes. Since w ∈ A∞ we have that w ∈ RHr for some r > 1
and therefore (3.13) gives w(E)/w(Q) ≤ Cw(|E|/|Q|)1/r′ for every E ⊂ Q. Taking
the constant in (3.17) large enough we have as before |Ω| ≤ e−r′(1+logCw) |Q|. Next we
define a new function ϕ(t) = supR w(E(R, t))/w(R). Then proceeding as before and
using (5.28) we obtain, for every t > C0,

w(E(Q, t)) ≤ ϕ(t− C0)
∑

i:Qi⊂Q

w(Qi) = ϕ(t− C0)w(Ω ∩Q)

≤ ϕ(t− C0)Cw w(Q)

( |Ω ∩Q|
|Q|

)1/r′

≤ ϕ(t− C0) e
−1w(Q).

From here the rest of the proof extends mutatis mutandis with dw replacing dx.

5.8. Proofs related to the applications.

5.8.1. Proof of Lemma 4.4. The argument uses some ideas from [JM] and runs parallel
to the proof of [BJM, Proposition 4.1], therefore we only give the main details. It is
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well-known (see for instance [GR] or [Gra]) that given w ∈ A1 there exists 0 < θ ≤ 1
such that for every cube Q and for every measurable subset S ⊂ Q we have

|S|
|Q| .

w(S)

w(Q)
.

( |S|
|Q|

)θ

. (5.29)

The first inequality follows at one from w ∈ A1 and the second one uses that w ∈
RH(1/θ)′ for some 0 < θ ≤ 1 —notice that we allow θ = 1 to cover the unweighted
case, i.e., w ≡ 1. We write

a(Q) =

∞
∑

k=0

γk a0(2
k Q), a0(Q) = ℓ(Q)

(

−
∫

Q

hs dw

)1/s

.

We may assume that s ≤ q < s∗ since the Dq conditions are decreasing. Fix a cube Q
and a family {Qi}i ⊂ Q of pairwise disjoint cubes. Then Minkowski’s inequality and
q ≥ s yield

(

∑

i

a(Qi)
q w(Qi)

)
1
q ≤

∞
∑

k=0

γk

(

∑

i

ℓ(2k Qi)
sw(Qi)

s
q

w(2k Qi)

∫

2k Qi

hs dw
)

1
s

:=

∞
∑

k=0

γk I
1
s
k .

If k = 0, we use s ≤ q < s∗ and (5.29) (indeed the left hand side inequality) to obtain
for every i

(

ℓ(Qi)

ℓ(Q)

)s(
w(Q)

w(Qi)

)1− s
q

.

(

ℓ(Qi)

ℓ(Q)

)s( |Q|
|Qi|

)1− s
q

=

( |Qi|
|Q|

)s ( 1
q
− 1

s∗
)

≤ 1

Hence, since the cubes Qi ⊂ Q are pairwise disjoint, we get

I0 .
ℓ(Q)s w(Q)

s
q

w(Q)

∑

i

∫

Qi

hs dw ≤ ℓ(Q)sw(Q)
s
q

w(Q)

∫

Q

hs dw = a0(Q)s w(Q)
s
q .

For k ≥ 1 we arrange the cubes according to their sidelength and use an estimate
of the overlap: given l ≥ 1, write El = {Qi : 2

−l ℓ(Q) < ℓ(Qi) ≤ 2−l+1 ℓ(Q)}. As
it is obtained in [JM, Lemma 4.3] we have that 2k Qi ⊂ 2max{k−l+1,0}+1Q. Let us
observe that #El . 2l n since all the cubes in El have comparable size, are disjoint
and contained in Q. On then other hand it is shown in [JM, Lemma 4.3] that the
overlap is at most C 2k n. Therefore we have

∑

Qi∈El
χ2k Qi

. 2nmin{l,k} χ2max{k−l+1,0}+1Q.
Using this, s < n and s ≤ q < s∗ yield

Ik =

∞
∑

l=1

∑

Qi∈El

ℓ(2k Qi)
sw(Qi)

s
q

w(2k Qi)

∫

2k Qi

hs dw =

k+1
∑

l=1

· · ·+
∞
∑

l=k+2

· · · = Σ1 + Σ2.

For Σ1, using (5.29) and the previous observations we have

Σ1 =
k+1
∑

l=1

ℓ(2k−l+2Q)s w(Q)
s
q

w(2k−l+2Q)

∑

Qi∈El

(

ℓ(2k Qi)

ℓ(2k−l+2Q)

)s(
w(Qi)

w(Q)

)
s
q w(2k−l+2Q)

w(2k Qi)

×
∫

2k Qi

hs dw

. w(Q)
s
q

k+1
∑

l=1

ℓ(2k−l+2Q)s

w(2k−l+2Q)
2−l θ n s

q

∑

Qi∈El

∫

2k Qi

hs dw
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. w(Q)
s
q

k+1
∑

l=1

ℓ(2k−l+2Q)s

w(2k−l+2Q)
2−l θ n s

q 2n l

∫

2k−l+2 Q

hs dw

= w(Q)
s
q

k+1
∑

l=1

2l n (1−θ s
q
) a0(2

k−l+2Q)s

= w(Q)
s
q 2k n (1−θ s

q
)
k+1
∑

l=1

2−l n (1−θ s
q
) a0(2

l Q)s.

Analogously, for Σ2, using the fact that s ≤ q < s∗ we obtain

Σ2 =
ℓ(2Q)sw(Q)

s
q

w(2Q)

∞
∑

l=k+2

∑

Qi∈El

(

ℓ(2k Qi)

ℓ(2Q)

)s(
w(Qi)

w(2k Qi)

w(2Q)

w(Q)

)
s
q

×
(

w(2Q)

w(2k Qi)

)1− s
q
∫

2k Qi

hs dw

.
ℓ(2Q)sw(Q)

s
q

w(2Q)
2k s (1+n 1−θ

q
) 2−k n

∞
∑

l=k+2

2−l (s+n s
q
−n)

∑

Qi∈El

∫

2k Qi

hs dw

.
ℓ(2Q)sw(Q)

s
q

w(2Q)

(
∫

2Q

hs dw

)

2k s (1+n 1−θ
q

)
∞
∑

l=k+2

2−l (s+n s
q
−n)

. w(Q)
s
q 2k n (1−θ s

q
) a0(2Q)s.

Let us note that the last quantity corresponds to the term l = 1 in the estimate for
Σ1. Gathering the obtained inequalities we conclude that

(

∑

i

a(Qi)
q w(Qi)

)
1
q

. γ0 a0(Q)w(Q)
1
q + w(Q)

1
q

∞
∑

k=1

γk 2
k n ( 1

s
− θ

q
)

k+1
∑

l=1

2−l n ( 1
s
− θ

q
)a0(2

l Q)

≤
∞
∑

k=0

γ̄k a0(2
k Q)w(Q)

1
q = ā(Q)w(Q)

1
q ,

where γ̄0 = C γ0 and γ̄k = 2−k n ( 1
s
− θ

q
) ∑∞

l=k−1 γl 2
l n ( 1

s
− θ

q
), k ≥ 1 —notice that here we

implicitly use that γk is a fast decay sequence, since otherwise the coefficient γ̄k would
be infinity. This completes the proof since we have shown that (a, ā) ∈ Dq(w). �

Remark 5.9. We would like to call the reader’s attention to the fact that, in the
previous argument, it was crucial that s ≤ q < s∗, since otherwise the geometric sum
for the terms l ≥ k + 2 diverges.

5.8.2. Proof of Proposition 4.5. We fix N ≥ 1. Abusing the notation we write AQ

and BQ in place of AQ,N and BQ,N . Property (a) follows at once after expanding BQ

and using the semigroup property e−t Le−sL = e−(t+s)L. Regarding (b) we invoke the
theory of off-diagonal estimates developed in [AM]. Our assumption (4.3) implies that
{e−t L}t>0 satisfies Lp0(Rn)− Lq0(Rn) full off-diagonal estimates which are equivalent
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to the Lp0(Rn)−Lq0(Rn) off-diagonal estimates on balls [AM, Section 3.1], and these
imply uniform boundedness of e−t L on Lp0(Rn), [AM, Theorem 2.3]. This yields (b)
after expanding BQ. To see (c) we expand AQ and observe that it suffices to prove

that for every cube, e−l ℓ(Q)2L verifies (2.2) and (2.3) for every 1 ≤ l ≤ N . Fixed such
l we use (4.3) to obtain (2.2):
(

−
∫

2Q

∣

∣

∣
e−l ℓ(Q)2L(f χ4Q)

∣

∣

∣

q0
dx

)1/q0

≤ C |2Q|−1/q0 (l ℓ(Q)2)
−n

2

(

1
p0

− 1
q0

)

(
∫

4Q

|f |p0 dx
)1/p0

. C

(

−
∫

4Q

|f |p0 dx
)1/p0

.

On the other hand, using again (4.3) we show (2.3):
(

−
∫

2jQ

∣

∣

∣
e−l ℓ(Q)2L(f χRn\2j+1 Q)

∣

∣

∣

q0
dx

)1/q0

≤
∑

k≥2

(

−
∫

2jQ

∣

∣

∣
e−l ℓ(Q)2L(f χ2k+jQ\2k+j−1Q)

∣

∣

∣

q0
dx

)1/q0

.
∑

k≥2

|2jQ|−1/q0(l ℓ(Q)2)
−n

2

(

1
p0

− 1
q0

)

e
−c

4j+k ℓ(Q)2

l ℓ(Q)2

(
∫

2k+jQ

|f |p0
)1/p0

.
∑

k≥2

e−c 4k+j

(

−
∫

2k+jQ

|f |p0 dx
)1/p0

.

As noted above the constant c is irrelevant, provided it remains positive, and therefore
c may change from line to line.

The proof of (2.4) is more delicate and we need to exploit the fact that we have
off-diagonal decay for (t L)k e−t L with 0 ≤ k ≤ N and that N ≥ n/(2 q0). As before
we expand AQ and so it suffices to prove (2.4) for the operator

SQ,R :=
(

I − e−ℓ(R)2 L
)N

e−l ℓ(Q)2 L,

with 1 ≤ l ≤ N fixed and where R ⊂ Q. Let us now point out that we can factor
out some power of L in the previous operator. Indeed, the strongly continuity of the
semigroup at t = 0 (more precisely e−tL → I for t → 0) with Remark 4.6 give us that,
for every s > 0,

sL

(

−
∫

[0,s]

e−λLdλ

)

=

∫ s

0

Le−λLdλ = I − e−s L, (5.30)

where this equality holds in the sense of Lp(Rn)-bounded operators, for every finite
p ∈ [p0, q0], p < ∞. Hence for s > 0, we define

Us :=

(

−
∫

[0,s]

e−λLdλ

)N

and SQ,R can be written as follows:

SQ,R =

(

ℓ(R)√
lℓ(Q)

)2N

(l ℓ(Q)2 L)N e−l ℓ(Q)2 L Uℓ(R)2 .
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Let us observe that writing the operator in this way we have obtained an extra factor
(ℓ(R)/ℓ(Q))2N , which is small since R ⊂ Q.

We have the following off-diagonal estimates for Us, the proof is given below.

Lemma 5.10. The family of operator {Us}s>0 satisfies L
p0(Rn)−Lp0(Rn) off-diagonal

estimates: for all closed sets E, F and functions f supported in F
(
∫

E

|Usf |p0 dx
)1/p0

. e−c
d(E,F )2

s

(
∫

F

|f |p0dx
)1/p0

. (5.31)

Since R ⊂ Q we can find a unique j ≥ 0 such that 2jℓ(R) ≤ ℓ(Q) < 2j+1 ℓ(R). Then

2jR ⊂ 2Q and |2jR| ≈ |Q|. Using the off-diagonal decay of (l ℓ(Q)2 L)N e−l ℓ(Q)2 L we
get
(

−
∫

2R

|(l ℓ(Q)2 L)N e−l ℓ(Q)2 Lh|q0dx
)1/q0

≤
(

−
∫

2R

|(l ℓ(Q)2 L)N e−l ℓ(Q)2 L(hχ2j+2R)|q0dx
)1/q0

+

∞
∑

k=3

(

−
∫

2R

|(l ℓ(Q)2 L)N e−l ℓ(Q)2 L(hχ2k+jR\2k+j−1R)|q0dx
)1/q0

. |2R|−1/q0 |2j+2R|1/p0 (l ℓ(Q)2)
−n

2

(

1
p0

− 1
q0

)

(

−
∫

2j+2R

|h|p0dx
)1/p0

+

∞
∑

k=3

|2R|−1/q0 |2k+jR|1/p0 (l ℓ(Q)2)
−n

2

(

1
p0

− 1
q0

)

e
−c 4k+j ℓ(R)2

l ℓ(Q)2

(

−
∫

2k+jR

|h|p0dx
)1/p0

.

(

ℓ(Q)

ℓ(R)

)
n
q0

∞
∑

k=3

e−c 4k
(

−
∫

2kQ

|h|p0dx
)1/p0

.

We apply this estimate with h = Uℓ(R)2f and (5.31) and use that N ≥ n/(2 q0) to
obtain
(

−
∫

2R

|SQ,Rf |q0
)1/q0

.

(

ℓ(R)

ℓ(Q)

)2N (
ℓ(Q)

ℓ(R)

)
n
q0

∞
∑

k=3

e−c 4k
(

−
∫

2kQ

|Uℓ(R)2f |p0dx
)1/p0

≤
∞
∑

k=3

e−c 4k
(

−
∫

2kQ

|Uℓ(R)2(f χ2k+1Q)|p0dx
)1/p0

+

∞
∑

k=3

e−c 4k
∞
∑

l=2

(

−
∫

2kQ

|Uℓ(R)2(f χ2k+lQ\2k+l−1Q)|p0dx
)1/p0

.

∞
∑

k=3

e−c 4k
(

−
∫

2k+1Q

|f |p0dx
)1/p0

+

∞
∑

k=3

e−c 4k
∞
∑

l=2

e
−c 4k+l ℓ(Q)2

ℓ(R)2

(

−
∫

2k+lQ

|f |p0dx
)1/p0

.

∞
∑

k=4

e−c 4k
(

−
∫

2k+1Q

|f |p0dx
)1/p0

.

This completes the proof of (2.4) for SQ,R with R ⊂ Q and so for BRAQ. �
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Proof of Lemma 5.10. Off-diagonal estimates are stable under composition (see for
instance [HMar, Lemma 2.3] or [AM, Sections 2.4, 3.1]). Thus it suffices to obtain the
desired estimate in the case N = 1.

As observed before (4.3) implies that {e−t L}t>0 satisfies Lp0(Rn) − Lq0(Rn) off-
diagonal estimates on balls [AM, Section 3.1], thus we have Lp0(Rn) − Lp0(Rn) off-
diagonal estimates on balls (see [AM, Sections 2.1]). These in turn are equivalent to
the Lp0(Rn)−Lp0(Rn) (full) off-diagonal estimates for {e−t L}t>0 by [AM, Section 3.1].
This and Minkowski’s inequality allow us to obtain that for all closed sets E, F and
functions f supported in F

(
∫

E

∣

∣

∣

∣

−
∫

[0,s]

e−λLfdλ

∣

∣

∣

∣

p0

dx

)1/p0

≤ −
∫

[0,s]

(
∫

E

|e−λLf |p0dx
)1/p0

dλ

. −
∫

[0,s]

e−c d(E,F )2

λ

(
∫

F

|f |p0dx
)1/p0

dλ ≤ e−c d(E,F )2

s

(
∫

F

|f |p0dx
)1/p0

.

�

Remark 5.11. Let us point out that under some invertibility properties on the gener-
ator L, the computation done in (5.30) implies that

−
∫

[0,s]

e−λLdλ = (s L)−1
(

I − e−s L
)

,

which gives Us = (s L)−N
(

I − e−s L
)N

. For example, this is the case in the applica-
tions discussed in Subsection 4.4, where L is an elliptic second-order divergence form
operator.

5.8.3. Proof of Lemma 4.10. The argument is a combination of ideas from [JM] (see
also the proof of Lemma 4.3 above). Let us write

a(Q) =
∞
∑

j=0

ηj a0(2
j Q), a0(Q) = ℓ(Q)

(

−
∫

Q

hs dx

)1/s

.

By subdividing the cube 2kQ we have a family {Qi}2k n

i=1 of disjoint cubes such that
ℓ(Qi) = ℓ(Q) and ∪iQi = 2kQ. We claim that

(

∑

i

a(Qi)
s |Qi|

)
1
s
. a(2k Q) |2k Q| 1s . (5.32)

Notice that if we used Lemma 4.3 above we would get the bigger functional ā on the
right hand side. Here we obtain a better estimate since all the cubes in our family
{Qi}i have the same sidelength.

Using (5.32), (4.5) and Hölder’s inequality we have

(

∫

2k Q

∣

∣

(

I − e−ℓ(Q)2L
)N

f(x)
∣

∣

p
dx
)

1
p

=
(

∑

i

∫

Qi

∣

∣

(

I − e−ℓ(Qi)
2L
)N

f(x)
∣

∣

p
dx
)

1
p

≤
(

∑

i

a(Qi)
p |Qi|

)
1
p ≤

(

∑

i

a(Qi)
s |Qi|

)
1
s
(

∑

i

|Qi|
)

1
p (s/p)′

. a(2k Q) |2k Q| 1p ,

and this is the desired inequality.
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We show our claim (5.32). By Minkowski’s inequality we have

(

∑

i

a(Qi)
s |Qi|

)
1
s
=
(

∑

i

(

∞
∑

j=0

ηj a0(2
jQi)

)s

|Qi|
)

1
s

≤
∞
∑

j=0

ηj

(

∑

i

a0(2
jQi)

s |Qi|
)

1
s
=

∞
∑

j=0

ηj Ij .

For a fixed j we have that 2j Qi ⊂ 2max{j,k}+1Q. Let us observe that
∑

i χ2j Qi
.

2nmin{k,j} χ2max{j,k}+1Q since we have 2k n cubes and it is shown in [JM, Lemma 4.3]

that there are at most 2n (j+4) cubes Qi such that 2j Qi meets some fixed 2j Qi0 .
Hence,

Ij = 2j(1−
n
s
) ℓ(Q)

(

∑

i

∫

2j Qi

hs dx
)

1
s

. 2j(1−
n
s
)2

n
s
min{k,j} ℓ(Q)

(

∫

2max{j,k}+1Q

hs dx
)

1
s

= C 2−max{k−j,0} a0(2
max{j,k}+1Q) |2k Q| 1s .

Thus,

(

∑

i

a(Qi)
s |Qi|

)
1
s
. |2k Q| 1s

∞
∑

j=0

ηj 2
−max{k−j,0}a0(2

max{j,k}+1Q)

= |2k Q| 1s
(

a0(2
k+1Q)

k
∑

j=0

ηj 2
j−k +

∞
∑

j=k+1

ηj a0(2
j+1Q)

)

. |2k Q| 1s
(

a0(2
k+1Q) +

∞
∑

j=k+1

ηj−k+1 a0(2
j+1Q)

)

. |2k Q| 1s a(2kQ)

where we have used that the sequence ηk is quasi-decreasing and that η1 > 0. �
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[FPW] B. Franchi, C. Pérez and R.L. Wheeden, Self-improving properties of John-Nirenberg and
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