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INTRODUCTION

In recent years, water monitoring has become a great concern for all environmental decision-makers. However, classical o-line water monitoring (i.e. manual sampling or data loggers requiring manual downloading) are no longer suitable for current applications since it would be cost-prohibitive to collect data. Besides, new environmental regulations have dened more stringent requirements in term of eciency, quality and costs. Among the monitoring alternatives, Wireless Sensor Networks (WSN) are very promising approaches [START_REF] Yick | Wireless sensor network survey[END_REF]. For example, in [START_REF] Capella | A wireless sensor network approach for distributed inline chemical analysis of water[END_REF], a fresh water monitoring system is described. The WSN is implemented through proprietary wireless networks, and secondary data transmission services (GSM or GPRS) provided by a mobile telephone operator. It is also possible to use free access bands. This is the case in [START_REF] Riquelme | Wireless sensor networks for precision horticulture in Southern Spain[END_REF] where a WSN based on IEEE 802.15.4 radio components at 2.4 GHz is used for precision agriculture or in [START_REF] Willis | Radio propagation model for long-range wireless sensor networks[END_REF] where a Berkeley Mica 2 Mote with a specic transceiver for low frequency transmissions (40 MHz) has been experimented. In both cases, the WSNs were designed to be used in open spaces with little human activity. In particular, no or few radio frequency interferences (RFI) occur during transmissions.

In this paper, the concept of a wireless water quality monitoring system in a highly corruptive radio environment is described. It is based on a low-rate one-way data stream over the 433 MHz ISM band. This free access band is widely used for remote control and the amount of RFI is very high. Moreover, power transmission is limited to 10 mW in this band. The challenge is to achieve long range transmission for our low data rate sensor array despite the presence of numerous RFI.

To achieve low-cost and autonomous power objectives, the system complexity has been shifted to the reception level where a multi-antenna reception system will allow spatial signal processing. Since the transmission will be based on periodic (daily) short bursts of data, an o-line processing receiver is considered. In particular, demodulation and WSN data analysis will be done o-line.

In gure 1 the principles of our WSN are described.

Detailed information is also available in [START_REF] Millot | Transmission de données environnementales en bande ISM. Application à la surveillance à distance des masses d'eau[END_REF]. In quiet radio environments, our prototype achieves a sensitivity which allows a long transmission range ( 10 km).

Thus, in this paper we focus on the RFI issue. In We have developed a dedicated software which al- Table 1 provides some parameters extracted from some of these RFI survey campaigns. The rst conclusion that can be drawn is that a better RFI environment can be found when transmitting during the night and aside from the ISM center frequency (i.e.

f 0 =433.92 MHz). The main reason is that most remote devices transmit at 433.92 MHz and that human activity is obviously higher during the day. In the low occupancy 10 kHz band, we can consider that there is at most 1 RFI at a given instant. Another point is that 98% of the RFIs are shorter than 1 s with a bandwidth less than a few kHz.

CYCLOSTATIONARY DETECTION IN THE PRESENCE OF INTERFERENCE

Our relay station frames are short, typically less than a few seconds and there are only a few transmissions per day, typically one during the night. To enhance the transmission performance in the presence of RFI, spatial ltering will be considered in a forthcoming evolution of the prototype. However, to limit both the hardware and the rmware costs, the objective is to accomplish it oline. So, by considering the central station as a phased array, the rst step is to trigger the acquisition of the array output vector at the right moment. Obviously, this can be done by scheduling the transmissions but we would also like to consider the case of emergency T and F correspond respectively to the RFI average duration and bandwidth.

transmissions.

In this section, we propose an automatic triggering system based on the cyclic correlation matrices of the phased array. In subsection 3.1, we will dene our array model. Then, in subsection 3.2, the cyclostationary approach will be described and nally in subsection 3.3, performances will be analyzed through simulations. In particular, a comparison with a classical power approach will be proposed.

Model description

Consider a phased array consisting of M antennas, each having a received signal z k (t), k = 1, • • • M . From the previous discussions, it is clear that the narrow-band condition holds and that geometric delays for each antenna and each impinging source can be represented by phase shifts. In this case, the central station output vector can be modeled in complex base-band form as: Box n°1 is a narrow band RFI, the others are impulsive RFIs.

z(t) = a s s(t)+A r r(t) + n(t) (1) 
where: 

z(t) = [z 1 (t)...z M (t)]
r(t) = [r 1 (t)...r K (t)] T is the K × 1 vector of the K interferers and A r = [a r1 , a r2 , ..., a r K ] is a M × K matrix where each a r k = [a 1,r k ...a M,r k ]
T is the spatial signature of the corresponding k th RFI. n(t) is the system noise vector with independent Gaussian entries. There is no specic assumption made concerning the whitening of the covariance matrix and calibration of the data (i.e. n(t)n H (t) ∞ = σ 2 I, where . ∞ is the average operator and I is the M xM identity matrix).

At this stage, the phased array is not calibrated. Thus, all spatial signatures are modeled as random phase vectors.

Cyclostationary approach

Most telecommunication signals present a hidden periodicity due to the periodic characteristics involved in the signals construction (carrier frequency, baud rate, coding scheme...). These parameters are usually scrambled and hidden by the randomness of the message to be transmitted. However, by using a cyclostationary approach, this hidden periodicity can be recovered thus making identication of the telecommunications signal possible. An exhaustive overview of cyclostationarity theory and applications can found in [START_REF] Serpedin | Bibliography on cyclostationarity[END_REF][START_REF] Gardner | Cyclostationarity: Half a century of research[END_REF]. For array signal processing, cyclostationarity was introduced by Gardner [START_REF] Gardner | Simplication of MUSIC and ESPRIT by exploitation of cyclostationarity[END_REF]. In his analysis, the correlation matrix,

R z (τ ) = z(t + τ 2 )z H (t -τ 2 )
∞ , is replaced either by the cyclic correlation matrix:

R α z (τ ) = z(t + τ 2 )z H (t - τ 2 ) exp(-j2παt) ∞ (2)
or the cyclic conjugated correlation matrix:

R α z (τ ) = z(t + τ 2 )z T (t - τ 2 ) exp(-j2παt) ∞ ( 3 
)
where α is the cyclic frequency. This parameter is linked to the above-mentioned periodic characteristics.

Any signal with the right non-zero cyclic frequency will generate non-zero cyclic or cyclic conjugated correlation matrices. Inversely, any stationary signal or cyclostationary signal with dierent cyclic frequencies will generate zero in the above expressions. We will consider next that we do not receive cyclostationary interferences with the same cyclic frequencies as our WSN. Thus, the cyclic correlation matrix for our model dened by Eq. 1 becomes:

R α0 z (τ ) = a s a H s R α0 s (τ ) + A r R α0 r (τ )A H r →0 + R α0 n (τ ) →0 (4) 
where α 0 is the WSN cyclic frequency and R α0 s (τ )is the mono-dimensional version of Eq. 2. Similarly, the cyclic conjugated correlation matrix becomes:

R α0 z (τ ) = a r a T r R α0 s (τ ) + A r R α0 r (τ )A T r →0 + R α0 n (τ ) →0 (5) 
where α 0 is the WSN cyclic conjugated frequency and R α0 s (τ )is the mono-dimensional version of Eq. 3.

In our application, the transmission between relay stations and the central station is based on a BPSK modulation scheme with a baud rate, 1 T0 , and a carrier frequency, f 0 :

s(t) = exp(-j2πf 0 t + jϕ 0 ). k Z c k h(t -kT 0 -t 0 )
where c k is the binary random sequence

( |c k | 2 ∞ = σ 2 c
), t 0 and ϕ 0 are unknown synchronization parameters and h(t) is the pulse shaping function.

From [START_REF] Gardner | Exploitation of spectral redundancy in cyclostationary signals[END_REF], the expression of R α0 s and R α0 s can be de- rived:

R α0 s (τ ) = σ 2 c T0 exp(-j2πα 0 t 0 ). exp(j2πf 0 τ ).r α0 h (τ ) R α0 s (τ ) = σ 2 c T0 . exp(-j2π(α 0 -2f 0 )t 0 ). exp(j2 ϕ 0 ).r (α0-2f0) h (τ ) where α 0 = k T0 k Z , α 0 = 2f 0 + k T0 k Z and r α h (τ )
is given by:

r α h (τ ) = +∞ -∞ h(t + τ 2 )h(t - τ 2 ) exp(-j2παt)dt
Except for a rectangular shaping function, ∃k = 0, r k T 0 h (τ = 0) = 0. Thus, we will only consider next the case τ = 0. T λ (z) computes the maximum singular value of

R α0 z or R α0 z T F (z) computes the Frobenius norm of R α0 z or R α0 z .
The Frobenius norm is computationally less costly

(O(M 2 
)) than the singular value decomposition

(O(M 3 
)). T diag (z) computes the Frobenius norm of the diagonal of R α0 z or R α0 z . This is our very low computation complexity approach (O(M )).

In the following section, the performances of the different cyclic detection algorithms will be studied, and compared to classic detectors based on R z . In particular, the dierent correlation matrices will be estimated over a nite set of samples (( . ∞ ⇒ . N = 1 N N (.)).

Performance analysis

For the simulations, the following signal model is considered:

H 0 : z(t) = √ ρa r r(t) + √ 1 -ρn(t) H 1 : z(t) = σ s a s s(t) + √ ρa r r(t) + √ 1 -ρn(t)
The spatial signatures a s and a r are chosen randomly ( a s = a r = 1 and M = 8), s(t) is BPSK signal with f 0 = 0.1, T 0 = 8, h(t) is a root-raised cosine lter (50 coecients, roll-o factor=0.5). The RFI, r(t), is also BPSK modulated but with f 1 = 0.318, T 0 = 13. The system noise, n(t), is assumed to be independent Gaussian entries. The interference to noise ratio is dened by IN R = ρ 1-ρ with 0 ≤ ρ < 1. The signal to noise plus interference ratio is dened by SN R = σ 2 s .

Monte Carlo simulations are performed on dierent reception scenarios. The Fisher criterion is used to evaluate the performances of the detectors:

F isher = (E H1 [T k (z)] -E H0 [T k (z)]) 2 var H1 (T k (z)) + var H0 (T k (z)) k = λ, F, diag
where E H0,1 [.] and var H0.1 (.) are respectively the mean and the variance under the H 0 or H 1 hypothesis. 
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 2 analyses of some recent RFI surveys in the 433 MHZ band are presented. Based on that knowledge, we propose to implement a spatial cyclostationary detector to trigger the automatic storage of the WSN waveforms. Section 3 describes this cyclostationary approach. In particular, the performances of several implementations are compared through simulations. In section 4, we conclude with some perspectives. 2. RFI ANALYSIS IN THE 433 MHZ ISM BAND An experimental set-up has been developed for RFI surveys. It is based on a digital board from Xilinx (Xtreme DSP IV) which acquires the signal from a dedicated RF front-end centered in the 433 MHz ISM band. A digital down-converter is implemented in this board so that 10 kHz bandwidth waveforms can be acquired and stored in a computer for o-line statistical analysis. Several RFI survey campaigns have been conducted in a semi-urban area, for dierent frequencies and schedules.

Figure 1 .

 1 Figure 1.c shows the implantation of this receiver in suburb of Orléans (France). The location of the experimental relay station is also given for information. Figure 1.b compares the level of the relay station signal with the level of surrounding RFIs.

Figure 1 :

 1 Figure 1: (a) Description of our wireless water monitoring network demonstrator. A six-parameter probe (Aqua50 from NeoTex-Ponsel) is buried in ground water. It communicates to a surface emitter through an SDI12 wire protocol. Within a radius of 1km, several ( 20) probe/emitter couples transmit their data to a relay station (pictures on the bottom right). Finally, all the relay nodes transmit probe information to a central receiver. This is a one-way star topology. The transmission is based on periodic (daily) short bursts of data (a few seconds at 1200 bds). In quiet radio environments, our prototype achieves a sensitivity which allows a long transmission range ( 10 km). The main issue is the RFI present in the 433 MHz band. (b) Spectrum of the 433 MHz ISM band. It shows the maximum power over frequencies after 80 minutes of observation. The small black box corresponds to the received power level of our 10 mW relay station signal located 10 km away. Other spectral lines correspond to RFI. (c) Experiment location in the suburb of Orléans (France).

Figure 2 :

 2 Figure 2: RFI analysis in the 433 MHz ISM band. The antenna signal is acquired with the Xilinx board and then, digitally down-converted to a 10 kHz bandwidth complex waveform (here, from 433.910 MHz to 433.920 MHz). O-line, a lter bank with 256 channels provides a time-frequency representation for automatic segmentation. In the above example, 11 RFIs were detected (black boxes with a number on the bottom right).

T

  is the M × 1 vector of central station signals at time t. a s = [a 1,s ...a M,s ] T is the spatial signature of the relay station signal, s(t).

For

  the detection of our WSN signal, we propose to use the cyclic correlation matrix R α0 z at α 0 = 1 T0 or the cyclic conjugated correlation matrix R α0 z at α 0 = 2f 0 . Equations 4 and 5 have shown that asymptotically these matrices depend on the WSN signal only. Therefore, these matrices are rank one and asymptotically, all their singular values are zeros except one. This maximum singular value is directly linked with R α0 s and R α0 s . We propose to test 3 detectors based on R α0 z or R α0 z :

Figure 4

 4 draws the performances for dierent SN R and dierent percentages of noise uctuations between antennas. Once again, the robustness of cyclostationary approaches can be observed.3. scenario 3: a realistic simulation with 10% noise uctuations and one RFI with SN R = 8dB . Figure5draws the performances for dierent IN R and different numbers of samples. Better performances are obtained with α 0 = 2f 0 than with α 0 = 1 T0 . The reason is that r (α0-2f0) h > r α0 h . However, in practice it could be dicult to have exact knowledge of f 0 before any carrier synchronization. Note that T diag (z) detectors are less ecient than T F (z) detectors. Indeed, less cyclic information is used in the second case. In fact, T diag (z) can be seen as the average of M mono-dimensional cyclostationary detectors. From these simulations and from measurements on site ( IN R = -15dB and SN R = 8dB at 40 km), to ensure correct detection (Fisher >10) of our WSN signal at 40 km, N = 2048 samples (respectively N = 8192) are necessary for T F (z) (resp. T diag (z)) with α 0 = 1 T0 . These values go down to N = 512 with α 0 = 2f 0 . 4. PERSPECTIVES In the framework of wireless environmental monitoring, a radio frequency interference (RFI) survey has been conducted in the 433 MHz ISM free-access band. From analysis of the RFI characteristics, three new detectors based on cyclostationarity have been proposed. The objective is to detect the signal of interest (SOI) with a phased array in a highly corruptive environment. These algorithms have demonstrated by simulation their robustness against the presence of interferences or uncalibrated noise. These results are based on the fact that the cyclic correlation or cyclic conjugated correlation matrices depend asymptotically only on the SOI cyclostationary property. The next step will be to use one of these detectors to trigger the acquisition of SOI frames in real time. Then, triggered data are stored for o-line spatial ltering technique (MVDR), demodulation and analysis.
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 3 Figure 3: Detector performances for scenario 1. The RFI is present and the noise is calibrated (i.e. n(t)n H (t) ∞ = I). Correlation matrices are estimated with N = 8192 samples. The 2 sets of curves are associated respectively to the 2 SNR given on the right.
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 4 Figure 4: Detector performances for scenario 2. No RFI but noise is uncalibrated (i.e. n(t)n H (t) ∞ = I). Noise uctuations vary from 0% to 20%. Correlation matrices are estimated with N = 8192 samples. The 2 sets of curves are associated respectively to the 2 SNR given on the right.
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 5 Figure 5: Cyclostationary detector performances for scenario 3. It corresponds to a realistic simulation 10% noise uctuations and one RFI with SN R = 8 dB (this value corresponds to a 40 km transmission). For continuous lines, R α0 z with α 0 = 1 T0 was used. For dashed

Table 1 :

 1 

	n°,	f 0	RFI	T	F
	when	(MHz)	per hour	(s)	(kHz)
	1, day	433.92	5277	0.3	1.6
	2, night	433.92	4549	0.36	1.58
	3, day	434.2	2864	0.28	1.31
	4, night	434.2	567	0.32	1.33

Average RFI characteristics from 4 RFI survey campaigns. f 0 is the center frequency of the 10 kHz bandwidth. For each f 0 , night and day measurements have been conducted to observe the eect of human activity. RFI per hour corresponds to the average number of RFI detected per hour.

  1. scenario 1: RFI is present and the noise is calibrated (i.e. n(t)n H (t) ∞ = I). Figure3draws the performances for dierent ρ and SN R. As expected, the sensitivity of the classic approach (based on R z ) can be clearly seen. Indeed, such power based detectors cannot distinguish between WSN and RFI signals.

	On the contrary, the cyclostationary approaches are
	very robust. For example, whatever the RFI level,
	the cyclic T λ (z) behaves as a classic T λ (z) with
	no RFI. Note that T F (z) detectors are less ecient
	than T λ (z) detectors. Indeed, cyclic correlation ma-
	trices are no longer rank one since they are estimated
	over a nite set of samples. Therefore the M -1
	weaker singular values are no longer equal to zero.
	Since the T F (z) detector is the sum of the singular
	values, uncertainty is added.
	2. scenario 2:	no RFI but uncalibrated noise (i.e.
	n(t)n H (t)	

∞ = I).
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