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In this paper, a new local spline quasi-interpolant is constructed for fitting 3-D data defined on the sphere-like surface . After mapping the surface onto a rectangular domain, we use the tensor product of cubic polynomial B-splines and 2 -periodic uniform algebraic trigonometric B-splines (UAT B-splines) of order four to introduce a new expression of the associated quasi-interpolant . The use of UAT B-splines is necessary to enforce some boundary conditions which are useful to ensure the 1 continuity of the associated surface. The new method is particularly well designed to render 3-D closed surfaces. It has been successfully applied to reconstruct human organs such as the lung and left ventricle of the heart.

I. INTRODUCTION

S PLINES have been widely used in medical imaging for surface reconstruction and visualization of human organs [1], [2]. Usually, medical representations are obtained from a few scattered noisy data [3]. However, physicians require realistic organ representations to refine their diagnoses. Depending on the availability or the nature of the original data, interpolated-based and/or smooth-based surface reconstruction methods are required. Various methods are developed in the literature for fitting 3-D data on the sphere-like surface, in particular see [4]- [11]. In this paper, we propose a new method for fitting 3-D data by using a spline quasi-interpolant. It is based on the tensor product method of polynomial B-splines and periodic uniform algebraic trigonometric B-splines (UAT B-splines) recently developed in [12]. This new method can be successfully applied to sphere-like surface of various organs (heart, lung, bladder, kidney, etc.).

II. PROBLEM STATEMENT

Let be a closed and bounded surface in which is topologically equivalent to a sphere, i.e., there exists a one to one mapping of onto the unit sphere. In many applications, one needs to construct a function , defined on , and which satisfies , where are given real numbers and are points on . The construction of is done so that its associated surface has at every point a tangent plane that varies continuously over the surface . Without loss of generality, we assume that is the unit sphere. Then it can be identified with the rectangular domain , where and , by the mapping such that , where , , and . The associated surface of the polar coordinates' representation of , defined on by , is identical to that of , i.e., . However, the smoothness properties of are not equivalent to those of its corresponding closed surface . According to [4],

is of class if it has at every point a tangent plane that varies continuously over the surface . More specifically, is of class if and satisfies the following boundary conditions: where and are constants. Now, if we set , then the problem of finding such that is of class and satisfies , , becomes equivalent to finding in that satisfies , where are the polar coordinates of , i.e.,

. Since the problem is now posed on a rectangular domain, it is natural to use tensor-products for the construction of an approximating function of the form (1) where (respectively, ) is a linearly independent set of functions on (respectively, on

). Various choices of and have been introduced in the literature (see [4] and [5]). The obvious one for both sets would be polynomial B-splines. However, since the trigonometric functions cosine and sine cannot be expressed in terms of polynomial splines, enforcing condition (C4) is impossible using this choice, especially for . Thus, condition (C4) can only be approximately satisfied. To overcome this problem, the authors in [6]- [8] have chosen the periodic trigonometric B-splines of order three for and the quadratic polynomial B-splines for . This work is generalized in [9] and [11] by using B-splines
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of high order, but in this case the trigonometric B-splines must be of odd order, in particular the cubic case cannot be used. Here, we use the cubic polynomial B-splines and -periodic UAT B-splines of order four to introduce a new expression of the associated quasi-interpolant . The use of UAT B-splines is necessary to enforce boundary conditions which are useful to ensure the continuity of the associated surface.

III. CUBIC POLYNOMIAL B-SPLINES For and given positive integers and , let with mesh length be a uniform partition of the interval defined by

The associated polynomial spline space of order is defined by where is a polynomial space of degree . The classical normalized B-splines of order satisfy and , for . They form a partition of unity, i.e., and the family forms a basis of . Here, we denote by the cubic B-splines on the interval endowed with the partition . We now give a local linear operator which maps a given function onto a cubic spline space and which has an optimal approximation order. This operator is the discrete cubic spline quasi-interpolant defined by (2) where the coefficients are defined as linear combinations of some values of on the set in order to have the exactness of the quasi-interpolant on , i.e., , for all . More specifically, these coefficients are defined as follows:

This quasi-interpolant has an order four approximation, i. . Similarly to those of the polynomial B-spline basis, the UAT B-spline basis has many optimal properties, such as the subdivision property, the variation diminishing property and the convexity preserving property.

In order to define the periodic UAT B-splines, we choose the additional knots such that The associated periodic UAT B-splines are hence defined by . ( 6) When , we denote by the periodic UAT B-splines of order four associated with the periodic knots . These B-splines are of class on the interval and their restrictions to are in the space . We can verify that
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The algebraic trigonometric quasi-interpolant which maps a given function into is defined by (7) where is the linear functional defined by . In order to have the exactness of the quasi-interpolant on , i.e., , for all , the coefficients will satisfy the following equations:

If we choose , then the above linear system has the unique solution . By using the trigonometric Taylor's expansion of about the point , we have with and , and by using the usual Taylor's expansion of about the point , we have with and . Since and , we obtain . After computation, we obtain where . Consequently, we have: Lemma 4.1: The quasi-interpolant based on the UAT B-splines of order four has an order four approximation, i.e., .

V. QUASI-INTERPOLANT ON THE SPHERE In this section, we construct a local linear operator which maps a given function in the space into splines of the form (1) which also lie in . Using the linear functionals and described above, we define for (8) According to the preceding properties of and , the approximate function is of class on . On the other hand, the conditions (C1) -(C4) can be satisfied if the coefficients verify some additional conditions.

For these choices of and the approximating function in (1) can be written in the form (9) Using the fact that are -periodic, we easily verify that the function defined in (9) satisfies conditions (C1) and (C3). In order to satisfy the remainder conditions, some coefficients of are imposed as follows. Lemma 5.1: The function given in (9) 

VI. NUMERICAL RESULTS AND APPLICATIONS

TO MEDICAL IMAGING The implementation of the proposed method can be summarized in four steps.

• The first step consists in transforming the cartesian coordinates of given 3-D scattered data to spherical coordinates.

• The second step includes the subdivision of the rectangular domain into subrectangles , and the application of the least-square method to the given scattered data in order to construct the initial matrix .

• The third step consists in constructing the matrix and consequently computing the associated spline quasi-interpolant of the form defined in (8).

• The last step reconstructs the associated approximating sphere-like surface , by retransforming the spherical coordinates of on to Cartesian coordinates.

To test the method, let be the function defined explicitly on the rectangular domain by , where with [5]. It is straightforward to verify that . Table I gives the maximum error and the time of execution corresponding to different values of and .

Two different sets of 3-D medical data have been used to evaluate the proposed method. The first experiment considers a set of 922 surface points of real data of the human left lung, provided from perfusion scintigraphy images [Fig. 1 detailed studies on the comparison of the new method with quasi-interpolant ones will be carried out in the future.

VII. CONCLUSION

The quasi-interpolation method proposed in this letter is based on the tensor product of cubic polynomial B-splines and periodic UAT B-splines of order four. In contrast to least-square methods, it has two major advantages. First, the local reconstruction of a disturbed subset of a given surface is possible without affecting the whole surface data set. Second, the reconstruction process is achieved without the need to solve a large linear system and is hence easy to compute. In addition, compared to previously developed spline quasi-interpolant methods, our proposed algorithm is based on a spline quasi-interpolant with an order four approximation, exact on , and the reconstructed closed surface is of class except on the two poles where it is of class . Promising results have been obtained using numerical and real medical data. The method is also suitable for other applications related to the problem of 3-D reconstruction. It will be evaluated shortly in aerial and satellite imaging domains.

APPENDIX PROOF OF THEOREM 5.1

In order to prove that lies in , it suffices to show that satisfies conditions (C1)-(C4). Indeed, from the fact that are -periodic, defined in (8) satisfies conditions (C1) and (C3). Now, let us show that satisfies conditions (C2) and (C4) which is equivalent to prove that the coefficients satisfy the conditions given in the lemmas 5.1 and 5.2 respectively. According to the definitions of the linear functionals and , we have . On the other hand, since , we have . Consequently, we obtain . In a similar way, we get . Thus, satisfies condition (C2). For the condition (C4), using the expressions of , and , we have Since , we have , and consequently we obtain By using the same technique, we obtain the result for the case . Finally, using the fact that the quasi-interpolants and have an order four approximation, we obtain . 
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 1 Fig. 1. (a) 3-D given data of the lung (top) and the LV (bottom). (b) Surface meshes on the rectangle D. (c) Quasi-interpolant closed surfaces.
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