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Abstract. Word sense induction (WSI) is the task aimed at automati-
cally identifying the senses of words in texts, without the need for hand-
crafted resources or annotated data. Up till now, most WSI algorithms
extract the different senses of a word ‘locally’ on a per-word basis, i.e. the
different senses for each word are determined separately. In this paper,
we compare the performance of such algorithms to an algorithm that
uses a ‘global’ approach, i.e. the different senses of a particular word
are determined by comparing them to, and demarcating them from, the
senses of other words in a full-blown word space model. We adopt the
evaluation framework proposed in the SemEval-2010 Word Sense Induc-
tion & Disambiguation task. All systems that participated in this task
use a local scheme for determining the different senses of a word. We
compare their results to the ones obtained by the global approach, and
discuss the advantages and weaknesses of both approaches.

1 Introduction

Word sense induction (WSI) methods automatically identify the senses of words
in texts, without the need for predefined resources or annotated data. These
methods offer an alternative to the use of expensive hand-crafted resources de-
veloped according to the ‘fixed list of senses’ paradigm, which present several
drawbacks for efficient semantic processing [1]. The assumption underlying unsu-
pervised WSI methods is the distributional hypothesis of meaning [2], according
to which words that occur in similar contexts tend to be similar. In distributional
semantic analysis, the co-occurrences of words in texts constitute the features
that serve to calculate their similarity. Following this approach, data-driven WSI
algorithms calculate the similarity of the contexts of polysemous target words
and group them into clusters. The resulting clusters describe the target word
senses.

The unsupervised algorithms used for WSI can be distinguished into local
and global. Local algorithms work on a per-word basis, determining the senses
for each word separately. Algorithms that use a global approach determine the



different senses of a particular word by comparing them to, and demarcating
them from, the senses of other words in a full-blown word space model.

In this paper, we compare the performance of these two types of algorithms
for sense induction. The comparison is carried out using the evaluation frame-
work proposed in the SemEval-2010 Word Sense Induction & Disambiguation
(WSI&D) task [3,4]. The SemEval WSI tasks [4, 5] provide a common ground for
comparison and evaluation of different sense induction and discrimination sys-
tems. All the systems that participated in the SemEval-2010 WSI&D task use
a local scheme for determining the different senses of a word. We compare their
results to the ones obtained by the global approach, and discuss the advantages
and weaknesses of both approaches.

The paper is organized as follows. We first explain how word senses are iden-
tified in the local and the global approaches to sense induction, and we present
the global algorithm used in our research. Section 3 describes the evaluation
setting that we adopt and the metrics that will be used in order to evaluate the
performance of the algorithms. In Section 4, we present the evaluation results
of the global approach, and compare them to the results obtained by the local
systems that participated in the SemEval-2010 WSI&D task. Our last section
draws conclusions, and lays out some avenues for future work.

2 WSI algorithms

2.1 Inducing word senses on a per-word basis

Local methods to word sense induction discover the senses of a target word
(w) by clustering its instances in texts according to their semantic similarity.
Following the distributional hypothesis of meaning, words that are used in similar
contexts carry similar meanings [2,6]. So, the instances of w that appear in
similar contexts are considered as semantically similar and its senses can be
discovered by clustering its contexts [7].

The features used for calculating the similarity of the instances of w are their
co-occurrences in a fixed-sized window of text. So, the different instances of w
in a corpus can be represented by feature vectors created from their contexts [8,
9]. The grouping of the context vectors according to their similarity generates
a number of clusters that describe the different senses of w. The context of w
may be taken into account in different ways : it may be modeled as a first-
order context vector, representing the direct context of the instances of w in the
corpus [10,11], or by using higher-order vectors, i.e. by considering the context
vectors of the words occurring in the target context [8].

Other methods use the words found in the context of target words in order to
construct co-occurrence graphs. In a graph of this type, the vertices correspond to
the words appearing in the contexts of the target words and the edges represent
their relations. These relations may be grammatical [12] or they may be co-
occurrences of the words in fixed contexts [13,14]. The senses of the target
words are discovered by partitioning the co-occurrence graph using clustering
techniques, or by using a PageRank algorithm.



2.2 Global approach to sense induction

In contrast to the local approach to sense induction, where senses are discovered
by clustering contexts for each word individually, the global approach discovers
senses by clustering semantically similar senses of words in a global manner,
comparing them and demarcating them from the senses of other words in a full-
blown word space model. The similarity between the senses is calculated on the
basis of their common features, e.g. the syntactic dependencies a particular sense
occurs with [15].

In Pantel and Lin’s [16] method, the similarity of word senses is calculated
on the basis of the dependency relations in which the senses take part (extracted
from a syntactically annotated corpus). Each word is represented by a feature
vector, where each feature corresponds to a syntactic context (dependency triple)
in which the word occurs. Each feature is weighted and its value corresponds to
the pointwise mutual information between the feature and the word. The algo-
rithm first discovers a set of tight clusters (called ‘committees’) in the similarity
space. Each word is then assigned to the closest committee by comparing the
word’s feature vector to the centroid of a committee (i.e. the mean of the feature
vectors of the committee members). After a word is assigned to a particular
committee, the overlapping features are deleted from the word’s vector, which
allows for the discovery of less dominant senses. Each cluster that a word belongs
to describes one of its senses.

2.3 Non-negative Matrix Factorization for sense induction

Sense induction The global algorithm implemented here is based on the one
proposed by Van de Cruys [17]. This algorithm creates semantic word models by
using an extension of non-negative matrix factorization (NMF) [18], that com-
bines both the bag of words approach and the syntax-based approach to sense
induction. The intuition in this is that the syntactic features of the syntax-based
approach can be disambiguated by the semantic dimensions found by the bag of
words approach. The algorithm finds a small number of latent semantic dimen-
sions, according to which nouns, contexts and syntactic relations are classified.

Nouns are classified according to both bag-of-words context and syntactic
context, so three matrices are constructed that capture the co-occurrence fre-
quency information for each mode. The first matrix contains co-occurrence fre-
quencies of nouns cross-classified by dependency relations, the second matrix
contains co-occurrence frequencies of nouns cross-classified by words that appear
in the noun’s context window, and the third matrix contains co-occurrence fre-
quencies of dependency relations cross-classified by co-occurring context words.
NMF is then applied to the three matrices and the separate factorizations are
interleaved (i.e. the results of the former factorization are used to initialize the
factorization of the next matrix). A graphical representation of the interleaved
factorization algorithm is given in figure 1.

When the factorization is finished, the three different modes (nouns, bag-
of-words context words and syntactic relations) are all represented as a limited
number of semantic dimensions.
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Fig. 1. A graphical representation of the extended NMF

Next, the factorization that is thus created is used for word sense induction.
The intuition is that a particular dimension of an ambiguous word is ‘switched
off’, to reveal possible other senses of the word. Matrix H indicates the impor-
tance of each syntactic relation given a semantic dimension. With this knowledge,
the syntactic relations that are responsible for a certain dimension can be sub-
tracted from the original noun vector. This is done by scaling down each feature
of the original vector according to the load of the feature on the subtracted
dimension.

The last step is to determine which dimension(s) are responsible for a certain
sense of the word. In order to do so, the method is embedded in a clustering
approach. First, a specific word is assigned to its predominant sense (i.e. the
most similar cluster). Next, the dominant semantic dimension(s) for this clus-
ter are subtracted from the word vector, and the resulting vector is fed to the
clustering algorithm again, to see if other word senses emerge. The dominant
semantic dimension(s) can be identified by ‘folding in’ the cluster centroid into
the factorization.

A simple k-means algorithm is used to compute the initial clustering. k-
means yields a hard clustering, in which each noun is assigned to exactly one
(dominant) cluster. In the second step, it is determined for each noun whether it
can be assigned to other, less dominant clusters. First, the salient dimension(s)
of the centroid to which the noun is assigned are determined. The centroid of the
cluster is computed by averaging the frequencies of all cluster elements except
for the target word we want to reassign, and weighting the resulting vector with
pointwise mutual information [19]. After subtracting the salient dimensions from
the noun vector, it is checked whether the vector is reassigned to another cluster
centroid. If this is the case, (another instance of) the noun is assigned to the
cluster, and the second step is repeated. If there is no reassignment, we continue



with the next word. The target element is removed from the centroid to make sure
that only the dimensions associated with the sense of the cluster are subtracted.
When the algorithm is finished, each noun is assigned to a number of clusters,
representing its different senses.

We use two different methods for selecting the final number of candidate
senses. The first method, NMF,,,, takes a conservative approach, and only se-
lects candidate senses if — after the subtraction of salient dimensions — another
sense is found that is more similar to the adapted noun vector. The second
method, NMF;, is more liberal, and also selects the next best cluster centroid
as candidate sense until a certain similarity threshold ¢ is reached. Experimen-
tally (examining the cluster output), we set ¢ = 0.2 .

Sense disambiguation The sense inventory that results from the induction
step can now be used for the disambiguation of individual instances as follows.
For each instance of the target noun, we extract its context words, i.e. the words
that co-occur in the same paragraph, and represent them as a frequency vector.
Using matrix G from our factorization model (which represents context words
by semantic dimensions), this co-occurrence vector can be ‘fold in’ into the se-
mantic space, thus representing the probability of each semantic dimension for
the particular instance of the target noun. Likewise, the candidate senses of the
noun (represented as centroids) can be folded into our semantic space using ma-
trix H, which represents the dependency relations by semantic dimensions. This
yields a probability distribution over the semantic dimensions for each centroid.
As a last step, we compute the Kullback-Leibler divergence between the context
vector and the candidate centroids, and select the candidate centroid that yields
the lowest divergence as the correct sense.

Example Let us clarify the process with an example for the noun chip. The
sense induction algorithm finds the following candidate senses:

1. cache, CPU, memory, microprocessor, processor, RAM, register
2. bread, cake, chocolate, cookie, recipe, sandwich
3. accessory, equipment, goods, item, machinery, material, product, supplies

Each candidate sense is associated with a centroid (the average frequency
vector of its members), that is fold into the semantic space, which yields a
‘semantic fingerprint’, i.e. a distribution over the semantic dimensions. For the
first sense, the ‘computer’ dimension will be the most important. Likewise, for
the second and the third sense the ‘food’ dimension and the ‘manufacturing’
dimension will be the most important.!

Let us now take a particular instance of the noun chip, such as the one in (1).

! In the majority of cases, the induced dimensions indeed contain such clear-cut se-
mantics, so that the dimensions can be rightfully labeled as above.



(1) An N.V. Philips unit has created a computer system that processes
video images 3,000 times faster than conventional systems. Using re-
duced instruction - set computing, or RISC, chips made by Inter-
graph of Huntsville, Ala., the system splits the image it ‘sees’ into 20
digital representations, each processed by one chip.

Looking at the context of the particular instance of chip, a context vector is
created which represents the semantic content words that appear in the same
paragraph (the extracted content words are printed in boldface). This context
vector is again folded into the semantic space, yielding a distribution over the se-
mantic dimensions. By selecting the lowest Kullback-Leibler divergence between
the semantic probability distribution of the target instance and the semantic
probability distributions of the candidate senses, the algorithm is able to induce
the ‘computer’ sense of the target noun chip.

Implementational details The SemEval training set has been part of speech
tagged and lemmatized with Stanford Part-Of-Speech Tagger [20, 21], and parsed
with MaltParser [22] trained on sections 2-21 of the Wall Street Journal section of
the Penn Treebank extended with about 4000 questions from the QuestionBank?
in order to extract dependency triples. The SemEval test set has only been tagged
and lemmatized, as our disambiguation model did not use dependency triples as
features (contrary to our induction model).

The three matrices needed for our factorization model were constructed using
the 5K nouns, 80K dependency relations, and 2K context words (excluding stop
words) with highest frequency in the training set, which yields matrices of 5K
nouns X 80K dependency relations, 5K nouns x 2K context words, and 80K
dependency relations x 2K context words. For our initial k-means clustering, we
cluster the 5K nouns into 600 clusters.

The sense induction and disambiguation algorithms were implemented in
Python. The interleaved NMF factorization model itself was implemented in
Matlab, using 50 iterations, and factorizing the model to 50 dimensions.

3 Word sense induction evaluation in SemEval 2010

3.1 Training and evaluation datasets

Our WSI algorithm is trained and tested on the dataset of the SemEval-2010
WSI&D task [4]. The main difference of this task from the SemEval-2007 WSI
task [5] is that the training and testing data are treated separately, which allows
for a more realistic evaluation of the clustering models. Word senses are induced
from the training data while testing data are used for tagging new instances of
the words with the previously discovered senses.

The SemEval-2010 WSI&D task is based on a dataset of 100 target words, 50
nouns and 50 verbs. For each target word, a training set is provided from which

2 http://maltparser.org/mco/english_parser/engmalt.html



the senses of the word have to be induced without using any other resources. The
training set for a target word consists of a set of target word instances in context
(sentences or paragraphs). In this paper, we will focus on the set of nouns, that
consists of 716,945 instances.

The senses induced during training are used for disambiguation in the testing
phase. In this phase, the systems are provided with a testing dataset that consists
of unseen instances of the target words. The testset comprises 5,285 noun in-
stances. The instances in the testset are tagged with OntoNotes senses [23]. The
systems need to disambiguate these instances using the senses acquired during
training.

3.2 Supervised and unsupervised evaluation

The results of the systems participating in the SemEval-2010 WSI&D task are
evaluated both in a supervised and in an unsupervised manner. In the supervised
evaluation, one part of the testing dataset is used as a mapping corpus, which
serves to map the automatically induced clusters to gold standard (GS) senses,
and the other part as an evaluation corpus, used to evaluate the methods in a
standard WSD task. The mapping between clusters and GS senses serves to tag
the evaluation corpus with GS tags.

In the unsupervised evaluation, the induced senses are evaluated as clusters
of examples (tw contexts) which are compared to the sets of examples tagged
with the GS senses (corresponding to classes). So, if the testing dataset of a tw
comprises a number of instances, these are divided into two partitions : a set
of automatically generated clusters and a set of GS classes. A number of these
instances will be members of both one GS class and one cluster. Consequently,
the quality of the proposed clustering solution is evaluated by comparing the
two groupings and measuring their similarity.

3.3 Evaluation measures

The supervised evaluation in the SemEval-2010 WSI&D task follows the scheme
employed in the SemEval-2007 WSI task [5], with some modifications. The in-
duced senses (clusters) are mapped to GS senses using a mapping corpus, which
is a part of the testing sense-tagged dataset. Then, the evaluation corpus, which
corresponds to the rest of the testing dataset, is used to evaluate WSI methods
in a standard WSD task. The evaluation is performed according to the precision
and recall measures employed for the evaluation of supervised WSD systems.

Two evaluation metrics are employed during the unsupervised evaluation in
order to estimate the quality of the clustering solutions, the V-measure [24]
and the paired F-Score [25]. V-Measure assesses the quality of a clustering by
measuring its homogeneity (h) and its completeness (c¢). Homogeneity refers to
the degree that each cluster consists of data points primarily belonging to a single
GS class, while completeness refers to the degree that each GS class consists of
data points primarily assigned to a single cluster. V-Measure is the harmonic
mean of i and c.
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In the paired F-Score [25] evaluation, the clustering problem is transformed
into a classification problem [4]. A set of instance pairs is generated from the
automatically induced clusters (F(K)), which comprises pairs of the instances
found in each cluster. Similarly, a set of instance pairs is created from the GS
classes (F(S)), containing pairs of the instances found in each class. Precision
is then defined as the number of common instance pairs between the two sets
to the total number of pairs in the clustering solution (cf. formula 2). Recall is
defined as the number of common instance pairs between the two sets to the
total number of pairs in the GS (cf. formula 3). Precision and recall are finally
combined to produce the harmonic mean (cf. formula 4).
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The obtained results are also compared to two baselines. The Most Frequent
Sense (MFS) baseline groups all testing instances of a tw into one cluster. The
Random baseline randomly assigns an instance to one of the clusters.®. This
baseline is executed five times and the results are averaged.

4 Evaluation results

4.1 Unsupervised evaluation

In table 1, we present the performance of a number of algorithms on the V-
measure. We compare our V-measure scores with the scores of the best-ranked
systems in the SemEval 2010 WSI&D task. The second column shows the number
of clusters induced in the test set by each algorithm. The MFS baseline has a
V-Measure equal to 0, since by definition its completeness is 1 and homogeneity
is 0.

NMF,, — our model that takes a conservative approach in the induction of
candidate senses — does not beat the random baseline. NMF;;, — our model that
is more liberal in inducing senses — reaches better results. With 13.5%, it scores
similar to other algorithms that induce a similar average number of clusters,
such as Duluth-WSI [26].

Pedersen [26] has shown that the V-Measure tends to favour systems produc-
ing a higher number of clusters than the number of GS senses. This is reflected
in the scores of our models as well.

% The number of clusters of Random was chosen to be roughly equal to the average
number of senses in the GS.



VM (%) #Cl

UoY 20.6 11.54
Hermit 16.7  10.78
KSU KDD 18.0 17.5
NMF 13.5 5.42
Duluth-WSI 114 4.15
Random 4.2 4.00
NMF con 3.9 1.58
MF'S 0.0 1.00

Table 1. V-measure for SemEval noun testset

In table 2, the paired F-Score of a number of algorithms is given. The paired
F-Score penalizes systems when they produce a higher number of clusters (low
recall) or a lower number of clusters (low precision) than the GS number of
senses. We again compare our results with the scores of the best-ranked systems
in the SemEval 2010 WSI&D task.

FS (%) #C1
MF'S 57.0 1.00
Duluth-WSI-SVD-Gap 57.0 1.02
NMF con 54.6 1.58
NMF 42.2  5.42
Duluth-WSI 37.1 4.15
Random 30.4 4.00

Table 2. Paired F-score for SemEval noun testset

NMF .., reaches a score of 54.6%, which is again similar to other algorithms
that induce the same average number clusters. NMF;, scores 42.2%, indicating
that the algorithm is able to retain a reasonable F-Score while at the same time
inducing a significant number of clusters. This especially becomes clear when
comparing its score to the other algorithms.

4.2 Supervised evaluation

Table 3 shows the recall of our algorithms in the supervised evaluation, again
compared to other algorithms evaluated in the SemEval 2010 WSI&D task.

NMFy;, gets 57.3% and NMF ., reaches 54.5%, which again indicates that
our algorithm is in the same ballpark as other algorithms that induce a similar
average number of senses.



SR (%) #S

UoY 59.4 1.51
NMEFy;, 57.3 1.93
Duluth-WSI  54.7 1.66
NMF con 54.5 1.21
MFS 53.2 1.00
Random 51.5 1.53

Table 3. Supervised recall for SemEval noun testset, 80% mapping, 20% evaluation

5 Conclusion and future work

In this paper, we presented a quantitative evaluation of a global approach to word
sense induction, and compared it to more prevailing local approaches to word
sense induction, that induce senses on a per-word basis. The results indicate that
the global approach performs equally well, reaching similar results to the state-
of-the-art performance of local approaches. Moreover, the global approach is able
to reach similar performance on an evaluation set that is tuned to fit the needs of
local approaches. The evaluation set contains an enormous amount of contexts
for only a small number of target words, favouring methods that induce senses on
a per-word basis. The global approach is likely to induce a more balanced sense
inventory using a more balanced, unbiased corpus, and is likely to outperform
local methods when such an unbiased corpus is used as input. We therefore think
that a global approach to word sense induction, such as the one presented here,
provides a genuine and powerful solution to the problem at hand, and deserves
further attention.

We conclude with some issues for future work. First of all, we would like to
evaluate the approach presented here using a more balanced an unbiased corpus,
and compare its performance on such a corpus to local approaches. Secondly, we
would also like to include grammatical dependency information in the disam-
biguation step of the algorithm. For now, the disambiguation step only uses a
word’s context words; enriching the feature set with dependency information is
likely to improve the performance of the disambiguation.
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