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IMPROVING CHAOTIC OPTIMIZATION ALGORITHM USING A
NEW GLOBAL LOCALLY AVERAGED STRATEGY

Tayeb Hamaizia, René Lozi ∗†

Abstract. Recently chaotic optimization algorithms as an emer-
gent method of global optimization have attracted much attention
in engineering applications. Their good performances have been
emphasized [1, 2, 3]. In the frame of evolutionary algorithms, the
use of chaotic sequences instead of random ones has been introduced
by Caponetto and al. [4]. Since their original work, the literature
on chaotic optimisation is flourishing. They are used in the scope
of tuning method for determining the parameters of PID control for
an automatic regulator voltage, or in order to solve economic dis-
patch problems, or also for engineering design optimization and in
many others physical, economical and biological problems. Differ-
ent chaotic mapping have been considered, combined with several
working strategies. The assessments of the algorithms have been
done with respect to numerous objective functions in 1, 2 or 3-
dimension. In this paper we present an improvement of the COLM
(Chaotic Optimization based on Lozi Map) presented in [1], which
is based on a new global locally averaged strategy. The simulation
results are done with a 2-D objective function possessing hundreds
of local minima, in order to test this new method vs. the previous
one in very tough conditions. We emphasize an improvement of the
optimisation.

1 Improved COLM Method

Chaos theory (the term chaos was coined par Li and Yorke [5]) is
recognized as very useful in many engineering applications. An es-
sential feature of chaotic systems is sensitive dependence on initial
condition, (i.e. small changes in the parameters or the starting val-
ues for the data lead to drastically different future behaviours). De-
tails about analysis of chaotic behavior can be found in [5, 6, 7, 8, 9].
The application of chaotic sequences can be an interesting alterna-
tive to provide the search diversity in an optimization procedure.
Due to the non-repetition of chaos, it can carry out overall searches
at higher speeds than stochastic ergodic searches that depend on
probabilities. A novel chaotic approach is proposed in [1] based on
Lozi map [6] which is piecewise linear simplification of the Hénon
map [10] and it admits strange attractors. It is given by{

y1(k) = 1− a|y1(k − 1)|+ by(k − 1)
y(k) = y1(k − 1)

(1)

where k is the iteration number. In this work, the values of y
are normalized in the range [0,1] to each decision variable in 2-
dimensional space of optimization problem. This transformation is
given by

z(k) =
(y(k)− α)

β − α
. (2)

where y ∈ [−0.6418, 0.6716] and [α, β] = [−0.6418, 0.6716]. The
parameters used in this work are a = 1.7 and b = 0.5. Numerical
computation leads to the density d(s) of iterated values of y(k)
displayed on Fig. 1. In this figure, the density is normalized to 1
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over the whole interval [0, 1] i.e.∫ 1

0
d(s)ds = 1.

The COLM method introduced in [1] is improved by locally av-
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Figure 1: density of iterated values of y(k) of equa-
tion (1) over the interval [0, 1] splitted in 100 boxes for
10,000,000,000 iterated values.

eraging the global search, doing few steps of chaotic local search
around every point obtained by the chaotic series.

Heuristics: the global locally averaged strategy of Improved
COLM leads to better results than COLM as shown on Fig. 2.
In this figure only three global search results are displayed x1(k),
x2(k), x3(k) with

f(x2(k)) < f(x3(k)) < f(x1(k)). (3)

The local search following global one starts from the best global
result x2(k) (from (3)) and gives x2(k+1). Instead the local-global
search around x1(k), x2(k) and x3(k), leads to x1(k+1), x2(k+1),
x3(k + 1) which verify

f(x1(k + 1)) < f(x3(k + 1)) < f(x2(k + 1)). (4)

The local search following the local-global one starts now from the
best globally averaged result x1(k + 1) (from(4)) and leads to x̄

f(x̄) < f(x1(k + 1)). (5)

During the chaotic local search, the step λ is an important param-
eter in convergence behavior of optimization. Hence, two different
values of λ are successively employed during the local search. We
call this method ICOLM (improved COLM). Many unconstrained
optimization problems with continuous variables can be formulated
as the following functional optimization problem. Find X to min-
imize f(X), X = [x1, x2, , xn] Subject to xi ∈ [Li, Ui]. Where f is
the objective function, and X is the decision solution vector consist-
ing of n variables xi ∈ Rn bounded by lower (Li) and upper limits
(Ui).The ICOLM can be illustrated as follows:

Inputs:
Mg : max number of iterations of chaotic Global search.
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Figure 2: Heuristics of the global locally-averaged strat-
egy.

Ml: max number of iterations of chaotic Local search.
Mgl1: max number of iter of chaotic Local search in Global search.
Mgl2: max number of iter of chaotic Local search in Global search.
Mg × (Mgl1 + Mgl2) + Mg: stopping criterion of chaotic opti-
mization method in iter.
λgl1: step size in first global-local search.
λgl2: step size in second global-local search.
λ: step size in chaotic local search.
Outputs:
X̄: best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).

Step 1 : Initialize the number Mg , Mgl1,Mgl2, Ml of chaotic
search and initialization of variables and initial conditions Set k=1,
y (0), y1(0),a = 1.7 and b = 0.5 of Lozi map. Set the initial best
objective function f̄ = +∞

- Step 2: algorithm of chaotic global search:while k ≤ Mg

do

xi(k) = Li + zi(k).(Ui − Li)
if f(X(k)) < f̄ then
X̄ = X(k); f̄ = f(x(k))

end if
- Step 2-1: sub algorithm of chaotic local search:
while j ≤Mgl1 do

for i = 0 to n do
if r ≤ 0.5 then
xi(j) = x̄i + λgl1zi(j).|(Ui − Li)|

else
xi(j) = x̄i − λgl1zi(j).|(Ui − Li)|

end if
end for
if f(X(j)) < f̄ then
X̄ = X(j); f̄ = f(x(j))

end if
j = j + 1

end while
- Step 2-2: sub algorithm of chaotic local search:
while s ≤Mgl2 do

for i = 0 to n do
if r ≤ 0.5 then
xi(s) = x̄i + λgl2zi(s).|(Ui − Li)|

else
xi(s) = x̄i − λgl2zi(s).|(Ui − Li)|

end if
end for
if f(X(s)) < f̄ then

X̄ = X(s); f̄ = f(x(s))
end if
s = s+ 1

end while
k = k + 1

end while
- Step 3: algorithm of chaotic local search:
while k ≤Mg × (Mgl1 +Mgl2) +Ml do

for i = 0 to n do
if r ≤ 0.5 then
xi(k) = x̄i + λzi(k).|(Ui − Li)|

else
xi(k) = x̄i − λzi(k).|(Ui − Li)|

end if
end for
if f(X(k)) < f̄ then
X̄ = X(k); f̄ = f(x(k))

end if
k = k + 1

end while

2 A tough objective function
In order to test this new method vs. the previous one in very
tough conditions the simulation results are done with the following
2-D objective function possessing hundreds of local minima: The
function f which is very complex, has serval local maxima.

f = x4
1 − 7x21 − 3x1 + x42 − 9x22 − 5x2 + 11x21x

2
2 + 99sin(71x1) +

137sin(97x1x2) + 131sin(51x2). (6)

We test ICOLM on the search domain: −10 ≤ xi ≤ 10, i = 1, 2.
The essential feature of this benchmark function is that location

of minima is not symmetric. In a forthcoming paper we will ex-
tend our numerical analysis in higher dimension with an extended
benchmark suite [11].

 

Figure 3: Locally-averaged strategy of chaotic search. Re-
sults of every Step 2-2 for f

3 Numerical results
We display few of the results we have obtained showing the bet-
ter optimization results obtained by this new methods.In each case
study, 48 independent runs were made for each of both the COLM
and ICOLM methods involving 48 different initial trial conditions
y1(0), y(0) (parameters of Lozi map). not far from the value of f
on the global minimum.

For all studied cases, the four configurations, numbered from IC1
to IC4 and C1 ti C4, that are used are presented in tab. 1. The

2



locally averaged strategy of ICOLM is illustrated on Fig. 3 on which
the result of every step 2-2 is plotted.

λ λMgl1
λMgl2

Mg Ml Mgl1 Mgl2

IC1 0.001 0.04 0.01 6 50 2 2
IC2 0.01 0.04 0.01 10 50 2 2
IC3 0.1 0.04 0.01 10 50 2 2
IC4 0.1 0.04 0.01 100 50 5 5
C1 0.001 24 50
C2 0.01 40 50
C3 0.1 40 50
C4 0.1 1000 50

Table 1: The set of parameters values for every run on
the benchmark suite defined in Sec. 2. 2.

 

Figure 4: plot of test function used in this study

 

Figure 5: Position of the minima in the search domain

Best value Mean value Std.Dev

(
x̄
ȳ

)
IC1 -384.2891 -363.0185 11.5770

(
−2.7686
−0.4045

)
IC2 -392.5400 -365.7837 14.0615

(
−0.7327
1.3203

)
IC3 -393.3134 -379.6872 8.8797

(
−1.9677
−1.9982

)
IC4 -395.7338 -381.8734 9.6707

(
−1.8815
−2.2501

)
Table 2: ICOLM

 

Figure 6: magnification of Fig. 4.

 

Figure 7: magnification of Fig. 6.

Best value Mean value Std. Dev

(
x̄
ȳ

)
C1 -371.0150 -368.5212 11.1135

(
0.3105
0.2442

)
C2 -358.4331 -352.9766 2.4424

(
3.7283
6.6158

)
C3 -377.9280 -368.7777 8.8169

(
3.2738
6.1685

)
C4 -382.7108 -379.7557 1.7817

(
−5.8930
2.9309

)
Table 3: COLM

4 Conclusion
In every test, with the same computational cost, ICOLM gives
better than COLM best values and Mean Best values but in one
case. The presented study allows us to conclude that the proposed
method is fast and converges to a good optimum. because we used
a sampling mechanism to coordinate the research methods based
on chaos theory, and we refined the final solution using a second
method of local search. Further research is needed to gain more
confidence and better understanding of the proposed methodology.
The proposed algorithm has to be evaluated for a large number of
test functions in higher dimension.
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