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Abstract

In this paper, we present a unified model for

the automatic induction of word senses from

text, and the subsequent disambiguation of

particular word instances using the automati-

cally extracted sense inventory. The induction

step and the disambiguation step are based on

the same principle: words and contexts are

mapped to a limited number of topical dimen-

sions in a latent semantic word space. The in-

tuition is that a particular sense is associated

with a particular topic, so that different senses

can be discriminated through their association

with particular topical dimensions; in a similar

vein, a particular instance of a word can be dis-

ambiguated by determining its most important

topical dimensions. The model is evaluated on

the SEMEVAL-2010 word sense induction and

disambiguation task, on which it reaches state-

of-the-art results.

1 Introduction

Word sense induction (WSI) is the task of automati-

cally identifying the senses of words in texts, with-

out the need for handcrafted resources or manually

annotated data. The manual construction of a sense

inventory is a tedious and time-consuming job, and

the result is highly dependent on the annotators and

the domain at hand. By applying an automatic proce-

dure, we are able to only extract the senses that are

objectively present in a particular corpus, and it al-

lows for the sense inventory to be straightforwardly

adapted to a new domain.

Word sense disambiguation (WSD), on the other

hand, is the closely related task of assigning a sense

label to a particular instance of a word in context,

using an existing sense inventory. The bulk of WSD

algorithms up till now use pre-defined sense inven-

tories (such as WordNet) that often contain fine-

grained sense distinctions, which poses serious prob-

lems for computational semantic processing (Ide

and Wilks, 2007). Moreover, most WSD algorithms

take a supervised approach, which requires a signifi-

cant amount of manually annotated training data.

The model presented here induces the senses of

words in a fully unsupervised way, and subsequently

uses the induced sense inventory for the unsuper-

vised disambiguation of particular occurrences of

words. The induction step and the disambiguation

step are based on the same principle: words and

contexts are mapped to a limited number of topical

dimensions in a latent semantic word space. The

key idea is that the model combines tight, synonym-

like similarity (based on dependency relations) with

broad, topical similarity (based on a large ‘bag of

words’ context window). The intuition in this is that

the dependency features can be disambiguated by

the topical dimensions found by the broad contex-

tual features; in a similar vein, a particular instance

of a word can be disambiguated by determining its

most important topical dimensions (based on the in-

stance’s context words).

The paper is organized as follows. Section 2

presents some previous research on distributional

similarity and word sense induction. Section 3 gives

an overview of our method for word sense induction

and disambiguation. Section 4 provides a quantita-

tive evaluation and comparison to other algorithms

in the framework of the SEMEVAL-2010 word sense



induction and disambiguation (WSI/WSD) task. The

last section draws conclusions, and lays out a num-

ber of future research directions.

2 Previous Work

2.1 Distributional similarity

According to the distributional hypothesis of mean-

ing (Harris, 1954), words that occur in similar con-

texts tend to be semantically similar. In the spirit

of this by now well-known adage, numerous algo-

rithms have sprouted up that try to capture the se-

mantics of words by looking at their distribution in

texts, and comparing those distributions in a vector

space model.

One of the best known models in this respect is

latent semantic analysis — LSA (Landauer and Du-

mais, 1997; Landauer et al., 1998). In LSA, a term-

document matrix is created, that contains the fre-

quency of each word in a particular document. This

matrix is then decomposed into three other matrices

with a mathematical factorization technique called

singular value decomposition (SVD). The most im-

portant dimensions that come out of the SVD are said

to represent latent semantic dimensions, according

to which nouns and documents can be represented

more efficiently. Our model also applies a factoriza-

tion technique (albeit a different one) in order to find

a reduced semantic space.

Context is a determining factor in the nature of

the semantic similarity that is induced. A broad con-

text window (e.g. a paragraph or document) yields

broad, topical similarity, whereas a small context

yields tight, synonym-like similarity. This has lead

a number of researchers to use the dependency rela-

tions that a particular word takes part in as contex-

tual features. One of the most important approaches

is Lin (1998). An overview of dependency-based

semantic space models is given in Padó and Lapata

(2007).

2.2 Word sense induction

The following paragraphs provide a succinct

overview of word sense induction research. A thor-

ough survey on word sense disambiguation (includ-

ing unsupervised induction algorithms) is presented

in Navigli (2009).

Algorithms for word sense induction can roughly

be divided into local and global ones. Local WSI

algorithms extract the different senses of a word on

a per-word basis, i.e. the different senses for each

word are determined separately. They can be further

subdivided into context-clustering algorithms and

graph-based algorithms. In the context-clustering

approach, context vectors are created for the differ-

ent instances of a particular word, and those con-

texts are grouped into a number of clusters, repre-

senting the different senses of the word. The con-

text vectors may be represented as first or second-

order co-occurrences (i.e. the contexts of the target

word are similar if the words they in turn co-occur

with are similar). The first one to propose this idea

of context-group discrimination was Schütze (1998),

and many researchers followed a similar approach

to sense induction (Purandare and Pedersen, 2004).

In the graph-based approach, on the other hand, a

co-occurrence graph is created, in which nodes rep-

resent words, and edges connect words that appear

in the same context (dependency relation or con-

text window). The senses of a word may then be

discovered using graph clustering techniques (Wid-

dows and Dorow, 2002), the HyperLex algorithm

(Véronis, 2004), or Pagerank algorithm (Agirre et

al., 2006). Finally, Bordag (2006) recently pro-

posed an approach that uses word triplets to per-

form word sense induction. The underlying idea is

the ‘one sense per collocation’ assumption, and co-

occurrence triplets are clustered based on the words

they have in common.

Global algorithms take an approach in which the

different senses of a particular word are determined

by comparing them to, and demarcating them from,

the senses of other words in a full-blown word space

model. The best known global approach is the one

by Pantel and Lin (2002). They present a global

clustering algorithm – coined clustering by commit-

tee (CBC) – that automatically discovers word senses

from text. The key idea is to first discover a set of

tight, unambiguous clusters, to which possibly am-

biguous words can be assigned. Once a word has

been assigned to a cluster, the features associated

with that particular cluster are stripped off the word’s

vector. This way, less frequent senses of the word

may be discovered.

Van de Cruys (2008) proposes a model for sense

induction based on latent semantic dimensions. Us-



ing an extension of non-negative matrix factoriza-

tion, the model induces a latent semantic space

according to which both dependency features and

broad contextual features are classified. Using the

latent space, the model is able to discriminate be-

tween different word senses. The model presented

below is an extension of this approach: whereas the

model described in Van de Cruys (2008) is only able

to perform word sense induction, our model is ca-

pable of performing both word sense induction and

disambiguation.

3 Methodology

3.1 Non-negative Matrix Factorization

Our model uses non-negative matrix factorization

(Lee and Seung, 2000) in order to find latent dimen-

sions. There are a number of reasons to prefer NMF

over the better known singular value decomposition

used in LSA. First of all, NMF allows us to mini-

mize the Kullback-Leibler divergence as an objec-

tive function, whereas SVD minimizes the Euclidean

distance. The Kullback-Leibler divergence is better

suited for language phenomena. Minimizing the Eu-

clidean distance requires normally distributed data,

and language phenomena are typically not normally

distributed. Secondly, the non-negative nature of the

factorization ensures that only additive and no sub-

tractive relations are allowed. This proves partic-

ularly useful for the extraction of semantic dimen-

sions, so that the NMF model is able to extract much

more clear-cut dimensions than an SVD model. And

thirdly, the non-negative property allows the result-

ing model to be interpreted probabilistically, which

is not straightforward with an SVD factorization.

The key idea is that a non-negative matrix A is

factorized into two other non-negative matrices, W

and H

Ai×j ≈Wi×kHk×j (1)

where k is much smaller than i, j so that both in-

stances and features are expressed in terms of a few

components. Non-negative matrix factorization en-

forces the constraint that all three matrices must be

non-negative, so all elements must be greater than or

equal to zero.

Using the minimization of the Kullback-Leibler

divergence as an objective function, we want to

find the matrices W and H for which the Kullback-

Leibler divergence between A and WH (the multipli-

cation of W and H) is the smallest. This factoriza-

tion is carried out through the iterative application

of update rules. Matrices W and H are randomly

initialized, and the rules in 2 and 3 are iteratively ap-

plied – alternating between them. In each iteration,

each vector is adequately normalized, so that all di-

mension values sum to 1.

Haµ ← Haµ

∑
i Wia

Aiµ

(WH)iµ∑
k Wka

(2)

Wia ←Wia

∑
µ Haµ

Aiµ

(WH)iµ∑
v Hav

(3)

3.2 Word sense induction

Using an extension of non-negative matrix factoriza-

tion, we are able to jointly induce latent factors for

three different modes: words, their window-based

(‘bag of words’) context words, and their depen-

dency relations. Three matrices are constructed that

capture the pairwise co-occurrence frequencies for

the different modes. The first matrix contains co-

occurrence frequencies of words cross-classified by

dependency relations, the second matrix contains

co-occurrence frequencies of words cross-classified

by words that appear in the noun’s context window,

and the third matrix contains co-occurrence frequen-

cies of dependency relations cross-classified by co-

occurring context words. NMF is then applied to the

three matrices and the separate factorizations are in-

terleaved (i.e. the results of the former factorization

are used to initialize the factorization of the next ma-

trix). A graphical representation of the interleaved

factorization algorithm is given in figure 1.

The procedure of the algorithm goes as follows.

First, matrices W, H, G, and F are randomly initial-

ized. We then start our first iteration, and compute

the update of matrix W (using equation 3). Matrix

W is then copied to matrix V, and the update of

matrix G is computed (using equation 2). The trans-

pose of matrix G is again copied to matrix U, and

the update of F is computed (again using equation 2).

As a last step, matrix F is copied to matrix H, and

we restart the iteration loop until a stopping criterion

(e.g. a maximum number of iterations, or no more

significant change in objective function; we used the
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Figure 1: A graphical representation of the interleaved

NMF algorithm

former one) is reached.1 When the factorization is

finished, the three different modes (words, window-

based context words and dependency relations) are

all represented according to a limited number of la-

tent factors.

Next, the factorization that is thus created is used

for word sense induction. The intuition is that a par-

ticular, dominant dimension of an ambiguous word

is ‘switched off’, in order to reveal other possible

senses of the word. Formally, we proceed as follows.

Matrix H indicates the importance of each depen-

dency relation given a topical dimension. With this

knowledge, the dependency relations that are respon-

sible for a certain dimension can be subtracted from

the original noun vector. This is done by scaling

down each feature of the original vector according

to the load of the feature on the subtracted dimen-

sion, using equation 4.

t = v(u1 − hk) (4)

Equation 4 multiplies each dependency feature of

the original noun vector v with a scaling factor, ac-

cording to the load of the feature on the subtracted

dimension (hk – the vector of matrix H that corre-

sponds to the dimension we want to subtract). u1 is

a vector of ones with the same length as hk. The re-

sult is vector t, in which the dependency features rel-

1Note that this is not the only possibly way of interleaving

the different factorizations, but in our experiments we found that

different constellations lead to similar results.

evant to the particular topical dimension have been

scaled down.

In order to determine which dimension(s) are re-

sponsible for a particular sense of the word, the

method is embedded in a clustering approach. First,

a specific word is assigned to its predominant sense

(i.e. the most similar cluster). Next, the dominant

semantic dimension(s) for this cluster are subtracted

from the word vector, and the resulting vector is

fed to the clustering algorithm again, to see if other

word senses emerge. The dominant semantic dimen-

sion(s) can be identified by folding vector c – repre-

senting the cluster centroid – into the factorization

(equation 5). This yields a probability vector b over

latent factors for the particular centroid.

b = cH
T (5)

A simple k-means algorithm is used to com-

pute the initial clustering, using the non-factorized

dependency-based feature vectors (matrix A). k-

means yields a hard clustering, in which each noun

is assigned to exactly one (dominant) cluster. In the

second step, it is determined for each noun whether

it can be assigned to other, less dominant clusters.

First, the salient dimension(s) of the centroid to

which the noun is assigned are determined. The cen-

troid of the cluster is computed by averaging the fre-

quencies of all cluster elements except for the tar-

get word we want to reassign. After subtracting

the salient dimensions from the noun vector, it is

checked whether the vector is reassigned to another

cluster centroid. If this is the case, (another instance

of) the noun is assigned to the cluster, and the sec-

ond step is repeated. If there is no reassignment, we

continue with the next word. The target element is

removed from the centroid to make sure that only the

dimensions associated with the sense of the cluster

are subtracted. When the algorithm is finished, each

noun is assigned to a number of clusters, represent-

ing its different senses.

We use two different methods for selecting the fi-

nal number of candidate senses. The first method,

NMFcon , takes a conservative approach, and only

selects candidate senses if – after the subtraction of

salient dimensions – another sense is found that is

more similar to the adapted noun vector. The second

method, NMFlib , is more liberal, and also selects the



next best cluster centroid as candidate sense until a

certain similarity threshold φ is reached.2

3.2.1 Word sense disambiguation

The sense inventory that results from the induc-

tion step can now be used for the disambiguation of

individual instances as follows. For each instance of

the target noun, we extract its context words, i.e. the

words that co-occur in the same paragraph, and rep-

resent them as a probability vector f . Using matrix

G from our factorization model (which represents

context words by semantic dimensions), this vector

can be folded into the semantic space, thus represent-

ing a probability vector over latent factors for the

particular instance of the target noun (equation 6).

d = fG
T (6)

Likewise, the candidate senses of the noun (repre-

sented as centroids) can be folded into our seman-

tic space using matrix H (equation 5). This yields

a probability distribution over the semantic dimen-

sions for each centroid. As a last step, we com-

pute the Kullback-Leibler divergence between the

context vector and the candidate centroids, and se-

lect the candidate centroid that yields the lowest di-

vergence as the correct sense. The disambiguation

process is represented graphically in figure 2.
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Figure 2: Graphical representation of the disambiguation

process

2Experimentally (examining the cluster output), we set φ =

0.2

3.2.2 Example

Let us clarify the process with an example for the

noun chip. The sense induction algorithm finds the

following candidate senses:3

1. cache, CPU, memory, microprocessor, proces-

sor, RAM, register

2. bread, cake, chocolate, cookie, recipe, sand-

wich

3. accessory, equipment, goods, item, machinery,

material, product, supplies

Each candidate sense is associated with a centroid

(the average frequency vector of the cluster’s mem-

bers), that is folded into the semantic space, which

yields a ‘semantic fingerprint’, i.e. a distribution

over the semantic dimensions. For the first sense,

the ‘computer’ dimension will be the most impor-

tant. Likewise, for the second and the third sense the

‘food’ dimension and the ‘manufacturing’ dimension

will be the most important.4

Let us now take a particular instance of the noun

chip, such as the one in (1).

(1) An N.V. Philips unit has created a com-

puter system that processes video images

3,000 times faster than conventional systems.

Using reduced instruction - set comput-

ing, or RISC, chips made by Intergraph of

Huntsville, Ala., the system splits the im-

age it ‘sees’ into 20 digital representations,

each processed by one chip.

Looking at the context of the particular instance of

chip, a context vector is created which represents

the semantic content words that appear in the same

paragraph (the extracted content words are printed

in boldface). This context vector is again folded

into the semantic space, yielding a distribution over

the semantic dimensions. By selecting the lowest

Kullback-Leibler divergence between the semantic

probability distribution of the target instance and the

3Note that we do not use the word sense to hint at a lexico-

graphic meaning distinction; rather, sense in this case should be

regarded as a more coarse-grained and topic-related entity.
4In the majority of cases, the induced dimensions indeed

contain such clear-cut semantics, so that the dimensions can be

rightfully labeled as above.



semantic probability distributions of the candidate

senses, the algorithm is able to assign the ‘computer’

sense of the target noun chip.

4 Evaluation

4.1 Dataset

Our word sense induction and disambiguation

model is trained and tested on the dataset of the

SEMEVAL-2010 WSI/WSD task (Manandhar et al.,

2010). The SEMEVAL-2010 WSI/WSD task is based

on a dataset of 100 target words, 50 nouns and 50

verbs. For each target word, a training set is pro-

vided from which the senses of the word have to

be induced without using any other resources. The

training set for a target word consists of a set of

target word instances in context (sentences or para-

graphs). The complete training set contains 879,807

instances, viz. 716,945 noun and 162,862 verb in-

stances.

The senses induced during training are used for

disambiguation in the testing phase. In this phase,

the system is provided with a test set that consists

of unseen instances of the target words. The test

set contains 8,915 instances in total, of which 5,285

noun and 3,630 verb instances. The instances in the

test set are tagged with OntoNotes senses (Hovy et

al., 2006). The system needs to disambiguate these

instances using the senses acquired during training.

4.2 Implementational details

The SEMEVAL training set has been part of speech

tagged and lemmatized with the Stanford Part-Of-

Speech Tagger (Toutanova and Manning, 2000;

Toutanova et al., 2003) and parsed with Malt-

Parser (Nivre et al., 2006), trained on sections 2-

21 of the Wall Street Journal section of the Penn

Treebank extended with about 4000 questions from

the QuestionBank5 in order to extract dependency

triples. The SEMEVAL test set has only been tagged

and lemmatized, as our disambiguation model does

not use dependency triples as features (contrary to

the induction model).

We constructed two different models – one for

nouns and one for verbs. For each model, the matri-

ces needed for our interleaved NMF factorization are

5http://maltparser.org/mco/english_

parser/engmalt.html

extracted from the corpus. The noun model was built

using 5K nouns, 80K dependency relations, and 2K

context words (excluding stop words) with highest

frequency in the training set, which yields matrices

of 5K nouns × 80K dependency relations, 5K nouns

× 2K context words, and 80K dependency relations

× 2K context words. The model for verbs was con-

structed analogously, using 3K verbs, and the same

number of dependency relations and context words.

For our initial k-means clustering, we set k = 600
for nouns, and k = 400 for verbs. For the under-

lying interleaved NMF model, we used 50 iterations,

and factored the model to 50 dimensions.

4.3 Evaluation measures

The results of the systems participating in the

SEMEVAL-2010 WSI/WSD task are evaluated both

in a supervised and in an unsupervised manner.

The supervised evaluation in the SEMEVAL-2010

WSI/WSD task follows the scheme of the SEMEVAL-

2007 WSI task (Agirre and Soroa, 2007), with some

modifications. One part of the test set is used as a

mapping corpus, which maps the automatically in-

duced clusters to gold standard senses; the other part

acts as an evaluation corpus. The mapping between

clusters and gold standard senses is used to tag the

evaluation corpus with gold standard tags. The sys-

tems are then evaluated as in a standard WSD task,

using recall.

In the unsupervised evaluation, the induced

senses are evaluated as clusters of instances which

are compared to the sets of instances tagged with

the gold standard senses (corresponding to classes).

Two partitions are thus created over the test set of

a target word: a set of automatically generated clus-

ters and a set of gold standard classes. A number of

these instances will be members of both one gold

standard class and one cluster. Consequently, the

quality of the proposed clustering solution is evalu-

ated by comparing the two groupings and measuring

their similarity.

Two evaluation metrics are used during the unsu-

pervised evaluation in order to estimate the quality

of the clustering solutions, the V-Measure (Rosen-

berg and Hirschberg, 2007) and the paired F-

Score (Artiles et al., 2009). V-Measure assesses the

quality of a clustering by measuring its homogeneity

(h) and its completeness (c). Homogeneity refers to



the degree that each cluster consists of data points

primarily belonging to a single gold standard class,

while completeness refers to the degree that each

gold standard class consists of data points primarily

assigned to a single cluster. V-Measure is the har-

monic mean of h and c.

V M =
2 · h · c

h + c
(7)

In the paired F-Score (Artiles et al., 2009) eval-

uation, the clustering problem is transformed into a

classification problem (Manandhar et al., 2010). A

set of instance pairs is generated from the automati-

cally induced clusters, which comprises pairs of the

instances found in each cluster. Similarly, a set of in-

stance pairs is created from the gold standard classes,

containing pairs of the instances found in each class.

Precision is then defined as the number of common

instance pairs between the two sets to the total num-

ber of pairs in the clustering solution (cf. formula 8).

Recall is defined as the number of common instance

pairs between the two sets to the total number of

pairs in the gold standard (cf. formula 9). Preci-

sion and recall are finally combined to produce the

harmonic mean (cf. formula 10).

P =
|F (K) ∩ F (S)|

|F (K)|
(8)

R =
|F (K) ∩ F (S)|

|F (S)|
(9)

FS =
2 · P ·R

P + R
(10)

The obtained results are also compared to two

baselines. The most frequent sense (MFS) baseline

groups all testing instances of a target word into one

cluster. The Random baseline randomly assigns an

instance to one of the clusters.6 This baseline is exe-

cuted five times and the results are averaged.

4.4 Results

4.4.1 Unsupervised evaluation

In table 1, we present the performance of a num-

ber of algorithms on the V-measure. We compare

6The number of clusters in Random was chosen to be

roughly equal to the average number of senses in the gold stan-

dard.

our V-measure scores with the scores of the best-

ranked systems in the SEMEVAL 2010 WSI/WSD

task, both for the complete data set and for nouns

and verbs separately. The fourth column shows the

average number of clusters induced in the test set by

each algorithm. The MFS baseline has a V-Measure

equal to 0, since by definition its completeness is 1

and its homogeneity is 0.

NMFcon – our model that takes a conservative ap-

proach in the induction of candidate senses – does

not beat the random baseline. NMFlib – our model

that is more liberal in inducing senses – reaches bet-

ter results. With 11.8%, it scores similar to other

algorithms that induce a similar average number of

clusters, such as Duluth-WSI (Pedersen, 2010).

Pedersen (2010) has shown that the V-Measure

tends to favour systems producing a higher number

of clusters than the number of gold standard senses.

This is reflected in the scores of our models as well.

VM (%) all noun verb #cl

Hermit 16.2 16.7 15.6 10.78

UoY 15.7 20.6 8.5 11.54

KSU KDD 15.7 18.0 12.4 17.50

NMFlib 11.8 13.5 9.4 4.80

Duluth-WSI 9.0 11.4 5.7 4.15

Random 4.4 4.2 4.6 4.00

NMFcon 3.9 3.9 3.9 1.58

MFS 0.0 0.0 0.0 1.00

Table 1: unsupervised V-measure evaluation on SE-

MEVAL test set

Motivated by the large divergences in the sys-

tem rankings on the different metrics used in the

SEMEVAL-2010 WSI/WSD task, Pedersen (2010)

performed an evaluation of the metrics themselves.

His evaluation relied on the assumption that a good

measure should assign low scores to random base-

lines. Pedersen showed that the V-Measure contin-

ued to improve as randomness increased. We agree

with Pedersen’s conclusion that the V-Measure re-

sults should be interpreted with caution, but we still

report the results in order to perform a global com-

parison, on all metrics, of our system’s performance

to the systems that participated to the SEMEVAL task.

Contrary to V-Measure, paired F-score is a fairly

reliable measure and the only one that managed to



identify and expose random baselines in the above

mentioned metric evaluation. This means that the

random systems used for testing were ranked low

when a high number of random senses was used.

In table 2, the paired F-Score of a number of al-

gorithms is given. The paired F-Score penalizes sys-

tems when they produce a higher number of clusters

(low recall) or a lower number of clusters (low pre-

cision) than the gold standard number of senses. We

again compare our results with the scores of the best-

ranked systems in the SEMEVAL-2010 WSI/WSD

TASK.

FS (%) all noun verb #cl

MFS 63.5 57.0 72.7 1.00

Duluth-WSI-SVD-Gap 63.3 57.0 72.4 1.02

NMFcon 60.2 54.6 68.4 1.58

NMFlib 45.3 42.2 49.8 5.42

Duluth-WSI 41.1 37.1 46.7 4.15

Random 31.9 30.4 34.1 4.00

Table 2: Unsupervised paired F-score evaluation on SE-

MEVAL testset

NMFcon reaches a score of 60.2%, which is again

similar to other algorithms that induce the same aver-

age number clusters. NMFlib scores 45.3%, indicat-

ing that the algorithm is able to retain a reasonable F-

Score while at the same time inducing a significant

number of clusters. This especially becomes clear

when comparing its score to the other algorithms.

4.4.2 Supervised evaluation

In the supervised evaluation, the automatically in-

duced clusters are mapped to gold standard senses,

using the mapping corpus (i.e. one part of the test

set). The obtained mapping is used to tag the evalu-

ation corpus (i.e. the other part of the test set) with

gold standard tags, which means that the methods

are evaluated in a standard WSD task.

Table 3 shows the recall of our algorithms in the

supervised evaluation, again compared to other algo-

rithms evaluated in the SEMEVAL-2010 WSI/WSD

task.

NMFlib gets 62.6%, which makes it the best scor-

ing algorithm on the supervised evaluation. NMFcon

reaches 60.3%, which again indicates that it is in the

SR (%) all noun verb #S

NMFlib 62.6 57.3 70.2 1.82

UoY 62.4 59.4 66.8 1.51

Duluth-WSI 60.5 54.7 68.9 1.66

NMFcon 60.3 54.5 68.8 1.21

MFS 58.7 53.2 66.6 1.00

Random 57.3 51.5 65.7 1.53

Table 3: Supervised recall for SEMEVAL testset, 80%

mapping, 20% evaluation

same ballpark as other algorithms that induce a sim-

ilar average number of senses.

Some doubts have been cast on the representative-

ness of the supervised recall results as well. Accord-

ing to Pedersen (2010), the supervised learning al-

gorithm that underlies this evaluation method tends

to converge to the Most Frequent Sense (MFS) base-

line, because the number of senses that the classi-

fier assigns to the test instances is rather low. We

think these shortcomings indicate the need for the

development of new evaluation metrics, capable of

providing a more accurate evaluation of the perfor-

mance of WSI systems. Nevertheless, these metrics

still constitute a useful testbed for comparing the per-

formance of different systems.

5 Conclusion and future work

In this paper, we presented a model based on latent

semantics that is able to perform word sense induc-

tion as well as disambiguation. Using latent topi-

cal dimensions, the model is able to discriminate be-

tween different senses of a word, and subsequently

disambiguate particular instances of a word. The

evaluation results indicate that our model reaches

state-of-the-art performance compared to other sys-

tems that participated in the SEMEVAL-2010 word

sense induction and disambiguation task. Moreover,

our global approach is able to reach similar perfor-

mance on an evaluation set that is tuned to fit the

needs of local approaches. The evaluation set con-

tains an enormous amount of contexts for only a

small number of target words, favouring methods

that induce senses on a per-word basis. A global ap-

proach like ours is likely to induce a more balanced

sense inventory using a more balanced, unbiased



corpus, and is likely to outperform local methods

when such an unbiased corpus is used as input. We

therefore think that the global, unified approach to

word sense induction and disambiguation presented

here provides a genuine and powerful solution to the

problem at hand.

We conclude with some issues for future work.

First of all, we would like to evaluate the approach

presented here using a more balanced and unbiased

corpus, and compare its performance on such a cor-

pus to local approaches. Secondly, we would also

like to include grammatical dependency information

in the disambiguation step of the algorithm. For now,

the disambiguation step only uses a word’s context

words; enriching the feature set with dependency in-

formation is likely to improve the performance of

the disambiguation.
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