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) with the condition that for all random variables Q1, Q2 there exists a random variable Θ such that

where X, X , Q 1 , Q 2 , Θ are independent. Some of the weakly stable distributions turn out to be the extreme points for the class of pseudoisotropic distributions, where the distribution is pseudo-isotropic if all its one-dimensional projections are the same up to a scale parameter.

We show here that the scaling function for pseudo-isotropic distribution can define a generalized distribution iff it is an α-norm for some α > 0.

Introduction

The idea of generalized convolutions was studied by K. Urbanik in a series of papers, see [START_REF] Urbanik | Generalized convolutions[END_REF][START_REF] Urbanik | Generalized convolutions II[END_REF][START_REF] Urbanik | Generalized convolutions III[END_REF][START_REF] Urbanik | Generalized convolutions IV[END_REF][START_REF] Urbanik | Generalized convolutions V[END_REF]. This area turned out to be interesting and it has been developed extensively till now.

In seventies of the last century there appeared a series of papers written mainly by Kucharczak and Urbanik (see e.g. [START_REF] Kucharczak | Quasi-Stable functions[END_REF][START_REF] Urbanik | Generalized convolutions[END_REF]), where the authors introduced the idea of weakly stable distributions on [0, ∞). More precisely, a probability measure µ on [0, ∞) was called weakly stable if

∀ a, b > 0 ∃ λ on [0, ∞) T a µ * T b µ = µ • λ,

where (T a µ)(A) = µ(A/a), (µ • λ)(A) = µ(A/s)λ(ds) for every Borel set

A in [0, ∞). Currently measures µ for which this condition holds are rather called R + -weakly stable. They are extensively studied, see e.g. [START_REF] Kucharczak | Transformations preserving Weak Stability[END_REF][START_REF]kovich. On Symmetric Stochastic Convolutions[END_REF][START_REF] Vol'kovich | On infinitely decomposable measures in algebras with stochastic convolution. Stability Problems of Stochastic models[END_REF][START_REF] Vol'kovich | Multidimensional B-stable distributions and some generalized convolutions. Stability Problems of Stochastic models[END_REF].

Recently Misiewicz, Oleszkiewicz and Urbanik (see [START_REF] Misiewicz | Classes of measures closed under mixing and convolution. Weak stability[END_REF]) gave a definition and showed some basic properties of weakly stable distributions on R n , or on a separable Banach spaces E. The definition of weakly stable distributions is almost the same as the one given by Kucharczak and Urbanik, except for the fact that constants a, b can be any real numbers. The authors obtained in [START_REF] Misiewicz | Classes of measures closed under mixing and convolution. Weak stability[END_REF] the full characterization of weakly stable distributions with non-trivial discrete part. In [START_REF] Misiewicz | Weak stability and generalized weak convolution for random vectors and stochastic processes[END_REF] J.K. Misiewicz studied basic properties of the weak generalized convolution based on weakly stable distribution.

In this paper we present some new results on weak generalized convolutions and their connections with pseudo-isotropic distributions, i.e. multidimensional symmetric distributions having all one-dimensional margins the same up to a scale parameter. We show that pseudo-isotropy defines a weak generalized convolution iff the corresponding scale function is the p norm on R n . This result links the geometry of L p -spaces with functional equations, theory of pseudo-isotropic distributions and generalized convolutions.

Throughout this paper we denote by L(X) the distribution of the random vector X. If random vectors X and Y have the same distribution we will write X d = Y. By P(IE) we denote the set of all probability measures on a separable Banach space (or on a set) IE. We will use the simplified notation P(IR) = P, P([0, +∞)) = P + . For every a ∈ IR and every probability measure µ we define the rescaling operator T a : P(IE) → P(IE) as follows

T a µ(A) =        µ(A/a) for a = 0; δ 0 (A)
for a = 0, for every Borel set A ∈ IE. Equivalently T a µ is the distribution of the vector aX if µ is the distribution of the vector X. The scale mixture µ • λ of a measure µ ∈ P(IE) with respect to the measure λ ∈ P is defined by:

µ • λ(A) def = IR T s µ (A) λ(ds).
It is easy to see that µ • λ is the distribution of the random vector XΘ if µ = L(X), λ = L(Θ), X and Θ are independent. In the language of characteristic functions we obtain

µ • λ(t) = IR µ(ts)λ(ds).
Notice that for a symmetric random vector X independent of random vari- 

(λ 1 • µ) * (λ 2 • µ) = λ • µ.
If µ is not symmetric then the measure λ is uniquely determined. This fact was proven in [START_REF] Misiewicz | Classes of measures closed under mixing and convolution. Weak stability[END_REF] for a weakly stable measure µ, and in [START_REF] Urbanik | Remarks on B-stable Probability Distributions[END_REF] for a R + -weakly stable measure µ. If the measure µ is symmetric then only the symmetrization of λ is uniquely determined (see [START_REF] Misiewicz | Classes of measures closed under mixing and convolution. Weak stability[END_REF], Remark 1). In this case we can always replace the measure λ by its symmetrization (

1 2 δ 1 + 1 2 δ -1 ) • λ.
For convenience in this paper we assume that for symmetric µ the measure λ is concentrated on [0, ∞) taking if necessary |λ| instead of λ.

Generalized weak convolution

Definition 2. Let µ ∈ P(IE) be a nontrivial weakly stable measure, and let λ 1 , λ 2 be probability measures on IR. If

(λ 1 • µ) * (λ 2 • µ) = λ • µ,
then the weak generalized convolution of the measures λ 1 , λ 2 with respect to the measure µ (notation λ 1 ⊕ µ λ 2 ) is defined as follows

λ 1 ⊕ µ λ 2 =        λ if µ is not symmetric; |λ| if µ is symmetric.
In the case of symmetric weakly stable distribution µ we take λ 1 ⊕ µ λ 2 = |λ| in order to get uniqueness of this measure. If Θ 1 , Θ 2 are random variables with distributions λ 1 , λ 2 respectively then the random variable with distribution λ 1 ⊕ µ λ 2 will be denoted as Θ 1 ⊕ µ Θ 2 . Thus we have

Θ 1 X + Θ 2 X d = Θ 1 ⊕ µ Θ 2 X, where X, X , X have distribution µ, Θ 1 , Θ 2 , X , X and Θ 1 ⊕ µ Θ 2 , X are
independent. Now it is easy to see that the following lemma holds.

Lemma 1. If the weakly stable measure µ ∈ P(IE) is not trivial then ⊕ µ is commutative and associative. Moreover for all λ 1 , λ 2 , λ ∈ P λ 1 ⊕ µ λ 2 is uniquely determined and the following conditions hold:

(i) λ ⊕ µ δ 0 = λ (λ ⊕ µ δ 0 = |λ| if µ is symmetric); (ii) T a λ 1 ⊕ µ λ 2 = T a λ 1 ⊕ µ T a λ 2 ; (iii) (pλ 1 + (1 -p)λ 2 )⊕ µ λ = p (λ 1 ⊕ µ λ)+(1-p) (λ 2 ⊕ µ λ) ∀ p ∈ [0, 1]; (iv) if λ n → λ then λ n ⊕ µ ν → λ ⊕ µ ν for all ν ∈ P.
In 1964 K. Urbanik introduced the definition of a generalized convolution as an commutative and associative binary operator on the space P 2 + of all probability measures on [0, ∞) taking values in P + such that the properties Notice that for a weakly stable measure µ we have that (T cn δ n 1 ) • µ = T c n (µ n ) thus if the condition (v) holds for the weak generalized convolution, B.H. JASIULIS 1 AND J.K. MISIEWICZ 2 then µ is in the domain of attraction of some stable measure, which we do not want to assume.

Urbanik calls the generalized convolution regular if there exists a nontrivial homomorphism h :

P + → R such that h(λ 1 λ 2 ) = h(λ 1 )h(λ 2 ) and h(pλ 1 + (1-p)λ 2 ) = ph(λ 1 )+(1-p)h(λ 2 ).
It is easy to see that the weak generalized convolution ⊕ µ is regular with h(δ x ) = µ(x).

pseudo-isotropic distributions

We give here only the definition and an elementary description of pseudoisotropic distributions in the scope required for this paper. More about pseudo-isotropic distributions one can find in [START_REF] Misiewicz | Pseudo-isotropic measures[END_REF], [START_REF] Misiewicz | Sub-stable and pseudo-isotropic processes[END_REF].

Definition 3. The random vector X = (X 1 , . . . , X n ) or its distribution µ on R n is pseudo-isotropic if there exists a function c : R n → [0, ∞) and a function f on R, f (-t) = f (t) such that for each ξ ∈ R n , and every t ∈ R

E exp {i < ξt, X >} = f (c(ξ)|t|) .
It was shown (see e.g. [START_REF] Misiewicz | Sub-stable and pseudo-isotropic processes[END_REF]) that c is a continuous quasi-norm on R n , i.e. it has all the properties of a norm except that the triangular inequality holds with some constant. Moreover, by putting ξ = (1, 0, . . . , 0) we see that

E exp {itX 1 } = f (c(1, 0, . . . , 0))|t|)
thus f (|t|) is, up to a scale parameter, equal the characteristic function of the variable X 1 . We can always assume that c(1, 0, . . . , 0) = 1. Then

∀ ξ ∈ R n < ξ, X >= n k=1 ξ k X k d = c(ξ)X 1 .
This property reminds the one in the definition of strictly stable variables, except that here we do not have independent and identically distributed components of the random vector X. Let

M(c, n) = {µ ∈ P(R n ) : µ(ξ) = f (c(ξ)), f ∈ Φ} ,
where Φ is the set of all real characteristic functions on R. Thus M(c, n)

is the set of all pseudo-isotropic distributions on R n with the fixed quasinorm c. It is evident that M(c, n) is closed under rescaling, convex linear combinations and weak limits since the set of characteristic functions of the form f (c(ξ)) with the fixed function c has these properties, thus M(c, n) is convex and weakly closed. In some cases this set contain only one element

δ 0 , for example M( • α , n) = {δ 0 } if α ∈ (2, ∞]
and n ≥ 3 (see [START_REF] Misiewicz | Sub-stable and pseudo-isotropic processes[END_REF]). In view of this fact we say that the quasi-norm c on R n is admissible if the set M(c, n) contains more than one element. 

ψ a,b (c(ξ)) = ∞ 0 ϕ(c(ξ)t)λ(dt).
This means that ν = µ • λ and consequently

T a µ * T b µ = µ • λ.
Assume now that x ε µ(dx) < ∞ and let α = sup{p ≤ 2 :

x p µ(dx) < ∞}. Since µ is symmetric we see that µ belongs to the domain of attraction (see e.g. [?]) of some non-trivial symmetric α-stable measure γ α and

T n -1/α µ * n → γ α . ( * * )
This means, in particular, that γ α ∈ M(c, n) and there exists λ ∈ P such that γ α = µ • λ. The measure λ is not equal δ 0 since otherwise we would have γ α = δ 0 which is excluded. Now the equation ( * * ) together with the

trivial equality µ = µ • δ 1 implies finally that T n -1/α δ ⊕ µ n 1 → λ.

Pseudo-isotropic generalized convolutions

Let (X, Y ) be a pseudo-isotropic random vector with the scaling function (a quasi-norm) c : R 2 → [0, ∞), i.e. for every a, b ∈ R we have that aX

+ bY d = c(a, b)X.
We define a binary operation ⊕ c on the set P + by the following

λ 1 ⊕ c λ 2 = L (c(Θ 1 , Θ 2 )) ,
where 

L(Θ 1 ) = λ 1 , L(Θ 2 ) = λ 2 . It is easy to see that if (Θ 1 , Θ 2 ) and (X, Y ) are independent then Θ 1 X + Θ 2 Y d = c(Θ 1 , Θ 2 )X.
∈ (0, ∞] such that c(s, t) =        (s α + t α ) 1/α for α < ∞; max{s, t} for α = ∞.
The assumption 2) in the Bohnenblust theorem was supposed to be the weakest possible substitute of the continuity of the function c. In our case the function c is continuous as the quasi-norm on R 2 , thus we can directly apply this result. Now, with this particular function c the conditions (ii) ÷ (iv) hold trivially. To see the opposite implication notice first that for α ∈ (0, 2] it is enough to take X, Y independent, identically distributed For α ∈ (2, ∞) we use the fact that every two dimensional Banach space embeds isometrically into some L 1 -space (see e.g. [START_REF] Misiewicz | Norm dependent positive definite functions and measures on vector spaces[END_REF]). Thus for each such α the function exp{-(s, t) α } is a characteristic function of some symmetric random vector, say (X, Y ). Obviously the vector (X, Y ) is pseudo-isotropic with the quasi-norm (s, t) α .

Remark. Notice that the considered generalized convolution ⊕ • p is regular with the homomorphism e -t p . If p > 2 then the generalized convolution

  (i)÷(iv) of the previous lemma hold with ⊕ µ replaced by and (v) there exists a sequence of positive numbers (c n ) such that T c n δ n 1 converges weakly to a measure ν = δ 0 (here λ n = λ • • • λ denotes the generalized convolution of n identical measures λ).

Proposition 1 .

 1 Let c : R n → [0, ∞) be an admissible quasi-norm. If there exists µ ∈ M(c, n) such that the set E = {T a µ : a ≥ 0} is the set of all extreme points of M(c, n), then µ is weakly stable. Moreover, if there existsε > 0 such that R n x ε µ(dx) < ∞then for the binary operation ⊕ µ the condition (v) from the Urbanik definition of generalized convolution holds. Proof. Let µ(ξ) = ϕ(c(ξ). Notice that the measure T a µ * T b µ has the characteristic function ϕ(|a|c(ξ))ϕ(|b|c(ξ)) = ψ a,b (c(ξ)) which is also some function dependent on c(ξ) only. Thus the corresponding measure ν, ν(ξ) = B.H. JASIULIS 1 AND J.K. MISIEWICZ 2 ψ a,b (c(ξ)) belongs to M(c, n). Since E is the set of all extreme points of M(c, n) then there exists a measure λ on [0, ∞) such that

  symmetric α-stable random variables. Then (X, Y ) is pseudo-isotropic with the quasi-norm c(s, t) = (s, t) α . For α = ∞ we shall take two independent symmetric standard Cauchy random variables Z 1 , Z 2 , and define(X, Y ) = (Z 1 + Z 2 , Z 1 -Z 2 ). Then we have aX + bY = (a + b)Z 1 + (a -b)Z 2 d = (|a + b| + |a -b|) Z 1 d = max{|a|, |b|}X.

  The question arises under which conditions the operation ⊕ c defines an generalized convolution? Theorem 1. Let c : R 2 → [0, ∞) be the quasi-norm defined by a pseudoisotropic random vector (X, Y ). Then the binary operation ⊕ c defines an generalized convolution on P + if and only if there exists α ∈ (0, ∞] such that c(t, s) = (t, s) α .Proof. Notice first that for constant random variables Θ 1 ≡ t, Θ 2 ≡ s we have c(Θ 1 , Θ 2 ) ≡ c(t, s). This means in particular that δ t ⊕ c δ s = δ c(t,s) . we shall check under what conditions the operation ⊕ c is such that the conditions (i) ÷ (v) hold for ⊕ µ and replaced by ⊕ c . The condition (i) states that δ 0 is the unit element for ⊕ c , i.e. δ 0 ⊕ c λ = λ for each λ ∈ P + . Applying this condition for the measure λ = δ s we would have that δ s = c(δ 0 , δ s ) = δ c(0,s) , which means that for every s > 0 we shall have c(0, s) = s. Since the operation ⊕ c is supposed to be commutative then B.H. JASIULIS 1 AND J.K. MISIEWICZ2 

	4) c(0, 1) = 1;
	5) c(c(r, s), t) = c(r, c(s, t)) for all r, s, t ≥ 0
	then there exists α
	Now Now we came to the assumptions of the spectacular result of Bohnenblust
	(see Th. 4.1 in [1]), which states that if c is any function defined over the
	quadrant s, t ≥ 0 having the following properties:
	1) c(rs, rt) = rc(s, t) for all r, s, t ≥ 0;

we have also c(t, s) = c(s, t) for all s, t ≥ 0. Associativity of the operation ⊕ c (applied only to measures concentrated at one point) means that for all r, s, t ≥ 0 we have (δ r ⊕ c δ s ) ⊕ c δ t = δ r ⊕ c (δ s ⊕ c δ t ). This means that for the function c the following condition holds

∀ r, s, t ≥ 0 c(c(r, s), t) = c(r, c(s, t

)).

2) c(s, t) ≤ c(s 1 , t 1 ) for all 0 ≤ s ≤ s 1 , 0 ≤ t ≤ t 1 ;

3) c(s, t) = c(t, s) for all s, t ≥ 0;
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