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T International Telematic University “Uninettuno”

¥ International Research Centre on “Mathematics & Mechanics of Complex
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Abstract Variational principles and calculus of variations have al-
ways been an important tool for formulating mathematical models
for physical phenomena. Variational methods give an efficient and
elegant way to formulate and solve mathematical problems that are
of interest for scientists and engineers and are the main tool for the
axiomatization of physical theories.

1 Introduction and historical background

1.1 Metrodoron and his followers

The ideas we want to evocate in this lecture are very old and were put
forward already in the hellenistic period: for a detailed discussion about this
point the reader is referred to the beautiful book by Lucio Russo (2003). In
that book it is established that “modern” science actually was born in the
hellenistic era, when Metrodoron lived. Metrodoron was a pupil of a famous
greek philosopher, Epicurus, and, in our opinion, the following Metrodoron’s
sentence is a statement (the first?) belonging to the modern philosophy of
science:

«Mépveoo 6L Ovntog dv T dvoeL 1ol AaPOV KEOVOV MELOUEVOY AVEPRNS Tolg
meQl pYoemg dhoyLopols £m Thy dmelgioy wal ToV aidva xal xoteldeg “10 T’
£6VTO TG T €000UEVA TTEO T’ £6VTA ».

Metrodoron,

“Always remember that you were born mortal and such is your
nature and you were given a limited time: but by means of your
reasonings about Nature you could rise to infinity and to eternity



and you indeed contemplate “the things that were, and that
were to be, and that had been before””. Metrodoron

Gnomologium Epicureum Vaticanum X (fr.37 Alfred Kérte, Metrodori
Epicurei Fragmenta, ¢ Jahrbiicher fiir classiche Philologie”, Suppl.
XVII, 1890, p. 557).

This dictum, following Korte, comes from a lost letter or book by Metrodoron

(the Epicurean philosopher) addressed to Menestratos who was presumably
one of his pupils. The words quoted in bold are a citation from Iliad, I 70
(the translation into English of the sentence in boldface is ours; except for
this citation the translation has been taken from Homer by Murray (1924),
see the ref. (14)).

In different words, Metrodoron states that by using (the right!) equa-
tions you can forecast future behavior of physical systems.

1.2 Why Variational Principles and Calculus of Variation?

In recent time, a lost Archimedes’ book (19) has been rediscovered. Some
authors claim that Archimedes seems to have solved, in this book and us-
ing a variational principle, the technological problem of finding the optimal
shape of a boat. Archimedes seems to have chosen, as optimality crite-
rion, that the vertical position must be a “very” stable configuration (see
Rorres (2004)). In the book of Russo (21) it is demonstrated in even a
more convincing way that many optimization techniques were well-known
in hellenistic science. In particular Russo proves that the problem of the
determination of the regular polygon having maximal area has been solved
in that period. Thus, the use of a variational principle and optimization
methods to solve technological problems is less recent than it is usually be-
lieved. In general, variational formulation of the governing equations of solid
and fluid mechanics is a classical but very challenging topic. This kind of
formulation allows for an easier proof of the well-posedness of mathematical
problems, for an easier investigation of the study of stability of particular
solutions, and for a simpler implementation of numerical methods. Often
(but one who believes in Russo’s vision about the birth of science could say
instead “always”), mechanical problems are more naturally posed by means
of variational methods. Hamilton’s principle of stationary (or least) Action
is the conceptual basis of practically all models in physics. The variational
formulation is also useful for obtaining simpler approximate asymptotical
models as it is done in the theory of homogenization.

We want simply to state here that the Principle of Virtual Works and
the Principle of Least Action have roots much deeper than many scientists
believe (see Vailati, 1897). Although many histories of science claim dif-



ferently, most likely the majority of physical theories were first formulated
in terms of these Principles, and only subsequently they were reconsidered
from other points of view. In our opinion the Principle of Least Action,
which supplies a “geometric” version of mechanics was indeed the tool used
by the true founders of mechanics (i.e. the scientists of the hellenistic pe-
riod) to establish it. As argued also by Colonnetti (5) and Netz and Noel
(19)) surely also Archimedes and ancient greek scientists were accepting
such a point of view.

The epigones of the hellenistic science, who were not able to understand
the delicate mathematical arguments used by the first scientists, however
could understand the minimality conditions obtained by their “maitres” (i.e.
the conditions corresponding to those which we call now Euler-Lagrange
equations and boundary conditions) and could grasp the “physical” argu-
ments used to interpret them. This phenomenon is perfectly clear to ev-
eryone who is ready to consider carefully -for instance- the evolution of the
theory of Euler-Bernoulli Beam (a useful reference about this point is the
book of Benvenuto (1981)). Euler postulated a Principle of Least Action
for the Elastica, and gets the celebrated equilibrium differential equation
and boundary conditions for the equilibrium of beams by using the calcula-
tion procedure due to Lagrange (which is the departing idea of Calculus of
Variations). Then Navier prepared his lectures for the Ecole Polytechnique
and resumed the results obtained by Euler deciding to “spare” to the (en-
gineering) students the difficulties of the calculus of variations. He started
directly from the equilibrium equation, obtained by means of an “ad hoc”
principle of balance of force and couple, and imposed boundary conditions
based on “physical” assumptions. As a consequence, for a long while, gen-
erations of engineers believed that the beam equations were to be obtained
in this way. Only when numerical simulations became popular, then they
(actually, some of them) became aware of variational “principles”. However
these principle were proven as theorems starting from “balance postulates”
and were considered simply as a mathematical (rather abstruse) tool and
not as a fundamental heuristic concept. And this attitude is not changed
even when it became clear that every serious advancement of mechanical
science has been obtained using variational principles. Indeed the so called
“physical sense” (a gift that many claim to posses but which nobody can
claim to be able to master or to teach) is not very useful to postulate the
right “balance principles” when one is in “terra incognita”. For instance,
when Lagrange and Sophie Germain wanted to find the plate equations they
needed to employ a variational principle (and they could find the (right!)
natural boundary conditions). Again when Cosserat brothers wanted to
improve Cauchy Continuum Mechanics they “rediscovered” the right tech-



nique: i.e. the Principle of Least Action. Also Quantum Mechanics has been
developed starting from a Variational Principle (see e.g. the references of
Feynman (11), Lagrange (15) and Lanczos (16)).

Therefore an important warning is due to young researcher: refrain from
trying to extend available models by means of “ad hoc” adaptations of avail-
able theories: always look for the right Action functional to be minimized!

1.3 The problem of including dissipation

One useful tool for handling complicated situations is used in Continuum
Mechanics by Paul Germain when formulating second gradient theories:
the Principle of Virtual Powers. Again, as remarked always in the history
of the development of ideas, when this history can be reconstructed, the
effective way to be used to proceed is that which starts from a Principle
of Least Action, eventually generalized into a Principle of Virtual Powers.
For a long time the opponents to Second Gradient Theories argued about
its lack of consistency, due to the difficulties they claim to find in “getting”
boundary conditions. This is a really odd statement. Indeed variational
principles easily produce mathematically correct boundary conditions. So
maybe what those opponents want to say is that as they are not so clever as
Navier, they do not manage to interpret physically the boundary conditions
found via a (correct and meaningful) variational principle. Of course if one
refuses to use the Principle of Least Action he can find very difficult the
job of determining some set of boundary conditions which are compatible
with the (independently postulated!) bulk evolution equations. If instead
one accepts the Archimedean (the reader will allow us to dream, without
definitive evidence that such was the point of view of Archimedes) approach
to mechanics then all these problems of well-posedness of mathematical
models completely disappear.

Variational Principles always produce intrinsically well-posed mathemat-
ical problems, if the Action functional is well behaving. Of course passing
from Lagragian systems (the evolution of which are governed by a Least
Action functional) to non-Lagragian systems (for which such a functional
may not exist) maybe difficult. This problem is related (but is not com-
pletely equivalent) to the problem of modelling dissipative phenomena. It
is often stated that dissipation cannot be described by means of a Least
Action Principle. This is not exactly true, as it is possible to find some Ac-
tion functionals for a large class of dissipative systems. However it is true
that not every conceived system can be regarded as a Lagragian one. This
point is delicate and will be only evocated here. In general a non-Lagragian
system can be regarded as Lagragian in two different ways: i) because it



is an “approximation” of a Lagrangian system (see the case of Cattaneo
equation for heat propagation), and this approximation leads to “cancel”
the lacking part of the “true” Action Functional ii) because the considered
system is simply a subsystem of a larger one which is truly Lagrangian. The
assumption that variational principle can be used only for non-dissipative
systems is contradicted by, e.g., the work presented in this book by Prof.
Frankfort (12), where you find variational principles modelling dissipative
systems. Indeed it is often stated that a limit of the modelling procedure
based on variational principles consists in their impossibility of encompass-
ing “nonconservative” phenomena. We do not believe that this is the case:
however in order to avoid to be involved in a problem which is very difficult
to treat, when dealing with dissipative systems, we will assume a slightly
different point of view, usually attributed to Hamilton and Rayleigh.

2 Finding a mathematical model for natural
phenomena

2.1 Principle of Least Action

We want to discuss here about the problem of finding a mathematical
model for natural phenomena. We start with an epistemological Principle:

“The Principle of Least Action tells us how to construct a math-
ematical model to be used for describing the world and for pre-
dicting the evolution of the phenomena occurring in it”.

In the following modeling scheme, we give the right heuristic strategy to
be used for finding an effective model using the Principle of Least Action.
The recipe includes the following ingredients:

1. Establish the right kinematics needed to describe the physical phe-
nomena of interest, i.e. the kinematical descriptors modeling the state
of considered physical systems.

2. Establish the set of admissible motions for the system under descrip-
tion, i.e. establish the correct model for the admissible evolution of
the system.

3. Employ the “physical intuition” to find the right Action functional to
be minimized, i.e. modeling what Nature wants to minimize.

We start by finding the kinematical descriptors, because of the need of
modeling the states of the considered system. Then we introduce motion,
in such a way we model the evolution of the system to be described. Finally
we ask Nature what is the quantity to minimize. Keeping this quantity in
mind, we introduce the Action functional. To start with, it is necessary



to focus the attention on a specific class of systems and on phenomena
occurring to them. A configuration is the mathematical object used to
model the state of considered systems: the set of possible configurations
will be denoted by C. The motion is the mathematical model describing
the evolution of considered systems: it is a C-valued function defined on
time interval (fo,ts); the set of all admissible motions will be denoted by
M. The Action is a real-valued function, defined on M, which models the
“preferences” of nature.

Finally, to use the Principle of Least Action one needs three steps further,

4. Find the Euler-Lagrange conditions which are consequence of the pos-
tulated Least Action Principle

5. Interpret these condition on a physical ground

6. Determine, in terms of the postulated Action functional, the numerical
integration scheme to be used to get the previsions needed to drive,
by means of our theory, our experimental, technological or engineering
activity.

2.2 The Rayleigh-Hamilton principle

When postulating an extended Rayleigh-Hamilton principle, the point
4 of the previously presented heuristic strategy will be further divided into
two steps as follows:

4a. Once the quantities which expend power on the considered velocity
fields are known in terms of postulated Action, introduce a suitable
definite positive Rayleigh dissipation functional

4b. Equate the first variation of Action functional to the Rayleigh dissipa-
tion functional and get the evolution equations (including boundary
conditions) which govern the motion of the system

Although in the literature the choice of including a Rayleigh-Hamilton
principle in the class of variational principles is sometimes considered inap-
propriate, we will follow what seems to us the preference of the majority
of the authors: therefore we do call “variational” also the strategy which
we just described, not limiting the use of this adjective to the models using
exclusively the Least Action Principle.

2.3 La Cinématique d’Abord !

According to Metrodoron, mathematical and physical objects are two
different concepts. Indeed, equations are necessary for modeling physical
systems but they refer to mathematical objects. When one solves the equa-
tions formulated in the framework of his model then he has to transform the



obtained equations into previsions valid for the physical system he is study-
ing. A good modeling procedure uses mathematics for finding the motion
which minimizes Action. If this mathematics gives a reasonable forecasting
of the observed evolution, then the model is valid. However, not every-
thing is described by a given model. A model is always focused on a set of
phenomena.

The set of phenomena that are focused by a model is established by the
kinematics:

La Cinématique d’Abord !

In the previous scheme it is clear that the most “fundamental” step
concerns the choice of the set of configurations used for characterizing the
“accessible” states of the system. When constructing a mathematical model
using the discussed epistemological principle, one must start with a precise
and clear determination of the set C. The second step concerns the deter-
mination of admissible motions which clearly depend on the evolutionary
phenomena one wants to model. A correct modeling process always starts
specifying “admissible” kinematics.

2.4 La Nature agit toujours par les voies les plus simples

After having specified the admissible kinematics, one can wonder about
the desire of Nature. The wutility of Nature is a real-valued function defined
on M. Following Maupertuis, we will call Action this “utility”. Also Nature
must consider which is the contingent situation: not all admissible motions
are accessible by a physical system under given specific conditions. There-
fore we must specify a subset M4 of the set M: the set of accessible motions.
The real motion will be chosen by the system minimizing the Action in the
subset M 4. Indeed:

La Nature agit toujours par les voies les plus simples.

2.5 Two possible choices for the set of admissible and accessible
motions

In the famous textbook of Arnold (1) the author, following the tradi-
tion, does not “try” to explain Maupertuis’ Principle of Least Action. We
instead dare to try to deal with this. In the process of minimization of
the Action, we need to specify the set of motions among which we look for
minima. The choice of Lagrange is that of isochronous motions. Two mo-
tions are isochronous when they both start, at the given instant ¢g, from a
given configuration Cy and arrive, at the same instant ¢, at the same final
configuration Cy. On the other hand, the choice of Maupertuis is to focus



on the set of motions with a “fixed energy content” and which are starting
from the same configuration Cy and ending (the instants of start and stop
are not specified!) at the configuration Cy. In the set of admissible motions
an “energy” functional must then be introduced: i.e. a functional which
associates an energy content to any motion and any time instant ¢t. The
set of accessible motions is constituted by all motions from Cp to Cf which
have a constant energy content. The choice of Maupertuis, if not suitably
modified, seems to limit the range of applicability of variational principles
to non dissipative phenomena.

2.6 Further famous quotes

Many books in Calculus of Variations and/or Variational Principles, see
e.g. that of Lanczos (1970), start with a preface, introduction or introduc-
tory chapter dealing with historical prolegomena and sometimes end with a
philosophical chapter. In presenting this lecture notes, we did not dare to
break with tradition.

“For this would be agreed by all: that Nature does nothing in
vain nor labours in vain”. Olympiodorus, Commentary on Aristo-
tle’s T™MMeteora translated by Ivor Thomas in the Greek Mathemat-
ical Works Loeb Classical Library

“La nature, dans la production de ses effets, agit toujours
par les voies les plus simples”. Pierre de Fermat.

Now, the problem is:

What is utility?

3 In other words: How to find “Real Motions”?

Up to now no mathematical structure has been assumed for M4. Indeed,
Action functional is simply a real-valued map defined on My4. “Practical”
problems require the calculation of real motions by means of introduced
model. Following Lagrange (15), we introduce a particular class of Action
functionals in terms of a Lagrangian Action density function: so construct-
ing in a particular way Action functional to obtain so called “Lagrangian
functionals”.

We need to introduce a topological structure in M4, i.e. we need to
clearly define what we mean when we say that “two motions are close”. If
we want to find minima of a real-valued function, then we need to estimate
derivatives and equate these derivatives to zero. Action is a function defined
in the set of motions (not real numbers!). Thus, we need



e to understand what is an infinitesimal variation of motion,
e to find a differential of a functional and
e to estimate the order of infinitesimal of its remainder.

In other words, we need to learn how to find a first order Taylor expansion
for a Lagrangian functional by establishing the meaning of the expressions

e Infinitesimal variation of motion.
e Differential of a functional.
e Order of infinitesimals for remainders.

This implies the need of Frechet and Gateaux derivatives in manifolds
with charts in Banach spaces. This is the right mathematical frame for
studying this subject. However, Lagrange did not know that he was using
such a mathematical frame and did not know anything about Frechet and
Gateaux derivatives. Thus, in this notes we try to go around the related
mathematical difficulties and follow the original approach of Lagrange.

The motion minimizing Action will be searched among the mo-
tions for which the first variation of Action vanishes.

For Lagrangian functionals this condition is equivalent to a partial dif-
ferential equation which is called Euler-Lagrange condition relative to the
given Action functional. This procedure generalizes the corresponding one
used for real-valued functions of several real variables. One serious problem
with papers that start from balance equations and “play” with forces is that
they do not “find” boundary conditions. In these references ((7; 8; 9)) one
can find examples of modelling procedures in which one finds simultaneously
bulk and boundary conditions.

From an historical point of view, in the theory of beam we deal with
contact actions (normal and shear forces and momenta) because Navier
has written lecture notes for I’Ecole Polytechique, trying to produce a text
for students that was as simple as possible. He wrote final equations and
explain not only bulk but also boundary conditions with the aid of “physical
sense”. However, it is very difficult in general to find evolution equations
and boundary conditions with physical sense. On the other hand, variational
principles give boundary conditions automatically and without the help of
any physical sense.

Thus, Variational Principles allow Science to unveil Nature and for un-
veiling Nature you need a Lagrangian functional.

4 Lagrangian Action Functionals: technical details

We follow Landau and Lifshitz (1977) and Moiseiwitsch (1966).



Let ¥,(z,) be any set of n tensor fields defined on R™, (o being a
multi-index and p = 1,2, ...,m). We define the Lagrangian density as:

oV,
S(:v#,\llg,ax) . (1)
m

We can then introduce the Action functional as

ov
91=/£<x,\110,") 2
T M 61}” ( )

Where T is a hyper-volume in the m—th dimensional space determined by
the coordinates z,. When we will want to derive the theory of second
gradient materials, this approach will not be appropriate, because we would
need to add the dependence on the second gradient of ¥, in (1).

4.1 Variation of the Action Functional

We now consider small variations €7, (z,,) of the considered fields ¥, (x,):

\i’o(xu) = \I’a(xu) + 5770(33#)7 (3)

where the 7,(z,) are any set of linearly independent functions of the
which vanish on the part 94T (9,1 C 9T) of the boundary 9T of the hyper-
volume T', on which the kinematical condition are prescribed. The variation
of the Action functional can then be computed as:

AQ[:/S x;u\ijoaa& /£<x1La\I/0a({9\Ij(T>a (4)
T Oz, T Oz,

where T is a hyper-volume in the m-th dimensional space determined by the
2. The computation of the variation of the Action functional now proceeds
as follows:

8\110 8770 a\IIU 2
ARl = £ ) \IIO' oy o - £ ’ \Ilaa a. o
/T (96# e Ox, +€3x“> /T (l‘u 317“) " (E )
(5)
which, with a slight abuse of notations, can be written at the first order in
€ as:

- o m 0L oMo
(SQ,[ig/TZJ (MUU+;MW6xM> (6)
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Integrating by parts and recalling that 7, vanish on 9,7 it is easy to get:
0L &~ 0 oL
m:e/ o | 5o — () (7)
- ZJ (8\11(, ; Oz, \0 (0¥, /0z,)

- oL
RS T
8T/8dTZ‘7 ;a(axpc,/ax#) g

where 0T /04T is the difference between 0T and 947 and N, is the external
unit normal of 9T/94T. Imposing é24 = 0, the arbitrariness of 7, gives, for
any o:

08 & 0 ( 0L >
N = (————= =0, Va,eT, 8
0V, ;&:N 0(0¥,/0x,,) . ®)

m

oL
——— N, = T/84T.
I; ICTAEIRRG 0, VY, €dT/dq (9)

In the case of a discontinuity material surface ¥ (with unit normal N,,) the
(9) have to be completed by

m 8£
— = N,=0, Va,€X, 10
;[la(aqjg/ax#)” 14 12 ( )

where [| (+)|] is the jump of (-) across the surface . These equations are
known as the Euler-Lagrange equations corresponding to the considered
Lagrangian density.

4.2 The Space-Time Case (m = 4)

Let us now consider the particular case in which m = 4. This case
corresponds, for instance, to the case z, = (z1,22,23,t). We have that
Ne(x,) are any set of linearly independent functions of the x,, which vanish
on the boundary of time type domain,

No (21, T2, 23, t0) = No (21,22, 23,11) =0

and on the part 93V of the boundary 0V of the volume V', on which the
kinematical conditions are prescribed,

770'(:517 m‘g,l’g,t) = 07 V(l‘l,l'Q,.’l?g) S 8dV7 vVt € [tO;tl] .
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It is easy to show that in this particular case eq. (7) yields

f e L9 oL
oA = dt | — — — = 11
g/to /\/Z”n [8\116 ; oz (a(a\yg/axk)> (1)

oL
ot (8(5\110/80)}
oL
i /a\//adv Z” o = 0 (0¥, /0xy)

+/ZZU[ ]Nk

The stationarity 621l = 0 of the Action implies, for any o = 1,2, ..., n,

o))

NE

Ny,

oL
g 0V, /oy

3
k=1

3

0L 0 0L 0 0L
amg‘;a%(fm/am>_at<a(wa/6w)‘o’ VoV, (12)

3 oL
% N = 1
> 0y =0 Yew € VIOV, (1)

\Ilg/axk

3. [oweeroms

k=1

] Ny =0, Vz,ex. (14)

Which are the standard Euler-Lagrange equations. We will see in the next
chapters of this book how to generalize (14) when ¥ can move freely.

5 Principle of Virtual Power and Principle of Least
Action

The principle of least Action, when formulated for Action functionals admit-
ting first differentials, can be regarded as a particular form of the principle
of virtual powers. Indeed, if

Y = Q[int + Qlezt 4 Qline (15)
then . .
SA=0 < SA" 4 A 4 5AM = 0. (16)
Identifying
(5let _ mint 59{6951& —_ ;Bext 62{in6 _ mine (17)
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we get
mint 4 mezt + mine =0. (18)

Which is the standard form of principle of virtual powers.

Is the principle of virtual power more general than principle of least
Action? First answer: the principle of virtual powers involves differentials
which are not exact, in general. Therefore, once fixed the kinematics, the
principle of virtual power is actually more general. In both B"* and 3=
one can include dissipative terms, which cannot, in general, be derived from
an Action functional. However, it is not clear if, suitably extending the space
of configurations and the set of admissible motions, one can introduce an
Action functional also for systems which, in a restricted kinematics, appear
as dissipative. Controversies in the literature about this subject are not yet
solved.

6 Hamilton-Rayleigh Approach

We propose to use the Hamilton-Rayleigh compromise. We introduce an
Action functional and a Dissipation Rayleigh functional and, by means of
them, we formulate the Principle of Virtual Work. Rayleigh dissipation
functional R is defined as a linear functional on the set of velocities, not
on the set of motions as 2. Therefore, R is defined as a linear functional
of the variation drh. The principle of virtual works formulated following
Hamilton-Rayleigh takes the form: (the lack of the upper dot on RHS is
not a mistakel!)

5 (6m) = R (5m) . (19)

7 Conclusions

We recall an ancient and useful recipe for building theories for describing
effectively physical phenomena:

“In Nomina est Natura Rerum”. Anonymous

This statement (passed to us by the middle age tradition) is formu-
lated for defending mathematical formalism. This sentence claims that it
is impossible to talk about any mathematical model without using the ap-
propriate language. So, for instance, it is impossible to say clearly what is
the first variation of Action using simply “words” from natural language,

13



i.e. without writing integrals on T" and, to proceed, we need to give “pre-
cisely” names to things. Therefore, to specify precisely how our models are
constructed we need to introduce symbols and formulas.

However, we can also say that

“Nomina sunt Consequentia Rerum.” Iustinianus, Institutiones
Liber 11,7,3

This because we are not blindly building our mathematical model. We
get informations about physics and from these informations we actually
formulate our models.

We can finally state that the “old” method of basing the formulation of
mathematical models on the variational approach works: indeed it works
very well.
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