AFFINE OPEN SUBSETS IN \mathbb{A}^3 WITHOUT THE CANCELLATION PROPERTY

ADRIEN DUBOULOZ

Abstract. We give families of examples of principal open subsets of the affine space \mathbb{A}^3 which do not have the cancellation property. We show as a by-product that the cylinders over Koras-Russell threefolds of the first kind have a trivial Makar-Limanov invariant.

Introduction

The generalized Cancellation Problem asks if two algebraic varieties X and Y with isomorphic cylinders $X \times \mathbb{A}^1$ and $Y \times \mathbb{A}^1$ are isomorphic themselves. Although the answer turns out to be affirmative for a large class of varieties including the case when one of the varieties is the affine plane \mathbb{A}^2 [10, 14], counter-examples exists for affine varieties in any dimension ≥ 2 , and the particular case when one of the two varieties is an affine space \mathbb{A}^n , $n \geq 3$, still remains a widely open problem.

The first counter-example for complex affine varieties has been constructed by Danielewski [1] in 1989: he exploited the fact that the non isomorphic affine surfaces $S_1 = \{xz = y^2 - 1\}$ and $S_2 = \{x^2z = y^2 - 1\}$ in $\mathbb{A}^3_{\mathbb{C}}$ can be equipped with free actions of the additive group \mathbb{G}_a admitting geometric quotients in the form of non trivial \mathbb{G}_a -bundles $\rho_i : S_i \to \tilde{\mathbb{A}}^1$, i = 1, 2 over the affine line with a double origin. It then follows that the fiber product $S_1 \times_{\tilde{\mathbb{A}}^1} S_2$ inherits simultaneously the structure of a \mathbb{G}_a -bundle over S_1 and S_2 via the first and the second projection respectively, but since S_1 and S_2 are both affine, the latter are both trivial, providing isomorphisms $S_1 \times \mathbb{A}^1 \simeq S_1 \times_{\tilde{\mathbb{A}}^1} S_2 \simeq S_2 \times \mathbb{A}^1$. Since then, Danielewski's fiber product trick has been the source of many new counter-examples in any dimension [7, 3, 8, 5], some of these being very close to affine spaces either from an algebraic or a topological point of view.

However, a counter-example over the field of real numbers was constructed earlier by Hochster [9] using the algebraic counterpart of the classical fact from differential geometry that the tangent bundle of the real sphere S^2 is non trivial but 1-stably trivial. His argument actually applies more generally to the situation when a finitely generated domain R over a field k admits a non trivial projective module M of rank $n-1 \geq 1$ such that $M \oplus R \simeq R^{\oplus n} = R^{\oplus n-1} \oplus R$. Indeed, these hypotheses immediately imply that the varieties $X = \operatorname{Spec}_R(\operatorname{Sym}(M))$ and $Y = \operatorname{Spec}(R[x_1, \ldots, x_n])$ are not isomorphic as schemes over $Z = \operatorname{Spec}(R)$ while their cylinders are. Of course, there is no reason in general that X and Y are not isomorphic as k-varieties, but this holds for instance when Z does not admit any dominant morphism from an affine space \mathbb{A}^n_k since then any isomorphism between X and Y necessarily descends to an automorphism of Z ([10, 2]). Recently, Jelonek [11] gave revival to Hochster idea by constructing families of examples of non uniruled affine open subsets of affine spaces of any dimension ≥ 8 with 1-stably trivial but non trivial vector bundles, which fail the cancellation property.

While affine affine open subsets of affine spaces of dimension ≤ 2 always have the cancellation property (see e.g. loc.cit), we derive in this note from a variant of Danielewski's fiber product trick that cancellation already fails for suitably chosen principal open subsets of \mathbb{A}^3 .

As an application of our construction we also obtain that all cylinders over Koras-Russell three-folds $X_{d,k,l} = \{x^dz = y^l + x - t^k = 0\} \subset \mathbb{A}^4, d \geq 2$ and $2 \leq l < k$ relatively prime [12], have a trivial Makar-Limanov invariant [13].

²⁰⁰⁰ Mathematics Subject Classification. 14R10, 14R20.

Key words and phrases. Cancellation problem; Koras-Russell threefolds .

1. Principal open subsets in \mathbb{A}^3 without the cancellation property

For every $d \geq 1$ and $l \geq 2$, we denote by $B_{d,l}$ the surface in $\mathbb{A}^3 = \operatorname{Spec}(\mathbb{C}[x,y,z])$ defined by the equation $f_{d,l} = y^l + x - x^dz = 0$ and by $U_{d,l} = \mathbb{A}^3 \setminus B_{d,l} \simeq \operatorname{Spec}(\mathbb{C}[x,y,z]_{f_{d,l}})$ its open complement. By construction, $U_{d,l}$ comes equipped with a flat isotrivial fibration $f_{d,l} \mid_{U_{d,l}} : U_{d,l} \to \mathbb{A}^1_* = \operatorname{Spec}(\mathbb{C}[t^{\pm 1}])$ with closed fibers isomorphic to the surface $S_{d,l} \subset \mathbb{A}^3 = \operatorname{Spec}(\mathbb{C}[X,Y,Z])$ defined by the equation $X^dZ = Y^l + X - 1$. A surface $S_{d,l}$ having no non constant invertible function, an isomorphism $\varphi : U_{d,l} \xrightarrow{\sim} U_{d',l'}$ necessarily maps closed fibers of $f_{d,l}$ isomorphically onto that of $f_{d',l'}$. But since $S_{d,l}$ is isomorphic to $S_{d',l'}$ if and only if (d',l') = (d,l) (see e.g. [6, Theorem 3.2 and Proposition 3.6]), it follows that the threefolds $U_{d,l}$, $d \geq 1$, $l \geq 2$, are pairwise non isomorphic. In contrast, we have the following result:

Theorem 1. For every fixed $l \geq 2$, the fourfolds $U_{d,l} \times \mathbb{A}^1$, $d \geq 1$, are all isomorphic.

Proof. We exploit the fact that every $U_{d,l}$ admits a free \mathbb{G}_a -action defined by the locally nilpotent derivation $x^d\partial_y + ly^{l-1}\partial_z$ of its coordinate ring $\mathbb{C}\left[x,y,z\right]_{f_{d,l}}$. A free \mathbb{G}_a -action being locally trivial in the étale topology, it follows that a geometric quotient $\nu_{d,l}:U_{d,l}\to \mathfrak{S}_{d,l}=U_{d,l}/\mathbb{G}_a$ exists in the form of an étale locally trivial \mathbb{G}_a -bundle over a certain algebraic space $\mathfrak{S}_{d,l}$. Then it is enough to show that for every fixed $l\geq 2$, the algebraic spaces $\mathfrak{S}_{d,l}$ are all isomorphic, say to a fixed algebraic space \mathfrak{S}_l . Indeed, if so, then for every $d,d'\geq 1$, the fiber product $U_{d,l}\times_{\mathfrak{S}_l}U_{d',l}$ will be simultaneously a \mathbb{G}_a -bundle over $U_{d,l}$ and $U_{d',l}$ via the first and second projection respectively whence will be simultaneously isomorphic to the trivial \mathbb{G}_a -bundles $U_{d,l}\times \mathbb{A}^1$ and $U_{d',l}\times \mathbb{A}^1$ as $U_{d,l}$ and $U_{d',l}$ are both affine.

The algebraic spaces $\mathfrak{S}_{d,l}$ can be described explicitly as follows: one checks that the isotrivial fibration $f_{d,l}:U_{d,l}\to\mathbb{A}^1_*$ becomes trivial on the Galois étale cover $\xi_l:\mathbb{A}^1_*=\operatorname{Spec}(\mathbb{C}\left[u^{\pm 1}\right])\to\mathbb{A}^1_*$, $u\mapsto t=u^l$, with isomorphism $\Phi_{d,l}:S_{d,l}\times\mathbb{A}^1_*\overset{\sim}{\to}U_{d,l}\times_{\mathbb{A}^1_*}\mathbb{A}^1_*$ given by $(X,Y,Z,u)\mapsto (u^lX,uY,u^{(1-d)l}Z,u)$. The group μ_l of l-th roots of unity acts freely on $S_{d,l}\times\mathbb{A}^1_*$ by $\varepsilon\cdot(X,Y,Z,u)=(X,\varepsilon^{-1}Y,Z,\varepsilon u)$ and the μ_l -invariant morphism $\pi_{d,l}=\operatorname{pr}_1\circ\Phi_{d,l}:S_{d,l}\times\mathbb{A}^1_*\to U_{d,l}$ descends to an isomorphism $(S_{d,l}\times\mathbb{A}^1_*)/\mu_l\simeq U_{d,l}$. The \mathbb{G}_a -action on $U_{d,l}$ lifts via the proper étale morphism $\pi_{d,l}$ to the free \mathbb{G}_a -action on $S_{d,l}\times\mathbb{A}^1_*$ commuting with that of μ_l defined by the locally nilpotent derivation $u^{ld-1}(X^d\partial_Y+lY^{l-1}\partial_Z)$ of its coordinate ring $\mathbb{C}[X,Y,Z]/(X^dZ-Y^l-X+1)[u^{\pm 1}]$. The principal divisor $\{X=0\}$ of $S_{d,l}\times\mathbb{A}^1_*$ is \mathbb{G}_a -invariant and it decomposes into the disjoint union of irreducible divisors $D_\eta=\{X=Y-\eta=0\}_{\eta\in\mu_l}\cong\operatorname{Spec}(\mathbb{C}[Z][u^{\pm 1}])$ on which μ_l acts by $D_\eta\ni (Z,u)\mapsto (Z,\varepsilon u)\in D_{\varepsilon\eta}$. Now a similar argument as in [7, Lemma 1.2] implies that for every $\eta\in\mu_l$, the \mathbb{G}_a -invariant morphism $\mathrm{pr}_X\times\mathrm{id}:S_{d,l}\times\mathbb{A}^1_*\to\mathbb{A}^1_*$ restricts on $(S_{d,l}\times\mathbb{A}^1_*)\setminus\bigcup_{\varepsilon\in\mu_l\setminus\{\eta_l\}}D_\varepsilon$ to a trivial \mathbb{G}_a -bundle over $\mathbb{A}^1\times\mathbb{A}^1_*$. Letting C(l) be the scheme over $\mathbb{A}^1=\operatorname{Spec}(\mathbb{C}[X])$ obtained by gluing l copies $C_\eta,\eta\in\mu_l$, of $\mathbb{A}^1=\operatorname{Spec}(\mathbb{C}[X])$ outside their respective origins, it follows that $\mathrm{pr}_X\times\mathrm{id}$ factors through a μ_l -equivariant \mathbb{G}_a -bundle $\rho_{d,l}\times\mathrm{id}:S_{d,l}\times\mathbb{A}^1_*\to C(l)\times\mathbb{A}^1_*$, where μ_l acts freely on $C(l)\times\mathbb{A}^1_*$ by $C_\eta\times\mathbb{A}^1_*\ni (X,u)\mapsto (X,\varepsilon u)\in C_{\varepsilon\eta}\times\mathbb{A}^1_*$.

A quotient $(C(l) \times \mathbb{A}^1_*)/\mu_l$ exist in the category of algebraic spaces in the form of a principal μ_l -bundle $\sigma_l : C(l) \times \mathbb{A}^1_* \to \mathfrak{S}_l$, and the above description implies that $\rho_{d,l} \times \text{id}$ descends to an étale locally trivial \mathbb{G}_a -bundle $\tilde{\nu}_{d,l} : U_{d,l} \to \mathfrak{S}_l$ for which the diagram

$$S_{d,l} \times \mathbb{A}^{1}_{*} \xrightarrow{\pi_{d,l}} U_{d,l} \simeq (S_{d,l} \times \mathbb{A}^{1}_{*})/\mu_{l}$$

$$\downarrow^{\rho_{d,l} \times \mathrm{id}} \qquad \qquad \downarrow^{\tilde{\nu}_{d,l}}$$

$$C(l) \times \mathbb{A}^{1}_{*} \xrightarrow{\sigma_{l}} \mathfrak{S}_{l},$$

is cartesian. By virtue of the universal property of categorical quotients one has necessarily $\mathfrak{S}_{d,l} \simeq \mathfrak{S}_l$ for every $d \geq 1$. In particular, the isomorphy type of $\mathfrak{S}_{d,l}$ depends only on l, which completes the proof.

Remark 2. The algebraic spaces $\mathfrak{S}_l = (C(l) \times \mathbb{A}^1_*)/\mu_l, l \geq 2$, considered in the proof above cannot be schemes: indeed, otherwise the image in \mathfrak{S}_l of the point $(0,1) \in C_1 \times \mathbb{A}^1_* \subset C(l) \times \mathbb{A}^1_*$ would have a Zariski open affine neighborhood V. But then the inverse image of V by the finite étale cover $\sigma_l : C(l) \times \mathbb{A}^1_* \to \mathfrak{S}_l$ would be a μ_l -invariant affine open neighborhood of (0,1) in $C(l) \times \mathbb{A}^1_*$, which

is absurd since (0,1) does not even have a separated μ_l -invariant open neighborhood in $C(l) \times \mathbb{A}^1_*$. This implies in turn that the free \mathbb{G}_a -action on $U_{d,l}$ defined by the locally nilpotent derivation $x^d \partial_y + ly^{l-1} \partial_z$ is not locally trivial in the Zariski topology. In contrast, the latter property holds for its lift to $S_{d,l} \times \mathbb{A}^1_*$ via the étale Galois cover $\pi_{d,l} : S_{d,l} \times \mathbb{A}^1_* \to U_{d,l}$.

Remark 3. In Danielewski's construction for the surfaces $S_i = \{x^i z = y^2 - 1\} \subset \mathbb{A}^3, i = 1, 2, \text{ the}$ geometric quotients $S_i/\mathbb{G}_a \simeq \tilde{\mathbb{A}}^1$, i=1,2, were obtained from the categorical quotients $S_i//\mathbb{G}_a =$ $\operatorname{Spec}(\mathbb{C}[x])$ taken in the category of affine schemes by replacing the origin by two copies of itself, one for each orbit in the zero fiber of the quotient morphism $q = \operatorname{pr}_x : S_i \to \mathbb{A}^1$. For the threefolds $U_{d,l}$, the difference between the quotients $U_{d,l}//\mathbb{G}_a = \operatorname{Spec}(\mathbb{C}[x,y,z]_{f_{d,l}}^{\mathbb{G}_a})$ taken in the category of (affine) schemes and the geometric quotients $\mathfrak{S}_l = U_{d,l}/\mathbb{G}_a$ is very similar: indeed, we may identify $U_{d,l}$ with the closed subvariety of $\mathbb{A}^3 \times \mathbb{A}^1_* = \operatorname{Spec}(\mathbb{C}[x,y,z][t^{\pm 1}])$ defined by the equation $x^d z = y^l + x - t$ in such a way that $f_{d,l}:U_{d,l}\to\mathbb{A}^1_*$ coincides with the projection $\operatorname{pr}_t|_{U_{d,l}}$. Then, the kernel of the locally nilpotent derivation $x^d \partial_y + l y^{l-1} \partial_z$ of the coordinate ring of $U_{d,l}$ coincides with the subalgebra $\mathbb{C}[x, t^{\pm 1}]$ and so, the \mathbb{G}_a -invariant morphism $q = \operatorname{pr}_{x,t} : U_{d,l} \to \mathbb{A}^1 \times L = \operatorname{Spec}(\mathbb{C}[x][t^{\pm 1}])$ is a categorical quotient in the category of affine schemes. One checks easily that q restricts to a trivial \mathbb{G}_a -bundle over the principal open subset $\{x \neq 0\}$ of $\mathbb{A}^1 \times \mathbb{A}^1_*$ whereas the inverse image of the punctured line $\{x=0\} \simeq L$ is isomorphic to $\tilde{L} \times \mathbb{A}^1 = \operatorname{Spec}(\mathbb{C}[y,t^{\pm 1}]/(y^l-t)[z])$ where \mathbb{G}_a acts by translations on the second factor. So we may interpret the geometric quotient $\mathfrak{S}_l = U_{d,l}/\mathbb{G}_a$ as being obtained from $U_{d,l}//\mathbb{G}_a = \mathbb{A}^1 \times L$ by replacing the punctured line $\{x=0\} \simeq L$ not by l disjoint copies of itself but, instead, by the total space \tilde{L} of the nontrivial étale Galois cover $\operatorname{pr}_t: L \to L.$

The Koras-Russell threefolds $X_{d,k,l}$ are smooth complex affine varieties defined by equations of the form $x^dz = y^l + x - t^k$, where $d \geq 2$ and $2 \leq l < k$ are relatively prime. While all diffeomorphic to the euclidean space \mathbb{R}^6 , none of these threefold is algebraically isomorphic to the affine \mathbb{A}^3 . Indeed, it was established by Kaliman and Makar-Limanov [13, 12] that they have fewer algebraic \mathbb{G}_a -actions than the affine space \mathbb{A}^3 : the subring $\mathrm{ML}(X_{d,k,l})$ of their coordinate ring consisting of regular functions invariant under all algebraic \mathbb{G}_a -actions on $X_{d,k,l}$ is equal to the polynomial ring $\mathbb{C}[x]$, while $\mathrm{ML}(\mathbb{A}^3)$ is trivial, consisting of constants only. However, it was observed by the author in [4] that the Makar-Limanov invariant ML fails to distinguish the cylinder over the so-called Russell cubic $X_{2,2,3}$ from the affine space \mathbb{A}^4 . This phenomenon holds more generally for cylinders over all Koras-Russell threefolds $X_{d,k,l}$:

Corollary 4. All the cylinders $X_{d,k,l} \times \mathbb{A}^1$ have a trivial Makar-Limanov invariant.

Proof. We consider $X_{d,k,l} \times \mathbb{A}^1$ as the subvariety of $\operatorname{Spec}\left(\mathbb{C}\left[x,y,z,t\right][v]\right)$ defined by the equation $f_{d,l}-t^k=0$. Since $\operatorname{ML}(X_{d,k,l}\times\mathbb{A}^1)\subset\operatorname{ML}(X_{d,k,l})=\mathbb{C}\left[x\right]$, it is enough to construct a locally nilpotent derivation of $\mathbb{C}\left[x,y,z\right][v]/(f_{d,l}-t^k)$ which does not have x in its kernel. One checks easily that $\operatorname{ML}(U_{1,l})=\mathbb{C}[f_{1,l}^{\pm 1}]$ is the intersection of the kernels of the locally nilpotent derivations $x\partial_y+ly^{l-1}\partial_z$ and $ly^{l-1}\partial_x+(z-1)\partial_y$ of $\mathbb{C}\left[x,y,z\right]_{f_{1,l}}$. Theorem 1 above implies in particular that $\operatorname{ML}(U_{d,l}\times\mathbb{A}^1)\cong\operatorname{ML}(U_{1,l}\times\mathbb{A}^1)=\mathbb{C}[f_{1,l}^{\pm 1}]$ and so, there exists a locally nilpotent derivation $\delta_{d,l}$ of $\Gamma(U_{d,l}\times\mathbb{A}^1,\mathcal{O}_{U_{d,l}\times\mathbb{A}^1})=\mathbb{C}\left[x,y,z\right]_{f_{d,l}}[v]$ which does not have x in its kernel. Up to multiplying it by a suitable power of $f_{d,l}\in\operatorname{Ker}(\delta_{d,l})$, we may further assume that $\delta_{d,l}$ is the extension to $\mathbb{C}\left[x,y,z\right]_{f_{d,l}}[v]$ of a locally nilpotent derivation of $\mathbb{C}\left[x,y,z\right][v]$ which has $f_{d,l}$ but not x in its kernel. This implies in particular that $B_{d,l}\times\mathbb{A}^1=\operatorname{Spec}\left(\mathbb{C}\left[x,y,z\right]/(f_{d,l})[v]\right)$ is invariant under the corresponding \mathbb{G}_a -action on $\mathbb{A}^4=\operatorname{Spec}(\mathbb{C}\left[x,y,z\right][v]\right)$. The projection $p=\operatorname{pr}_{x,y,z,v}:X_{d,k,l}\times\mathbb{A}^1\to \mathbb{A}^4$ being a finite Galois cover with branch locus $B_{d,l}\times\mathbb{A}^1$, it follows that the \mathbb{G}_a -action on \mathbb{A}^4 lifts to a one on $X_{d,k,l}\times\mathbb{A}^1$ for which $p:X_{d,k,l}\times\mathbb{A}^1\to\mathbb{A}^4$ is \mathbb{G}_a -equivariant. By construction, the corresponding locally nilpotent derivation of $\mathbb{C}\left[x,y,z\right][v]/(f_{d,l}-t^k)$ does not have x in its kernel.

In the proof above, we used the following classical fact that we include here because of a lack of an appropriate reference.

¹These are called Koras-Russell threefolds of the first kind in [15].

Lemma 5. Let X be a variety defined over a field of characteristic zero and equipped with a non trivial \mathbb{G}_a -action, let Z be a normal variety and let $p:Z\to X$ be a finite surjective morphism. Suppose that there exists a \mathbb{G}_a -invariant affine open subvariety U of X over which p restricts to an étale morphism. Then there exists a unique \mathbb{G}_a -action on Z for which $p:Z\to X$ is a \mathbb{G}_a -equivariant morphism.

Proof. The induced \mathbb{G}_a -action on the invariant affine open subvariety U of X is determined by a locally nilpotent derivation ∂ of $\Gamma(U, \mathcal{O}_U)$. Since $p: p^{-1}(U) \to U$ is étale and proper, $p^{-1}(U)$ is an affine open subvariety of Z and ∂ lifts in a unique way to a derivation of $\Gamma(p^{-1}(U), \mathcal{O}_{p^{-1}(U)})$ which is again locally nilpotent by virtue of [17]. By construction, the latter defines a \mathbb{G}_a -action on $p^{-1}(U)$ for which the restriction of p to $p^{-1}(U)$ is equivariant. Now the assertion follows from [16, Lemma 6.1] which guarantees that the \mathbb{G}_a -action on $p^{-1}(U)$ can be uniquely extended to a one on Z with the desired property.

References

- 1. W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, Preprint Warsaw 1989.
- 2. R. Drylo, Non uniruledness and the cancellation problem II, Ann. Polon. Math. 92 (2007), 41-48.
- 3. A. Dubouloz, Additive group actions on Danielewski varieties and the Cancellation Problem, Math. Z. 255 (2007), no. 1, 77–93.
- 4. _____, The cylinder over the Koras-Russell cubic threefold has a trivial Makar-Limanov invariant, Transformation Groups 14 (2009), no. 3, 531–539.
- A. Dubouloz, L. Moser-Jauslin, and P.M. Poloni, Non cancellation for smooth contractible affine threefolds, To appear in Proc. of the AMS (2011), preprint arXiv 1004.4723.
- A. Dubouloz and P.-M. Poloni, On a class of Danielewski surfaces in affine 3-space, Journal of Algebra 321 (2009), 1797-1812.
- 7. K.-H. Fieseler, On complex affine surfaces with C⁺-action, Comment. Math. Helv. **69** (1994), no. 1, 5–27.
- 8. D.R. Finston and S. Maubach, The automorphism group of certain factorial threefolds and a cancellation problem, Israel J. Math. 163 (2008), 369–381.
- 9. M. Hochster, Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc 34 (1972), 81–82.
- 10. S. Iitaka and T. Fujita, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo 24 (1977), 123-127.
- 11. Z. Jelonek, On the cancellation problem, Math. Annalen 344 (2009), no. 4, 769–778.
- S. Kaliman and L. Makar-Limanov, On the Russell-Koras contractible threefolds,, J. Algebraic Geom. 6 (1997), no. 2, 247–268.
- 13. L. Makar-Limanov, On the hypersurface $x+x^2y+z^2+t^3=0$ in \mathbb{C}^4 or a \mathbb{C}^3 -like threefold which is not \mathbb{C}^3 , Israel J. Math. **96** (1996), 419–429.
- M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), no. 1, 11–42.
- 15. L. Moser-Jauslin, Automorphism group of Koras-Russell threefolds of the first kind, To appear in Proceedings of "Affine Algebraic Geometry: A conference in Honour of Peter Russell", Montreal 1-5 june, 2009, CRM Proceedings Lecture Notes.
- 16. C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Annals of Math. 95 (1972), no. 3, 511-556.
- 17. W. Vasconcelos, Derivations of commutative noetherian rings, Math. Z. 112 (1969), no. 3, 229-233.

CNRS, INSTITUT DE MATHÉMATIQUES DE BOURGOGNE, UNIVERSITÉ DE BOURGOGNE, 9 AVENUE ALAIN SAVARY - BP 47870, 21078 DIJON CEDEX, FRANCE

E-mail address: adrien.dubouloz@u-bourgogne.fr