IMPROVING CHAOTIC OPTIMIZATION ALGORITHM USING A NEW GLOBAL LOCALLY AVERAGED STRATEGY

Tayeb Hamaizia, René Lozi * † Abstract. Recently chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Their good performances have been emphasized [START_REF] Coelho | Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach[END_REF][START_REF] Coelho | Reliability-redundancy optimization by means of a chaotic differential evoluytion approach[END_REF][START_REF] Davendra | Chaos driven evolutionary algorithms for the task of PID control[END_REF]. In the frame of evolutionary algorithms, the use of chaotic sequences instead of random ones has been introduced by Caponetto and al. [START_REF] Caponetto | Chaotic Sequences to Improve the Performance of Evolutionary Algorithms[END_REF]. Since their original work, the literature on chaotic optimisation is flourishing. They are used in the scope of tuning method for determining the parameters of PID control for an automatic regulator voltage, or in order to solve economic dispatch problems, or also for engineering design optimization and in many others physical, economical and biological problems. Different chaotic mapping have been considered, combined with several working strategies. The assessments of the algorithms have been done with respect to numerous objective functions in 1, 2 or 3dimension. In this paper we present an improvement of the COLM (Chaotic Optimization based on Lozi Map) presented in [START_REF] Coelho | Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach[END_REF], which is based on a new global locally averaged strategy. The simulation results are done with a 2-D objective function possessing hundreds of local minima, in order to test this new method vs. the previous one in very tough conditions. We emphasize an improvement of the optimisation.

Improved COLM Method

Chaos theory (the term chaos was coined par Li and Yorke [START_REF] Li | Period three implies chaos[END_REF]) is recognized as very useful in many engineering applications. An essential feature of chaotic systems is sensitive dependence on initial condition, (i.e. small changes in the parameters or the starting values for the data lead to drastically different future behaviours). Details about analysis of chaotic behavior can be found in [START_REF] Li | Period three implies chaos[END_REF][START_REF] Lozi | Un attracteur étrange? du type attracteur de Hénon[END_REF][START_REF] Strogatz | Nonlinear dynamics and chaos[END_REF][START_REF] Parker | Practical numerical algorithms for chaotic system[END_REF][START_REF] Alligood | Chaos: an introduction to dynamical systems[END_REF]. The application of chaotic sequences can be an interesting alternative to provide the search diversity in an optimization procedure. Due to the non-repetition of chaos, it can carry out overall searches at higher speeds than stochastic ergodic searches that depend on probabilities. A novel chaotic approach is proposed in [START_REF] Coelho | Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach[END_REF] based on Lozi map [START_REF] Lozi | Un attracteur étrange? du type attracteur de Hénon[END_REF] which is piecewise linear simplification of the Hénon map [START_REF] Hénon | A two dimensional mapping with a strange attractor[END_REF] and it admits strange attractors. It is given by

y 1 (k) = 1 -a|y 1 (k -1)| + by(k -1) y(k) = y 1 (k -1) ( 1 
)
where k is the iteration number. In this work, the values of y are normalized in the range [0,1] to each decision variable in 2dimensional space of optimization problem. This transformation is given by 

z(k) = (y(k) -α) β -α . ( 2 
(k), x 2 (k), x 3 (k) with f (x 2 (k)) < f (x 3 (k)) < f (x 1 (k)). (3) 
The local search following global one starts from the best global result x 2 (k) (from (3)) and gives x 2 (k + 1). Instead the local-global search around x 1 (k), x 2 (k) and x 3 (k), leads to

x 1 (k + 1), x 2 (k + 1), x 3 (k + 1) which verify f (x 1 (k + 1)) < f (x 3 (k + 1)) < f (x 2 (k + 1)). ( 4 
)
The local search following the local-global one starts now from the best globally averaged result x 1 (k + 1) (from(4)) and leads to x

f (x) < f (x 1 (k + 1)). ( 5 
)
During the chaotic local search, the step λ is an important parameter in convergence behavior of optimization. Hence, two different values of λ are successively employed during the local search. We call this method ICOLM (improved COLM). Many unconstrained optimization problems with continuous variables can be formulated as the following functional optimization problem. Find X to minimize f (X),

X = [x 1 , x 2 , , xn] Subject to x i ∈ [L i , U i ].
Where f is the objective function, and X is the decision solution vector consisting of n variables x i ∈ R n bounded by lower (L i ) and upper limits (U i ).The ICOLM can be illustrated as follows:

Inputs: Mg: max number of iterations of chaotic Global search. 

x i (k) = L i + z i (k).(U i -L i ) if f (X(k)) < f then X = X(k); f = f (x(k)) end if -Step 2-1: sub algorithm of chaotic local search: while j ≤ M gl1 do for i = 0 to n do if r ≤ 0.5 then x i (j) = xi + λ gl1 z i (j).|(U i -L i )| else x i (j) = xi -λ gl1 z i (j).|(U i -L i )| end if end for if f (X(j)) < f then X = X(j); f = f (x(j)) end if j = j + 1 end while -Step 2-2: sub algorithm of chaotic local search: while s ≤ M gl2 do for i = 0 to n do if r ≤ 0.5 then x i (s) = xi + λ gl2 z i (s).|(U i -L i )| else x i (s) = xi -λ gl2 z i (s).|(U i -L i )| end if end for if f (X(s)) < f then X = X(s); f = f (x(s)) end if s = s + 1 end while k = k + 1 end while -Step 3: algorithm of chaotic local search: while k ≤ Mg × (M gl1 + M gl2 ) + M l do for i = 0 to n do if r ≤ 0.5 then x i (k) = xi + λz i (k).|(U i -L i )| else x i (k) = xi -λz i (k).|(U i -L i )| end if end for if f (X(k)) < f then X = X(k); f = f (x(k)) end if k = k + 1 end while

A tough objective function

In order to test this new method vs. the previous one in very tough conditions the simulation results are done with the following 2-D objective function possessing hundreds of local minima: The function f which is very complex, has serval local maxima.

f = x 4 1 -7x 2 1 -3x 1 + x 4 2 -9x 2 2 -5x 2 + 11x 2 1 x 2 2 + 99sin(71x 1 ) + 137sin(97x 1 x 2 ) + 131sin(51x 2 ). (6)
We test ICOLM on the search domain:

-10 ≤ x i ≤ 10, i = 1, 2.
The essential feature of this benchmark function is that location of minima is not symmetric. In a forthcoming paper we will extend our numerical analysis in higher dimension with an extended benchmark suite [START_REF] Cong | An Improved Algorithm of Chaos Optimization[END_REF]. We display few of the results we have obtained showing the better optimization results obtained by this new methods.In each case study, 48 independent runs were made for each of both the COLM and ICOLM methods involving 48 different initial trial conditions y 1 (0), y(0) (parameters of Lozi map). not far from the value of f on the global minimum.

For all studied cases, the four configurations, numbered from IC1 to IC4 and C1 ti C4, that are used are presented in tab. 1. The locally averaged strategy of ICOLM is illustrated on Fig. 3 

Conclusion

In every test, with the same computational cost, ICOLM gives better than COLM best values and Mean Best values but in one case. The presented study allows us to conclude that the proposed method is fast and converges to a good optimum. because we used a sampling mechanism to coordinate the research methods based on chaos theory, and we refined the final solution using a second method of local search. Further research is needed to gain more confidence and better understanding of the proposed methodology.

The proposed algorithm has to be evaluated for a large number of test functions in higher dimension.
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 11 Figure 1: density of iterated values of y(k) of equation (1) over the interval [0, 1] splitted in 100 boxes for 10,000,000,000 iterated values.
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 2 Figure 2: Heuristics of the global locally-averaged strategy.
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 3 Figure 3: Locally-averaged strategy of chaotic search. Results of every Step 2-2 for f
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 6 Figure 6: magnification of Fig. 4.
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Table 1 :

 1 on which the result of every step 2-2 is plotted. The set of parameters values for every run on the benchmark suite defined in Sec. 2. 2.

		λ	λ M gl1 λ M gl2	M g	M l M gl1 M gl2
	IC1 0.001	0.04	0.01	6	50	2	2
	IC2 0.01	0.04	0.01	10	50	2	2
	IC3	0.1	0.04	0.01	10	50	2	2
	IC4	0.1	0.04	0.01	100	50	5	5
	C1 0.001			24	50		
	C2	0.01			40	50		
	C3	0.1			40	50		
	C4	0.1			1000 50		

Figure 4: plot of test function used in this study

Figure 5: Position of the minima in the search domain Best value Mean value Std.Dev

Table 2 :

 2 ICOLM

Table 3 :

 3 6. COLM

	Best value Mean value Std. Dev	x ȳ
	C1 -371.0150	-368.5212	11.1135	0.3105 0.2442
	C2 -358.4331	-352.9766	2.4424	3.7283 6.6158
	C3 -377.9280	-368.7777	8.8169	3.2738 6.1685
	C4 -382.7108	-379.7557	1.7817	-5.8930 2.9309