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ON THE CONNECTIONS BETWEEN WEAKLY STABLE
AND PSEUDO-ISOTROPIC DISTRIBUTIONS

B.H. JASIULIS 1 AND J.K. MISIEWICZ 2

Abstract. A random vector X is weakly stable iff for all a, b ∈ IR there

exists a random variable Θ such that aX+bX′ d
= XΘ. This is equivalent

(see [7]) with the condition that for all random variables Q1, Q2 there

exists a random variable Θ such that

XQ1 + X′Q2
d
= XΘ, (∗)

where X,X′, Q1, Q2, Θ are independent. Some of the weakly stable dis-

tributions turn out to be the extreme points for the class of pseudo-

isotropic distributions, where the distribution is pseudo-isotropic if all

its one-dimensional projections are the same up to a scale parameter.

We show here that the scaling function for pseudo-isotropic distribution

can define a generalized distribution iff it is an α-norm for some α > 0.
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1. Introduction

The idea of generalized convolutions was studied by K. Urbanik in a series

of papers, see [10, 11, 12, 13, 14]. This area turned out to be interesting and

it has been developed extensively till now.

In seventies of the last century there appeared a series of papers written

mainly by Kucharczak and Urbanik (see e.g. [3, 10]), where the authors

introduced the idea of weakly stable distributions on [0,∞). More precisely,

a probability measure µ on [0,∞) was called weakly stable if

∀ a, b > 0 ∃ λ on [0,∞) Taµ ∗ Tbµ = µ ◦ λ,

where (Taµ)(A) = µ(A/a), (µ ◦ λ)(A) =
∫

µ(A/s)λ(ds) for every Borel set

A in [0,∞). Currently measures µ for which this condition holds are rather

called R+-weakly stable. They are extensively studied, see e.g. [4, 16, 17, 18].

Recently Misiewicz, Oleszkiewicz and Urbanik (see [7]) gave a definition and

showed some basic properties of weakly stable distributions on Rn, or on a

separable Banach spaces E. The definition of weakly stable distributions is

almost the same as the one given by Kucharczak and Urbanik, except for

the fact that constants a, b can be any real numbers. The authors obtained

in [7] the full characterization of weakly stable distributions with non-trivial

discrete part. In [8] J.K. Misiewicz studied basic properties of the weak

generalized convolution based on weakly stable distribution.

In this paper we present some new results on weak generalized convolutions

and their connections with pseudo-isotropic distributions, i.e. multidimen-

sional symmetric distributions having all one-dimensional margins the same
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up to a scale parameter. We show that pseudo-isotropy defines a weak gen-

eralized convolution iff the corresponding scale function is the `p norm on

Rn. This result links the geometry of Lp-spaces with functional equations,

theory of pseudo-isotropic distributions and generalized convolutions.

Throughout this paper we denote by L(X) the distribution of the random

vector X. If random vectors X and Y have the same distribution we will

write X d= Y. By P(IE) we denote the set of all probability measures on a

separable Banach space (or on a set) IE. We will use the simplified notation

P(IR) = P, P([0, +∞)) = P+. For every a ∈ IR and every probability

measure µ we define the rescaling operator Ta : P(IE) → P(IE) as follows

Taµ(A) =





µ(A/a) for a 6= 0;

δ0(A) for a = 0,

for every Borel set A ∈ IE. Equivalently Taµ is the distribution of the vector

aX if µ is the distribution of the vector X. The scale mixture µ ◦ λ of a

measure µ ∈ P(IE) with respect to the measure λ ∈ P is defined by:

µ ◦ λ(A)
def
=

∫

IR
Tsµ (A) λ(ds).

It is easy to see that µ ◦ λ is the distribution of the random vector XΘ

if µ = L(X), λ = L(Θ), X and Θ are independent. In the language of

characteristic functions we obtain

µ̂ ◦ λ(t) =
∫

IR
µ̂(ts)λ(ds).

Notice that for a symmetric random vector X independent of random vari-

able Θ we have XΘ d= X|Θ|. From this property we obtain that if µ is a
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symmetric probability distribution then for |λ| = L(|Θ|) we have

µ ◦ λ = µ ◦ |λ|.

Definition 1. A probability measure µ ∈ P(IE) is weakly stable (or R+-

weakly stable) if for every choice of λ1, λ2 ∈ P (λ1, λ2 ∈ P+) there exists

λ ∈ P (λ ∈ P+) such that

(λ1 ◦ µ) ∗ (λ2 ◦ µ) = λ ◦ µ.

If µ is not symmetric then the measure λ is uniquely determined. This

fact was proven in [7] for a weakly stable measure µ, and in [15] for a

R+-weakly stable measure µ. If the measure µ is symmetric then only the

symmetrization of λ is uniquely determined (see [7], Remark 1). In this case

we can always replace the measure λ by its symmetrization (1
2δ1 + 1

2δ−1)◦λ.

For convenience in this paper we assume that for symmetric µ the measure

λ is concentrated on [0,∞) taking if necessary |λ| instead of λ.

2. Generalized weak convolution

Definition 2. Let µ ∈ P(IE) be a nontrivial weakly stable measure, and

let λ1, λ2 be probability measures on IR. If

(λ1 ◦ µ) ∗ (λ2 ◦ µ) = λ ◦ µ,

then the weak generalized convolution of the measures λ1, λ2 with respect to

the measure µ (notation λ1 ⊕µ λ2) is defined as follows

λ1 ⊕µ λ2 =





λ if µ is not symmetric;

|λ| if µ is symmetric.
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In the case of symmetric weakly stable distribution µ we take λ1⊕µ λ2 = |λ|

in order to get uniqueness of this measure. If Θ1,Θ2 are random variables

with distributions λ1, λ2 respectively then the random variable with distri-

bution λ1 ⊕µ λ2 will be denoted as Θ1 ⊕µ Θ2. Thus we have

Θ1X′ + Θ2X′′ d=
(
Θ1 ⊕µ Θ2

)
X,

where X,X′,X′′ have distribution µ, Θ1, Θ2,X′,X′′ and Θ1 ⊕µ Θ2,X are

independent. Now it is easy to see that the following lemma holds.

Lemma 1. If the weakly stable measure µ ∈ P(IE) is not trivial then ⊕µ

is commutative and associative. Moreover for all λ1, λ2, λ ∈ P λ1 ⊕µ λ2 is

uniquely determined and the following conditions hold:

(i) λ⊕µ δ0 = λ (λ⊕µ δ0 = |λ| if µ is symmetric);

(ii) Ta

(
λ1 ⊕µ λ2

)
=

(
Taλ1

)⊕µ

(
Taλ2

)
;

(iii) (pλ1 + (1− p)λ2)⊕µλ = p (λ1 ⊕µ λ)+(1−p) (λ2 ⊕µ λ) ∀ p ∈ [0, 1];

(iv) if λn → λ then λn ⊕µ ν → λ⊕µ ν for all ν ∈ P.

In 1964 K. Urbanik introduced the definition of a generalized convolution

as an commutative and associative binary operator ¦ on the space P2
+ of all

probability measures on [0,∞) taking values in P+ such that the properties

(i)÷(iv) of the previous lemma hold with ⊕µ replaced by ¦ and

(v) there exists a sequence of positive numbers (cn) such that Tcnδ¦n1

converges weakly to a measure ν 6= δ0 (here λ¦n = λ ¦ · · · ¦λ denotes

the generalized convolution of n identical measures λ).

Notice that for a weakly stable measure µ we have that (Tcnδ¦n1 ) ◦ µ =

Tcn(µ¦n) thus if the condition (v) holds for the weak generalized convolution,
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then µ is in the domain of attraction of some stable measure, which we do

not want to assume.

Urbanik calls the generalized convolution ¦ regular if there exists a nontrivial

homomorphism h : P+ → R such that h(λ1 ¦ λ2) = h(λ1)h(λ2) and h(pλ1 +

(1−p)λ2) = ph(λ1)+(1−p)h(λ2). It is easy to see that the weak generalized

convolution ⊕µ is regular with h(δx) = µ̂(x).

3. pseudo-isotropic distributions

We give here only the definition and an elementary description of pseudo-

isotropic distributions in the scope required for this paper. More about

pseudo-isotropic distributions one can find in [5], [9].

Definition 3. The random vector X = (X1, . . . , Xn) or its distribution µ

on Rn is pseudo-isotropic if there exists a function c : Rn → [0,∞) and a

function f on R, f(−t) = f(t) such that for each ξ ∈ Rn, and every t ∈ R

E exp {i < ξt,X >} = f (c(ξ)|t|) .

It was shown (see e.g. [9]) that c is a continuous quasi-norm on Rn, i.e. it

has all the properties of a norm except that the triangular inequality holds

with some constant. Moreover, by putting ξ = (1, 0, . . . , 0) we see that

E exp {itX1} = f (c(1, 0, . . . , 0))|t|)

thus f(|t|) is, up to a scale parameter, equal the characteristic function of

the variable X1. We can always assume that c(1, 0, . . . , 0) = 1. Then

∀ ξ ∈ Rn < ξ,X >=
n∑

k=1

ξkXk
d= c(ξ)X1.
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This property reminds the one in the definition of strictly stable variables,

except that here we do not have independent and identically distributed

components of the random vector X. Let

M(c, n) = {µ ∈ P(Rn) : µ̂(ξ) = f(c(ξ)), f ∈ Φ} ,

where Φ is the set of all real characteristic functions on R. Thus M(c, n)

is the set of all pseudo-isotropic distributions on Rn with the fixed quasi-

norm c. It is evident that M(c, n) is closed under rescaling, convex linear

combinations and weak limits since the set of characteristic functions of the

form f(c(ξ)) with the fixed function c has these properties, thus M(c, n) is

convex and weakly closed. In some cases this set contain only one element

δ0, for example M(‖ · ‖α, n) = {δ0} if α ∈ (2,∞] and n ≥ 3 (see [9]). In

view of this fact we say that the quasi-norm c on Rn is admissible if the set

M(c, n) contains more than one element.

Proposition 1. Let c : Rn → [0,∞) be an admissible quasi-norm. If there

exists µ ∈ M(c, n) such that the set E = {Taµ : a ≥ 0} is the set of all

extreme points of M(c, n), then µ is weakly stable. Moreover, if there exists

ε > 0 such that
∫

Rn

‖x‖εµ(dx) < ∞

then for the binary operation ⊕µ the condition (v) from the Urbanik defini-

tion of generalized convolution holds.

Proof. Let µ̂(ξ) = ϕ(c(ξ). Notice that the measure Taµ ∗ Tbµ has the

characteristic function ϕ(|a|c(ξ))ϕ(|b|c(ξ)) = ψa,b(c(ξ)) which is also some

function dependent on c(ξ) only. Thus the corresponding measure ν, ν̂(ξ) =
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ψa,b(c(ξ)) belongs to M(c, n). Since E is the set of all extreme points of

M(c, n) then there exists a measure λ on [0,∞) such that

ψa,b(c(ξ)) =
∫ ∞

0
ϕ(c(ξ)t)λ(dt).

This means that ν = µ ◦ λ and consequently Taµ ∗ Tbµ = µ ◦ λ.

Assume now that
∫ ‖x‖εµ(dx) < ∞ and let α = sup{p ≤ 2:

∫ ‖x‖pµ(dx) <

∞}. Since µ is symmetric we see that µ belongs to the domain of attraction

(see e.g. [?]) of some non-trivial symmetric α-stable measure γα and

Tn−1/αµ∗n → γα. (∗∗)

This means, in particular, that γα ∈ M(c, n) and there exists λ ∈ P such

that γα = µ ◦ λ. The measure λ is not equal δ0 since otherwise we would

have γα = δ0 which is excluded. Now the equation (∗∗) together with the

trivial equality µ = µ ◦ δ1 implies finally that Tn−1/αδ
⊕µn
1 → λ. ¤

4. Pseudo-isotropic generalized convolutions

Let (X, Y ) be a pseudo-isotropic random vector with the scaling function (a

quasi-norm) c : R2 → [0,∞), i.e. for every a, b ∈ R we have that aX + bY
d=

c(a, b)X. We define a binary operation ⊕c on the set P+ by the following

λ1 ⊕c λ2 = L (c(Θ1, Θ2)) ,

where L(Θ1) = λ1, L(Θ2) = λ2. It is easy to see that if (Θ1, Θ2) and (X,Y )

are independent then Θ1X +Θ2Y
d= c(Θ1, Θ2)X. The question arises under

which conditions the operation ⊕c defines an generalized convolution?
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Theorem 1. Let c : R2 → [0,∞) be the quasi-norm defined by a pseudo-

isotropic random vector (X,Y ). Then the binary operation ⊕c defines an

generalized convolution on P+ if and only if there exists α ∈ (0,∞] such

that c(t, s) = ‖(t, s)‖α.

Proof. Notice first that for constant random variables Θ1 ≡ t, Θ2 ≡ s we

have c(Θ1, Θ2) ≡ c(t, s). This means in particular that δt ⊕c δs = δc(t,s).

Now we shall check under what conditions the operation ⊕c is such that

the conditions (i) ÷ (v) hold for ⊕µ and ¦ replaced by ⊕c. The condition

(i) states that δ0 is the unit element for ⊕c, i.e. δ0 ⊕c λ = λ for each

λ ∈ P+. Applying this condition for the measure λ = δs we would have

that δs = c(δ0, δs) = δc(0,s), which means that for every s > 0 we shall have

c(0, s) = s. Since the operation ⊕c is supposed to be commutative then

we have also c(t, s) = c(s, t) for all s, t ≥ 0. Associativity of the operation

⊕c (applied only to measures concentrated at one point) means that for all

r, s, t ≥ 0 we have (δr ⊕c δs)⊕c δt = δr⊕c (δs ⊕c δt). This means that for the

function c the following condition holds

∀ r, s, t ≥ 0 c(c(r, s), t) = c(r, c(s, t)).

Now we came to the assumptions of the spectacular result of Bohnenblust

(see Th. 4.1 in [1]), which states that if c is any function defined over the

quadrant s, t ≥ 0 having the following properties:

1) c(rs, rt) = rc(s, t) for all r, s, t ≥ 0;

2) c(s, t) ≤ c(s1, t1) for all 0 ≤ s ≤ s1, 0 ≤ t ≤ t1;

3) c(s, t) = c(t, s) for all s, t ≥ 0;
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4) c(0, 1) = 1;

5) c(c(r, s), t) = c(r, c(s, t)) for all r, s, t ≥ 0

then there exists α ∈ (0,∞] such that

c(s, t) =





(sα + tα)1/α for α < ∞;

max{s, t} for α = ∞.

The assumption 2) in the Bohnenblust theorem was supposed to be the

weakest possible substitute of the continuity of the function c. In our

case the function c is continuous as the quasi-norm on R2, thus we can di-

rectly apply this result. Now, with this particular function c the conditions

(ii) ÷ (iv) hold trivially. To see the opposite implication notice first that

for α ∈ (0, 2] it is enough to take X,Y independent, identically distributed

symmetric α-stable random variables. Then (X, Y ) is pseudo-isotropic with

the quasi-norm c(s, t) = ‖(s, t)‖α. For α = ∞ we shall take two inde-

pendent symmetric standard Cauchy random variables Z1, Z2, and define

(X, Y ) = (Z1 + Z2, Z1 − Z2). Then we have

aX + bY = (a + b)Z1 + (a− b)Z2
d= (|a + b|+ |a− b|) Z1

d= max{|a|, |b|}X.

For α ∈ (2,∞) we use the fact that every two dimensional Banach space

embeds isometrically into some L1-space (see e.g. [6]). Thus for each such α

the function exp{−‖(s, t)‖α} is a characteristic function of some symmetric

random vector, say (X, Y ). Obviously the vector (X, Y ) is pseudo-isotropic

with the quasi-norm ‖(s, t)‖α. ¤

Remark. Notice that the considered generalized convolution ⊕‖·‖p
is regu-

lar with the homomorphism e−tp . If p > 2 then the generalized convolution
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⊕‖·‖p
is not weak since in this case e−|t|p cannot be a characteristic function

for any probability measure.

Acknowledgement. The authors are indebted to the referee for his valu-
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