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The equations governing large deformations of hybrid structures are derived from basic principles of mechanics. The considered structures comprise membrane elements with strings arranged inside and possibly along boundaries of the entire structure. No special assumptions are imposed on the mechanical properties of membrane and string elements. The principle of virtual work is formulated under weak continuity hypotheses so that the derived theory takes into account general types of membrane-string attachments. The theory of mechanical constitutive equations for the considered structures is developed and the form of elastic constitutive equations is discussed. A number of specific aspects of string-membrane interactions are analyzed and possible applications of the developed theory are indicated.

Introduction

In continuum mechanics, perfectly flexible (true) membranes and strings are defined as material surfaces and curves, respectively, having no or only insignificant resistance to bending. These theoretical concepts are well-developed (see e.g. Libai and Simmonds [START_REF] Libai | The Nonlinear Theory of Elastic Shells[END_REF] for membranes and Antman [START_REF] Antman | Nonlinear Problems of Elasticity[END_REF] for strings) and they have long been used to model diverse phenomena ranging from mechanics of tension structures to fluid capillarity and biomembranes.

In a more recent work [START_REF] Atai | Coupled deformations of elastic curves and surfaces[END_REF], Atai and Steigmann presented the theory of perfectly flexible hybrid structures consisting of interacting strings (cables) and membranes. Assuming that strings and membranes as well as the interactions between them are perfectly elastic, they derived the complete set of equilibrium equations for two classes of membrane-string attachments (interactions) from the principle of stationary total potential energy. In the first one, the cable is fixed to the membrane at each boundary point and deforms with it as an embedded (material) string, while in the second one the cable and the membrane may slide relative to each other without separating.

Their theory can be successfully applied in modeling hybrid tension structures in civil engineering 1 Tel.: +49 234 3226037; fax: +49 234 3214154
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2 as well as in modeling various phenomena in physical and biological sciences. In such applications, however, it would be desirable to take into account the energy dissipation due to the inevitable irreversibility of the modeled processes and possible other types of attachments. This in turn requires that the a priori assumption of perfect elasticity must be rejected and the formulation of the theory cannot be based on variational formulations.

The static problem of a membrane supported by cables arranged along edges has been also considered by De Tommasi and his coworkers [START_REF] Tommasi | Statics of edge cables in tent structure[END_REF][START_REF] Tommasi | Statics of tent structures[END_REF]. Assuming that the cable is fixed to the membrane boundary (the first type of attachment studied in [START_REF] Atai | Coupled deformations of elastic curves and surfaces[END_REF]), they characterized external loads which can be carried by the structures at equilibrium. In particular, they have shown that in the absence of distributed loading only surfaces with negative Gaussian curvature are admitted as equilibrium configurations of such structures, the fact which have being used in the design of tensioned structures by Otto [START_REF] Otto | Tensile Structures[END_REF] (the proof of this theorem may also be based on the Mohr's circle construction applied to the surface curvature tensor, see e.g. Nutbourne [START_REF] Nutbourne | A circle diagram for local differential geometry[END_REF]). Under the additional assumption that the contact forces between cable and membrane are everywhere contained in the tangent plane to the membrane along the edge cable, it has been found in [START_REF] Tommasi | Statics of tent structures[END_REF] that the equilibrium of the cable and membrane requires that cable equilibrium configurations coincide with the characteristic lines associated with the differential equation of the membrane equilibrium.

In [START_REF] Atai | Coupled deformations of elastic curves and surfaces[END_REF][START_REF] Tommasi | Statics of edge cables in tent structure[END_REF][START_REF] Tommasi | Statics of tent structures[END_REF] cables arranged along the boundary of membrane structure have only been considered with the additional assumption of perfect elasticity of the membrane and cables. A more general approach to the statics of hybrid structures comprised of interacting membranes and strings has been outlined in the author's earlier works [START_REF] Kazakeviciute-Makovska | Statical deformations of flexible membranes coupled to strings[END_REF][START_REF] Kazakeviciute-Makovska | Modelling of fabric structures in civil engineering[END_REF]. The aim of this paper is to show that the equations governing large deformations of hybrid structures with membrane and string elements arranged in any way and of any material behavior can be derived directly from the basic principles of mechanics. The principle of virtual work is next formulated by a simple and rigorous procedure without too restrictive continuity hypotheses, thus allowing not only for both types of attachments considered in [START_REF] Atai | Coupled deformations of elastic curves and surfaces[END_REF] but also some more general kinds. Some as yet unstudied aspects of the problem of constitutive equations for hybrid structures with general form of string-membrane interactions are also examined. Finally, a number of specific aspects of string-membrane interactions are analyzed and some interesting applications of the developed theory are indicated.

The paper is organized as follows. The spatial configurations of hybrid structure comprised of membranes and strings and modeled as piecewise smooth surface is described in Section 2. In Section 3 the integral balance laws of forces and moments of forces are formulated for the hybrid structure subject to a general system of loading. In Section 4 the local equilibrium conditions are derived from the integral balance laws. Next, in Section 5, the principle of virtual work for the 

Spatial configurations of hybrid structure

Classically, strings and membranes are modeled as one-and two-dimensional continua whose spatial configurations are represented by smooth curves and surfaces, respectively. Hybrid structures considered in this paper comprise membranes with strings arranged inside and possibly along boundaries of the entire structures. Their spatial configurations cannot be represented by smooth surfaces. Hence, it is assumed that a deformed (unknown) configuration of a hybrid structure may be represented as a piecewise smooth surface. Such a surface, denoted by M , is the union of a finite number of smooth surface elements k M . Edges of M , at which two distinct surface elements meet, form a network, denoted by N , consisting of all smooth curves i C

including their end points α c (Fig. 1). Mathematically, such a surface is defined by the following conditions (see e.g. Protter and Morrey [START_REF] Protter | A First Course in Real Analysis[END_REF]): , , , ,
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Here

D k
M denotes the interior of the surface element k M and k M its boundary. The position vectors of points in \ M N and C will be denoted by y and y , respectively, and α y will denote the position vectors of isolated nodes α c .

Balance laws of forces and moments of forces

Classical theories of perfectly flexible membranes and strings are based on the assumption that they have resistance to stretching but not to bending, and hence they cannot support couples.

Consequently, the mechanical interactions between parts of the hybrid structure and between the hybrid structure and its environment are described by forces, but not by couples, consisting of (Fig.

2):

q -surface distributed force (defined at points \ \ y M N ) N -surface stress tensor (defined at points \ \ y M N ) q -line distributed force (defined at points y C N ) n -line stress vector (defined at points y C N ) Considering any part of the hybrid structure which in the deformed configuration is represented by Π M , the laws expressing the balance of forces and moments of forces take the form
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Here { } n n is the stress inside the string at the point i c . Moreover, ν is the unit normal vector to the boundary curve Π lying in the tangent plane.

In general, the surface distributed force q will encompass the force due to excess pressure on both sides of the membrane, the membrane body force due to gravity as well as the membrane inertia force. The same meaning is assigned to the line distributed force q .

The balance laws ( 3) and ( 4) are consistent with the general concepts of perfectly flexible membranes and strings (Libai and Simmonds [START_REF] Libai | The Nonlinear Theory of Elastic Shells[END_REF], Antman [START_REF] Antman | Nonlinear Problems of Elasticity[END_REF]). Such membranes and strings can only carry internal forces tangent to their deformed configurations. They have to be distinguished from thin shells and rods with finite bending stiffness but which are subject to a combination of external loads and boundary conditions which produce extensional and/or compressive forces with no or only negligible bending. In contrast, perfectly flexible membranes and strings considered in this paper cannot support compressive forces.

Equilibrium equations

Balance of forces

In the theory of smooth membranes, the integral balance laws may be replaced by partial differential equations (the local equilibrium equations) at interior points of the membrane whenever all fields are sufficiently smooth for the surface divergence theorem to be applicable (Gurtin and Murdoch [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF]). The extension of that theorem to piecewise smooth surfaces and fields was presented in [START_REF] Kazakeviciute-Makovska | Statical deformations of flexible membranes coupled to strings[END_REF][START_REF] Kazakeviciute-Makovska | Modelling of fabric structures in civil engineering[END_REF] and the main results are given in Appendix (see also Forte and Vianello [START_REF] Forte | On surface stresses and edges forces[END_REF] in the context of piecewise smooth boundaries of three dimensional bodies).

Under the assumption that the surface stress tensor N is differentiable at all points \ \ y M N , the patchwork surface divergence theorem yields (see Appendix) 
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Here s denotes the derivative with respect to s and α n is the number of strings which meet at the nodes c c . Substituting ( 5) and ( 7) into (3), the balance law of forces for the hybrid structure takes the
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)
Since the balance laws of mechanics are required to hold simultaneously for every part of the structure, the integrands of each integral and the last term in (8) must vanish separately by virtue of arbitrariness of Π . From this condition the following local equilibrium equations of forces are obtained:

0 divN q (9)
at points \ \ y M N , 0 a b s n q Nν [START_REF] Protter | A First Course in Real Analysis[END_REF] at points y C N and

1 1 0 α n i α i n f ( 11 
)
at nodes α c N .

The most important result of the above derivation are the equilibrium equations ( 10) and [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF] for the string elements. The equilibrium equation ( 9) is well-known in the theory of smooth membranes here derived in the coordinate free notation (c.f. [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF]). This equation written in the component form for any local parametrization of the membrane takes the form of three scalar equations (see e.g. Green and Zerna [START_REF] Green | Theoretical Elasticity[END_REF]). ( ) ( ) ( ) ( )
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) ). ) Introducing ( 12) and ( 13) into ( 4) and rearranging the terms, the balance law of moments of forces is obtained in the form 
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Equation ( 16) expresses the balance of moments of forces at regular points of hybrid structures with two basic implications. For any direction with the unit tangent vector ν , the surface traction ν n Nν has no component along the normal to the membrane, and hence the stress tensors N must be of the form N N I , where N is the tangential tensor field on M . Moreover, by virtue of (16) the stress tensor N must be symmetric, i.e. N N T . Let us also note that ( )

N N div div I
, so that the surface stress tensor N in the local equilibrium equation of forces ( 9) may be replaced by the tangential stress tensor N . These results obtained here for hybrid structures are well-known in the theory of smooth membranes (see e.g. Gurtin and Murdoch [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF]).

The condition of vanishing of the line integral in [START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF] requires that 

By implication, "the jump terms" disappear from [START_REF] Song | Analysis of tensioned membrane structure considering cable sliding[END_REF] and this equation reduces to the form wellknown in the theory of smooth strings (see e.g. Antman [START_REF] Antman | Nonlinear Problems of Elasticity[END_REF]):

0 s y n . ( 21 
)
The condition [START_REF] Leewood | Design and analysis of fabric structures with the finite element method[END_REF] requires that the stress vector n in the string must be tangent to its deformed configuration, and hence it must be of the form N n e, where N is the tension and s e y denotes the unit vector tangent to C .

Finally, it follows ( 14) that at the nodes α c of the strings network the following conditions must be satisfied

1 ( ) ( 1 (
)
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which, with the use of [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF], may be written as
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Since α i y y for all strings having α c as a common node, the condition ( 23) is trivially satisfied.

Principle of virtual work

The equilibrium equations for the hybrid structure derived in the previous sections may be reformulated in the form of the virtual work principle. To this end, let w , w and α w be any spatial vector fields which are defined at points \ \ y M N , y C N and at nodes α c , respectively, and collectively denoted by ( , , ) ( , , w α w w w . As direct implication of the equilibrium equations ( 9), [START_REF] Protter | A First Course in Real Analysis[END_REF] and ( 11), we have

( ; ) 0 0 w G ( , ( 24 
)
where for any part ( of the hybrid structure which in the deformed configuration occupies the domain Π M . Under the regularity assumptions of the previous section, the terms in (25) containing the surface divergence of N and the derivative of n can be transformed, using the patchwork surface divergence theorem and the corresponding theorem for line integrals (see Appendix): 
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Here
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The equation (28) holds for every part ( of the hybrid structure, whenever the balance laws are satisfied. The converse theorem is also true, as it can be shown by reversing the whole procedure of derivation leading to (28). With w considered as the generalized virtual displacement, the integral identity (28) represents the principle of virtual work of internal and external forces defined by ( 29) and (30), respectively.

The principle (28) provides the weak form of the integral balance law (3) for the entire hybrid structure with any type of strings network and undergoing possibly non-smooth deformations. Moreover, this principle applies independently of the mechanical properties of membranes and strings which must be specified by constitutive equations.

Stress power and principle of irreversibility

According to the standard concepts of continuum mechanics, the constitutive equations must be consistent with the law of thermodynamics. Within purely mechanical theories of hybrid structures, the law of thermodynamics implies that the temporal increase in free energy of any part of the hybrid structure ( must be less than or equal to the power expended on ( . Letting ( ) (36)

F ( D L υ FF . ( 35 
Here λ y is the string deformation vector being the one-dimensional counterpart of the surface deformation gradient F and the prime stands for the derivative with respect to the arc length parameter S in the reference configuration of the string. Similarly to (35), the spatial velocity vector l is given by

1 1 s λ l υ λ . ( 37 
)
The stress power density resulting from the interactions of string and membrane elements can be obtained as follows
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where 0 ν is the unit normal vector to the boundary curve Π in the reference configuration of the hybrid structure.

In consistency with the expression (33) for the stress power, the free energy of ( must be of the form \ ( ) ( )
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)
Here Ψ and ψ are the free energy densities of the membrane and string elements, and φ is the free energy density resulting from the string-membrane interactions. All densities are measured in the reference configuration. Introducing (33) and (39) into (31), the energy im-balance requires that the following two conditions must be satisfied simultaneously

0 0 Δ σ Ψ , ( 40 
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with σ , σ and σ being given by (34), ( 36) and (38), respectively.

Elastic constitutive equations

According to the results of the previous section, the constitutive equations for hybrid structures must be consistent with the dissipation inequalities ( 40 The assumption leading to (42) is natural in the analysis of elastic structures because the stress power (38) is non-zero for discontinuous deformations only, in which case there is the energy dissipation.

For perfectly elastic (hyperelastic) hybrid structures the free energies Ψ and depend only on the surface deformation gradient F and the stretch vector λ , respectively, that is ( ), ( ). ( ), ( ).

Ψ Ψ ψ ψ F λ ( 43 
)
In this special case, there is no energy dissipation and the local im-balance laws (40) and (42) take the form
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)
The conditions ( 44) and (45) must hold for all F and λ , respectively, yielding the constitutive equations for perfectly elastic hybrid structures in the classical form: 
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The equations (48) provide the most general form of the constitutive equations satisfying the principle of frame indifference. Specific forms of the elastic constitutive equations for elastomeric and biological membranes have been considered in [START_REF] Kazakeviciute-Makovska | Non-linear response functions for transversely isotropic elastic membranes[END_REF] and for anisotropic fabric membranes in [START_REF] Kazakeviciute-Makovska | Modelling of fabric structures in civil engineering[END_REF].

The use of the general constitutive equations (46) together with the additional assumption that loadings acting on the hybrid structure are conservative reduces the integral identity (28) to the principle of stationary total potential energy which has been used by Atai and Steigmann [START_REF] Atai | Coupled deformations of elastic curves and surfaces[END_REF] in their formulation of the theory of hybrid structures. However, the modeling of elastomeric and biological membranes requires that inelastic effects, such as stress softening, permanent set and hysteresis, are also properly accounted for. These aspects of the constitutive modeling have been considered in [START_REF] Kazakeviciute-Makovska | Damage-induced stress-softening effects in elastomeric and biological membranes[END_REF] for smooth membranes and the same approach may be adopted for hybrid structures. 

Analysis and discussion

According to the results obtained in this paper, the problem of determination of static equilibrium shapes for hybrid structures reduces to the solution of the field equations ( 9) and [START_REF] Protter | A First Course in Real Analysis[END_REF] for appropriate constitutive equations and external boundary conditions. Obviously, the admissible shapes of hybrid structures depend on the nature of the membrane-string interactions. These interactions are described by the equilibrium equation ( 10) and the corresponding expression (38)

for the stress power, and both must be considered simultaneously in the analysis of possible types of membrane-string attachments.

For the following discussion, it will be convenient to rewrite the equilibrium equation [START_REF] Protter | A First Course in Real Analysis[END_REF] in form

( ) ( ) ) 0 s ν ν n q n n , ( 49 
)
where ν n N ν and ν n N ν are the stresses which membrane elements M and M exert on the string C being the common boundary of both. Correspondingly, the stress power density per unit length of the deformed string (38) may be rewritten as

ˆ( )• ( • • ) ( )• ( • • ) ) • ( • • ) ν ν ν ν σ n n υ n υ n υ . ( 50 
)
Here υ is the velocity of the string, υ and υ are the limits of the velocities for the adjacent Consequently, the stress vectors and the velocity vectors appearing in the expression (50) for the stress power may be represented by their components relative to the basis { , , } e m b so that 
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 3 structure is derived from the local equations representing the balance of forces. The principle of irreversibility for such structures is formulated in Section 6 and the constitutive equations for elastic behavior of hybrid structures are discussed in Section 7. Section 8 contains the analysis of a few special types of membrane-string attachments and their relevance in the design of tensioned fabric structures. Certain possible applications of the theory in the field of cell cleavage are pointed out.
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 25 Fig. 2. Forces acting in the deformed configuration of hybrid structure

  ... 1, 2,... i n, is the set of points at which strings i C intersect the boundary curve Π and i i c

  stands for the surface divergence operator (seeGurtin and Murdoch [11]) in the deformed configuration of the hybrid structure and the jump a b Nν at any point y C is defined byNν N ν N ν a b . (6)Here, the orientation of the curve C which is a common boundary of two membrane elements M and M is assumed to coincide with the orientation of the boundary curve M of M . Moreover,(.) denote the limiting values of the respective quantity computed on both sides of the curve C .Let us further assume that the curve C is given in the parametric form ( ) s y = y , where s indicates the arc length parameter in the deformed configuration of the string. Then the application of the integration by parts to the terms i i c Π n in the balance law of forces (3) yields2 1 1
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 72 Balance of moments of forcesUnder the same regularity assumptions, the application of the patchwork surface divergence theorem together with the use of some differential identities yields (see Appendix) inclusion operator in the deformed configuration of the hybrid structure, s D grad denotes the surface gradient operator (see Gurtin and Murdoch[START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF]

  is satisfied if the integrands of each integral and the last term vanish separately by virtue of the arbitrariness of Π . The condition of vanishing of the surface integral in (14law of forces (9) holds, then the first term in (15) vanishes and equation (15) reduces to the form T T IN NI .

  if the balance law of forces[START_REF] Protter | A First Course in Real Analysis[END_REF] holds. Then the first term in[START_REF] Ishii | Form finding analysis in consideration of cutting patterns of membrane structures[END_REF] the balance of moments of all forces acting on the string, including the internal stresses due to interactions of the string with adjacent membrane elements. Because y y y at all points y C N , it follows from (19) that
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  (26) and (27) into (25) and rearranging the terms, the expression ( ; ) w G ( may be written as the difference of two terms, so equation (24) takes the form (

)

  The line elements in the reference and deformed configuration are related by λ , ds λdS , where • • λ λ λ is the stretch of string. Using this relation, the stress power density for string elements is obtained in the form

  ) and (41). If the deformation of the entire structure is continuous across the strings, then υ υ at all points y C N . By implication, the stress power density (38) resulting from the interactions of string and membrane elements vanishes, ˆ0 0 σ , and the corresponding free energy must be set to zero. In effect, the energy im-balance (41) reduces to the

  denotes the right Cauchy-Green deformation tensor for membranes and • • λ λ λ is the stretch of the string. Then, by implication, the constitutive equations (46) for the
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  membrane elements. The equation (49) and expression (50) apply to any string in the network to which two membrane elements are attached in one or another way to be discussed below. Here let us only note that (49) and (50) apply also to the case of the string attached to the boundary of the hybrid structure, in which case we simply set 0 that the stress vector n is necessarily tangent to the deformed axis of the string, κ is the curvature of C and m denotes the principle normal vector. With the standard definition of the binormal vector b e m , the vector equilibrium equation (49) may be expressed in component form as

  Figure(s)

 A c c e p t e d ma n u s c r i p t 10 denote the free energy of ( , this requirement takes the form of energy im-balance (see Truesdell and Noll [START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF] in the context of three dimensional bodies) ( ) ( ; ) ( ) 0 int ( ; ) ( ) 0

where ( ; ) v int P ( is the mechanical power of internal forces, i.e. the stress power of the part ( of the hybrid structure.

In mechanics, the power is defined as the rate of working of all forces acting on the body under consideration. The mechanical power for any part ( of the hybrid structure follows directly from (25) by assuming that w is the vector field of real velocities ( , , ) ( , , ) v 

The expression for the stress power int P can be obtained from (29) by taking w to be the generalized vector of real velocity fields v . Under the continuity condition α υ υ at the nodes α c , the stress power of the hybrid structure may be written relative to an arbitrarily chosen reference configuration in the form

where σ and σ are the stress power densities of membrane and string elements, respectively, and σ signifies the stress power density resulting from the interactions of string and membrane elements.

From now on, Π denotes a part of the hybrid structure in a fixed reference configuration and all densities are measured per unit area and unit length in that configuration.

The relation between area elements in the reference and deformed configurations of the smooth membrane parts is given by the classical formula da jdA , where j detF and F y y denotes the surface deformation gradient relative to the reference configuration. With the help of this relation, the stress power density for membrane elements may be expressed as

is the surface stress tensor in the reference configuration (see Gurtin and

Murdoch [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF]) and the spatial velocity gradient L is given by 1 1
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Now different types of membrane-string attachments may be considered.

The simplest type of membrane-string connection is that described by Atai and Steigmann [START_REF] Atai | Coupled deformations of elastic curves and surfaces[END_REF] as stiff attachment. In this case, υ υ υ and the stress power (53) vanishes, i.e. ˆ0 0 σ for all possible deformations of the structure. Thus, the nature of the membrane-string connection is entirely determined by the equilibrium equations (52). In the case of the string arranged along a part of the external boundary of the structure and in the absence of distributed loads, the equations (52) reduce to the form

This very special case has been discussed in detail in De Tommasi et al. [START_REF] Tommasi | Statics of edge cables in tent structure[END_REF][START_REF] Tommasi | Statics of tent structures[END_REF].

The more general type of the membrane-string connection is that of the boundary string admitting sliding but without separation of the string and adjacent membrane elements. In this case,

so the stress power (53) simplifies to the form

For sliding without friction described by Atai and Steigmann [START_REF] Atai | Coupled deformations of elastic curves and surfaces[END_REF], the membrane elements exert no traction on the string so that

and the stress power vanishes, ˆ0 0 σ , as in the case of stiff attachment. Moreover, the first equilibrium equation in (52) reduces to the form

In the special case when there are no distributed forces along the string, • 0 0 q e and the equation (58) reduces to the form 0 0 s N , so that the tension is constant along the string. This is the second type of attachment considered in [START_REF] Tommasi | Statics of edge cables in tent structure[END_REF][START_REF] Tommasi | Statics of tent structures[END_REF] for the case of boundary string.

The problem of membrane-string interactions naturally arises in the design of tension fabric structures. However, in that case, the problem has been invariably approached by various numerical methods in which the membranes and strings are treated as separate structural elements connected only at isolated points (see e.g. the discussion in [START_REF] Ishii | Form finding analysis in consideration of cutting patterns of membrane structures[END_REF][START_REF] Ishida | Theoretical analysis for equilibrium state of membrane structures considering slide between cable and membrane element[END_REF][START_REF] Song | Analysis of tensioned membrane structure considering cable sliding[END_REF]). The general theory presented in this paper provides the theoretical basis for analytical studies of membrane tension structures with numerous special types of membrane-string attachments. Moreover, the principle of virtual work formulated in Section 5 may be used as the basis for the finite element formulations following the approach of [START_REF] Tabarrok | Nonlinear analysis of tension structures[END_REF][START_REF] Leewood | Design and analysis of fabric structures with the finite element method[END_REF] successfully applied in the design of smooth fabric structures. The membranes and hybrid structures with no flexural rigidity will become wrinkled as soon as one of the principal
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15 stresses is non-positive. This requires the application of special methods, such as the dynamic relaxation [START_REF] Haseganu | Analysis of partly wrinkled membranes by the method of dynamic relaxation[END_REF], in the design of these structures.

Perfectly flexible membranes and strings have also been used in modeling numerous phenomena in biomechanics (see e.g. [START_REF] Fung | Biomechanics: Mechanical Properties of Living Tissues[END_REF][START_REF] Lardner | Elastic models of cytokinesis[END_REF]). An interesting application of the theory involving the membrane-string interactions arises in modeling the cytokinesis process [START_REF] Kazakeviciute-Makovska | Statical deformations of flexible membranes coupled to strings[END_REF].

Appendix A. Patchwork surface divergence theorem

If M is a smooth surface whose boundary M is piecewise smooth, u is a smooth vector field on M and S is a smooth tensor field such that ( )

x E T M S at x M , then the following surface divergence theorem holds (Gurtin and Murodch [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF]):

Here ( ) x x T M ν is the outward unit normal to M , div and D are the surface divergence and surface gradient operators (see Section 4).

A vector (tensor) field u is said to be piecewise smooth on a surface M (not necessarily smooth) if there exists a partition

M of M such that for each i M the surface gradient Du exists at all points of i M D and Du is continuous on M M M . Consider now a piecewise smooth surface M consisting of two smooth surface elements M and M having a curve C as the common boundary. If u is a piecewise smooth vector field and S is a piecewise smooth tensor field, then the divergence theorem (A.1) can be applied in each surface element separately. Thus, one gets: where the jumps are defined as in (A.3) with the tensor product replaced by corresponding product.