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Efficient solution of a vibration equation involving

fractional derivatives

Attila Pálfalvi∗

Department of Applied Mechanics, Faculty of Mechanical Engineering – Budapest

University of Technology and Economics, 1111 Budapest Műegyetem rkp. 5., Hungary

Abstract

Fractional order (or, shortly, fractional) derivatives are used in viscoelastic-

ity since the late 1980’s, and they grow more and more popular nowadays.

However, their efficient numerical calculation is nontrivial, because, unlike

integer-order derivatives, they require evaluation of history integrals in ev-

ery time step. Several authors tried to overcome this difficulty, either by

simplifying these integrals or by avoiding them. In this paper, the Adomian

decomposition method is applied on a fractionally damped mechanical os-

cillator for a sine excitation, and the analytical solution of the problem is

found. Also, a series expansion is derived which proves very efficient for cal-

culations of transients of fractional vibration systems. Numerical examples

are included.

Key words: vibration, fractional derivative, fractional differential

equation, Adomian decomposition

1. Introduction

It is common to date fractional calculus back to Leibniz, and several

textbooks are available on the subject (e.g. [1]). Several authors have been

examining the possibility of using fractional derivatives in material modelling

in the last two-three decades [2, 3], and the field is of a growing interest
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nowadays [4–9]. Finite element formulations are also in development [9–11].

However, the wide spread of these models is obstructed among others by the

difficulty concerning their efficient numerical calculation. This comes from

the fact that they need the evaluation of a time-history integral. There are

several solution methods available in the literature.

The analytical solution is theoretically known [1]. However, it requires

the computation of a convolution of the two-parameter Mittag-Leffler func-

tion, which is numerically challenging. Therefore, other calculation methods

are sought and used.

The most commonly used method is based on the well-known Grünwald–

Letnikov definition of fractional derivatives, used e.g. by Schmidt and Gaul

[9]. These authors proceeded to reduce the volume of the time history

integral [12], achieving an almost two-magnitude gain in calculation time on

an example.

Suarez and Shokooh [13] solved a vibration equation with fractional

damping of order 1/2 analytically, taking advantage of the derivative order.

Therefore, their solution is restricted to cases where the order of damping is

one half. Still, the presented numerical results are widely used as reference

solutions. Moreover, Suarez and Shokooh presented a solution for the initial

value problem of the vibration system, which is uncommon in the literature.

Yuan and Agrawal [14] have rewritten the definition of a fractional

derivative, and turned a fractional differential equation to a system of linear

differential equations. However, Schmidt and Gaul [15] have shown that

in some cases, this method loses the advantages of fractional calculus over

integer-order calculus. Later, this has also been checked by the present

author [16] for the field of interest of this paper.

The Adomian decomposition method (ADM) has been introduced by

George Adomian in the late 1980’s. Essentially, it approximates the solution

of a non-linear differential equation with a series of functions. The method
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is getting into use for the solution of fractional differential equations [17–23].

For a special case, Saha Ray, Poddar and Bera [19] have proven that the

Adomian solution converges to the analytical solution. Recently, Hu, Luo

and Lu [24] have shown that this is true for any linear fractional differential

equation. It will be shown in the present paper that this series expansion is

very efficient in many cases.

There are some further methods (e.g. the variational iteration method

[25, 26], the method of Atanackovic and Stankovic [27, 28] and the method

of Singh and Chatterjee [29]) that will not be treated in this paper. Also,

the Adomian decomposition method has been improved by some authors

[30–32]. However, the convergence to the analytical solution has only been

proven for the original method.

The present paper aims to provide a computationally efficient solution

method for the fractionally damped vibration equation using the Adomian

decomposition method and Taylor series. The obtained solution will be

compared to analytical solutions, either known previously or developed here

in a series form. To show the connection with classical methods, solutions

using the Grünwald–Letnikov definition will also be calculated.

In this paper, Section 2 presents the fractionally damped vibration equa-

tion, also giving a brief introduction to fractional derivatives. It also de-

scribes the Adomian decomposition method which will be used afterwards.

In Section 3, some solutions existing in the literature are shown. Next, in

Section 4, new solutions are presented: in Section 4.1, the proposed method

is developed, while in Section 4.2, an analytical solution is calculated for

reference. Finally, Section 5 shows the numerical examples, and Section 6

concludes the paper.
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2. Preliminaries

This section gives the equation to be solved, including a basic introduc-

tion to fractional derivatives. The Adomian decomposition method, which

is extensively used in this paper, is also presented.

2.1. The equation to be solved

The differential equation to be solved is the vibration equation with

fractional damping, with one degree of freedom:

D2x(t) +
c

m
Dαx(t) +

k

m
x(t) = f(t) , (1)

where D =
d

dt
is the differential operator. Another common form of Equa-

tion (1) is

D2x(t) + 2ηω2−α
n Dαx(t) + ω2

nx(t) = f(t) , (2)

with

2ηω2−α
n =

c

m
and ω2

n =
k

m
.

2.2. Fractional integrals

Fractional integrals and derivatives are deduced from the generalisation

of the integer-order operations. It is usual to define the integral operator

D−q as

aD
−q
t x(t) =

1

Γ(q)

∫ t

a
(t− τ)q−1 x(τ) dτ , (3)

where q > 0 and Γ(x) is the Gamma function

Γ(x) =

∫
∞

0
e−zzx−1 dz. (4)

For a continuous x(t),

D−pD−qx(t) = D−(p+q)x(t) , (5)

as given in [1] (if both p and q are non-negative).

4
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The fractional integral of a polynomial will be needed later so it is given

below:

D−qtν =
Γ(ν + 1)

Γ(ν + 1 + q)
tq+ν , (6)

With the fractional integral operator, fractional derivatives are easily

introduced.

2.3. Fractional derivatives

For a real α > 0, Dα is defined by the Riemann–Liouville definition [1],

using the above fractional integral operator:

aD
α
t x(t) =

(
d

dt

)n

aD
−(n−α)
t =

1

Γ(n− α)

(
d

dt

)n ∫ t

a
(t− τ)n−1−α x(τ) dτ .

(7)

Another choice is the Caputo definition

C
aD

α
t x(t) =

1

Γ(n− α)

∫ t

a
(t− τ)n−1−α

[(
d

dτ

)n

x(τ)

]
dτ . (8)

In both cases,

(n− 1) < α < n.

Actually, the two definitions only differ in the consideration of conditions

at the start of the interval:

aD
α
t x(t) = C

aD
α
t x(t) +

1

Γ (n− α)

n−1∑
k=0

Γ(n− α)

Γ(k − α+ 1)
(t− a)k−α x(k)(a) . (9)

In the applications, D practically always means 0Dt, and most authors

use the Riemann–Liouville, or the mathematically equivalent Grünwald–

Letnikov definition (see [1] for precise conditions of equivalence). Also,

since the Riemann–Liouville definition has a singularity for non-zero initial

conditions, the initial conditions are often considered zero. For a physical

interpretation of this singularity, see [33].

The composition (5) can be extended to an integral and a derivative:

D−pDqx(t) = DqD−px(t) = Dq−px(t) , (10)

with p, q ≥ 0 and a continuous x(t). (However, the composition of two

fractional order derivatives is not straightforward.)

5



Acc
ep

te
d m

an
usc

rip
t 

2.4. Adomian decomposition method

The decomposition method has been elaborated by George Adomian in

the late 1980s, originally for non-linear differential equations. However, as

mentioned in the introduction, it has also been used by several authors for

fractional differential equations [17–23]. As it will be also used in this paper,

it is presented in the followings.

The method has been described very clearly in [34]. The non-linear

differential equation is written as:

Lx(t) + Rx(t) + Nx(t) = f(t) , (11)

where L is a linear operator which can be inverted easily, R is the remaining

linear part and N is a non-linear operator. The function x(t) is derived as a

series expansion:

x(t) = x0(t) + x1(t) + x2(t) + . . . , (12)

using

x0(t) =
[
L−1Lx(t)− x(t)

]
+ L−1f(t) (13)

and

xn+1(t) = −L−1Rxn(t)− L−1An(t) (14)

with

An(t) =
1

n!

[
dn

dλn
N

(
∞∑
i=0

λixi(t)

)]
λ=0

. (15)

It has been proven recently by Hu, Luo and Lu [24] that for any lin-

ear fractional differential equation, the solution given by the decomposition

method converges to the analytical solution. Thus, Adomian decomposition

is an adequate tool for solving such equations. In the followings, it will be

shown that it can be very efficient, too.
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3. Known solutions

This section presents solutions for the fractionally damped vibration

equation (Section 2.1) which are well-established in the literature, and will

be used here as reference solutions.

3.1. Analytical solution for α = 1/2

Suarez and Shokooh [13] calculate the analytical solution of Equation (2)

for the special case α = 1/2, both for a free vibration and a step function

excitation. For the former, they obtain

xIC(t) =
4∑

j=1

Ψ4jRj
1√
πt

+
4∑

j=1

Ψ4jRjλjgj(t) , (16)

where

gj(t) = eλ
2

j t
(
1 + erf

(
λj

√
t
))

(17)

and λj and Ψj are the solution of the eigenproblem

AΨj = λjBΨj (18)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 −ω2
n

⎤
⎥⎥⎥⎥⎥⎥⎦
and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 2ηω
3/2
n

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and Ψ4j is the 4th coordinate of the jth eigenvector. In the above,

erf(x) =
2√
π

∫ x

0
e−t2 dt

is the error function, and Rj comes from the initial conditions, by⎡
⎢⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

⎤
⎥⎥⎥⎥⎥⎥⎦
=
[

Ψ1 Ψ2 Ψ3 Ψ4

]
−1

⎡
⎢⎢⎢⎢⎢⎢⎣

v0

0

x0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (19)
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The response to a step function force (using the Heaviside function H(t))

f(t) = f0H(t) ,

where X0 and V0 are considered zero, is

xH(t) = f0

4∑
j=1

Ψ2
4j

λj
(gj(t)− 1) . (20)

For an arbitrary function f(t) and arbitrary initial conditions, the pro-

posal of Suarez and Shokooh is to consider the initial conditions according to

the above. As for the force, they suggest discretising the function and han-

dling it as a series of step loads, one in each time step. However, with this

method, the time history integral of the fractional derivative is replaced by

a sum of displacement responses to step loads, which seems actually slower

to calculate.

3.2. Grünwald–Letnikov formulation

It is common in the literature, especially in applications, to use the

Grünwald–Letnikov definition of a fractional derivative [1]:

Dαf(t) = lim
N→∞

⎡
⎣( t

N

)
−α N−1∑

j=0

Γ(j − α)

Γ(−α) Γ(j + 1)
f

(
t− j

t

N

)⎤⎦ . (21)

This, along with any time stepping scheme, allows to find a numerical solu-

tion for Equation (1). For simplicity, an explicit scheme has been used for

time stepping in this paper:

vi+1 = vi + aih (22)

and

xi+1 = xi + vih+
aih

2

2
, (23)

where

ai = fi −
k

m
xi −

c

m

h−α

Γ(−α)

i−1∑
j=0

Γ(j − α)

Γ(j + 1)
xi−j−1, (24)

h being the time step size and fi being the force per unit mass at t = ih.

8
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4. New solutions

In this section, new solutions will be presented: first, an accurate and

efficient series expansion, which is proposed for use; second, an analytical

solution using the Adomian decomposition method as reference solution.

4.1. Proposed method: Taylor–Adomian series

The main goal of this paper is to propose a method for efficient calcu-

lation of the numerical solution of Equation (1) with non-zero initial condi-

tions. In the followings, this method will be presented.

4.1.1. Description

In the proposed calculation method, Adomian decomposition is used,

separately for initial conditions (starting displacement and velocity) and for

the excitation. This can be done, as the differential operator defined in

Section 2.3 is linear. The excitation is written in terms of Taylor series, and

the resulting method will be referred to as Taylor–Adomian series.

For our equation, a possible choice is

L = D2 , R =
c

m
Dα +

k

m
and N = 0.

In this case, conforming to Equations (13) and (14),

x0(t) =
[
D−2D2x(t)− x(t)

]
+D−2f(t) (25)

and

xn+1(t) = −
k

m
D−2xn(t)−

c

m
Dα−2xn(t) , (26)

the latter leading to

xn(t) =
(−1)n
mn

n∑
j=0

(
n

j

)
cn−jkjD−((2−α)n+αj)x0(t) (27)

using the composition property (10) of an integral and a derivative operator.

9
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In Equation (25), the first term describes the contribution of initial con-

ditions:

xIC
0 (t) =

[
D−2D2x(t)− x(t)

]
= X0 + V0t, (28)

where X0 and V0 are the initial position and velocity, respectively. With

Equations (27) and (6), one can write

xIC
n (t) =

(−1)n
mn

t(2−α)n

n∑
j=0

(
n

j

)
cn−jkjtjα

(
X0

Γ(2n+ 1− (n− j)α)
+

V0t

Γ(2n+ 2− (n− j)α)

)
.

(29)

This result has also been obtained by Baclic and Atanackovic [35] using

Laplace transformation.

The second term of Equation (25) gives the response of the system to

the excitation:

xf
0(t) = D−2f(t) . (30)

Suppose an excitation of the form of the Taylor series

f(t) =

∞∑
i=0

Tit
i, (31)

Tis being the coefficients of the polynomial. This, together with Equations

(30) and (6), leads to

xf
0,i(t) = Ti

Γ(i+ 1)

Γ(i+ 3)
ti+2 (32)

and

xf
n,i(t) = Ti

(−1)n
mn

Γ(i+ 1) ti+(2−α)n+2
n∑

j=0

(
n

j

)
cn−jkj

Γ(i+ 3 + 2n − (n− j)α)
tjα,

(33)

xf
n,i(t) being the nth term of the Adomian series of the response to the ith

term of the Taylor series of the excitation. The total response is

xf (t) =
∞∑

n=0

∞∑
i=0

xf
n,i(t) . (34)

Thus, the solution of Equation (1) has been given.

10
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4.1.2. Technical considerations

The implementation of the method raises several questions. First, this

is a double series expansion, which means that both the number of terms

in the Taylor series and the number of terms in the Adomian series have to

be defined. Moreover, Equations (29) and (33) show that terms tjα become

large for a relatively small t, which means a need for computing the difference

of large numbers. Thus, the evaluation of x(t) requires a computational

precision better than usual.

In the calculation code prepared for this paper, the number of terms is

increased dynamically throughout the calculation, based on error estima-

tions from the next ninc terms of the series: if the sum of the next ninc

terms is larger than a small limit (‘error goal’), then the number of terms

is increased by ninc, and the error estimation will be based on the following

ninc terms. This is applied separately for both series.

Another point is the required computational effort. The first two terms

of the sum in Equation (29) give

xIC(t) = X0+V0t−
c

m

X0

Γ(3− α)
t2−α− k

m

X0

Γ(3)
t2− c

m

V0

Γ(4− α)
t3−α− k

m

V0

Γ(4)
t3±. . .

(35)

This shows that the exponent of t in the series expansion is either an integer

or a real number, the latter being computationally expensive. However, if

α is restricted to be rational, as

α =
p

q

with p and q both integers, the right-hand side of Equation (35) becomes a

polynomial for
(
t1/q
)
:

xIC(t) = X0 + V0

(
t1/q
)q
− c

m

X0

Γ(3− α)

(
t1/q
)2q−p

− k

m

X0

Γ(3)

(
t1/q
)2q

− c

m

V0

Γ(4− α)

(
t1/q
)3q−p

− k

m

V0

Γ(4)

(
t1/q
)3q

± . . . (36)

This can be computed efficiently.

11
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4.1.3. Examples

Step function excitation. For an excitation with the Heaviside function H(t)

of the form

f(t) = f0H(t) ,

solved by Suarez and Shokooh [13] for α = 1/2, only T0 is non-zero of the

Tis, resulting in

xf
n(t) = f0

(−1)n
mn

t(2−α)n+2
n∑

j=0

(
n

j

)
cn−jkj

Γ(3 + 2n− (n− j)α)
tjα. (37)

This has also been obtained by Saha Ray, Poddar and Bera [19] for

α = 1/2 using Adomian decomposition (with a slightly different selection

for L, R, and N).

Sine excitation. For a sine excitation of the form

f(t) = f0 sin(ωet) ,

the Taylor coefficients are

Ti =

⎧⎪⎨
⎪⎩

0 if i is even

(−1)(i−1)/2 f0
ωi

e

i!
if i is odd

.

Using i = 2h+ 1 gives

Th = (−1)h ω2h+1
e

(2h+ 1)!
,

which, inserted into Equation (33), leads to

xf
n,h(t) = f0

(−1)n+h

mn
ω2h+1

e t(2−α)n+3+2h
n∑

j=0

(
n

j

)
cn−jkj

Γ(4 + 2 (n+ h)− (n− j)α)
tjα,

(38)

also using the property

Γ(n+ 1) = n!

of the Gamma function.

12
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4.2. Analytical solution by Adomian decomposition

Equation (27) gives the nth term of the Adomian series of x(t) if the

original differential equation is Equation (1). For a sine excitation

f(t) = f0 sin(ωet) ,

this yields to

xn(t) =
(−1)n
mn

n∑
j=0

(
n

j

)
cn−jkjD−((2−α)n+αj)

(
D−2f0 sin(ωet)

)
.

Using the definition (3) of the integral operator, one obtains

x0(t) =

∫ t

0
(t− τ) sin(ωeτ) dτ =

1

ω2
e

(ωet− sin(ωet)) . (39)

This leads to

xn(t) =
(−1)n
mn

f0

ω2
e

n∑
j=0

(
n

j

)
cn−jkj 1

Γ(q)

∫ t

0
(t− τ)q−1 (ωeτ − sin(ωeτ)) dτ ,

(40)

where

q = (2− α)n+ αj.

This results in

xn(t) =
(−1)n
mn

f0

ω2
e

n∑
j=0

(
n

j

)
cn−jkj 1

Γ(q + 2)

√
t ω1/2−q

e s3/2+q,1/2(ωet) , (41)

for n > 0, where sμ,ν(t) is the Lommel-function [36]

sμ,ν(t) = 1F2

(
1;
1

2
(μ− ν + 3) ,

1

2
(μ+ ν + 3) ;−1

4
t2
)

tμ+1

(μ+ 1)2 − ν2

with 1F2(a1; b1, b2; t) being the hypergeometric function

1F2(a1; b1, b2; t) =

∞∑
k=0

(a1)k
(b1)k (b2)k

tk

k!
,

where (a)k is the Pochhammer symbol

(a)k =
Γ(a+ k)

Γ(a)
.

This can be calculated numerically by any computer algebra system.

To the author’s knowledge, this solution has not been calculated in the

literature before.

13
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5. Numerical examples

So far, existing (Section 3) and new (Section 4) methods for the solution

of the fractionally damped vibration equation have been presented. In this

section, they will be tested and compared for some parameter sets.

5.1. Software

First, some details are given on software used for the calculations.

The code for the Taylor–Adomian series is written in C. The computa-

tional precision is assured by the GNU Multiple precision library [37] and

one of its derivatives, MPFR [38].

The Grünwald–Letnikov formulation is also implemented in C, but it

uses the conventional double-precision arithmetics.

The analytical solution of Suarez and Shokooh (described in Section 3.1)

has been calculated using the Maple computer algebra system.

Also, for the analytical solution described in Section 4.2, the Maple com-

puter algebra system has been used with Equations (12), (29) and (41). Pre-

cision was higher than double precision, usually 50 or 75 decimal digits have

been set. The run-time increase of the number of Adomian terms, described

for the Taylor–Adomian method, has also been used here, with an error goal

of 10−25 for ten terms.

5.2. Problems and results

In the followings, numerical examples and their results will be presented

and compared. For the latter purpose, let us introduce an absolute error

indicator ε as

ε =
1

N

N∑
i=1

∣∣∣xnum
i − xref

i

∣∣∣ .
Six problems have been analysed, two using a unit step force and four

with a harmonic excitation. Table 1 resumes the parameters of the different

examples. They lead to steady-state amplitudes between 0.012 and 0.021.
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The treated time interval is from 0 to 5 seconds. With the Taylor–Adomian

method, 10 000 values of x(t) have been calculated for each problem. The

floating-point precision was adjusted by hand as the required error level

needed it; it was either 128 or 192 bits for all calculations on this time

interval.

5.2.1. Derivative of order 1/2, step function excitation (problems 1u and

2u)

Here, the reference solution is from Suarez and Shokooh (Section 3.1),

and the same numerical parameters have been used as in [13] to reproduce

the same results (Figure 1). Here, and in the followings, only the reference

solutions are plotted; other solutions are very near when not practically

identical to them.

Figure 2 shows the error indicator ε and the elapsed CPU time for the

two problems. It is immediate to see that, for the same computational effort,

the Taylor–Adomian method offers a much greater precision. (However, an

engineering precision is assured by any of the methods.)

The difference of the calculation times for the Taylor–Adomian method

comes from the difference of numerical conditions (mostly, the dissipation

factor η), which require different numbers of terms in the Adomian series.

As one would expect, the calculation times of the method based on the

Grünwald–Letnikov formulation were not affected by the numerical param-

eters.

5.2.2. Derivative of order 1/2, harmonic excitation (problems 1 and 2)

Here, the reference solution is the solution by Adomian decomposition

(Section 4.2). Results are shown in Figure 3.

Error indicators and CPU times are shown in Figure 4. Observations

are the same as above: for a calculation time of the 10-second order, the

Taylor–Adomian method is much more precise than the scheme with the

15
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Grünwald–Letnikov derivative.

5.2.3. Derivative of order 1/5, harmonic excitation (problems 3 and 4)

To leave derivatives of order 1/2, another value has been chosen for

α. The reference solution for these problems is the solution by Adomian

decomposition (Section 4.2).

Results are shown in Figure 5, while Figure 6 shows the values of the

error indicator and CPU times. It is immediate to see the same as before:

the Taylor–Adomian method is clearly much more precise while keeping the

calculation time low.

5.3. Simulating a longer time interval

As seen above, the terms of Equations (29) and (33) become very large

as t increases. It is easy to see that a major limitation of the Taylor–

Adomian method will be this property: beyond a certain interval length,

a huge number of terms are required, which increases the calculation time

horrendously.

To check the extents of this phenomenon, calculations have been run

with the Taylor–Adomian method up to the end of the transient, but at

least to t = 25, with 200 calculated points per time unit. The error goal was

10−10. Figure 7 shows elapsed CPU time versus simulated time. The points

are at the end of the transient period, which is considered to be the end of

the last period of excitation for which the error indicator

1

N

N∑
i=1

∣∣∣xi − xsteady
i

∣∣∣
is above 1% of the steady-state amplitude.

It is immediate to see that problems 1 and 3, i.e. the highly damped

equations settle very fast, and their CPU time for a very high precision is in

the order of some or some 10 seconds. Even problem 2 settles within a CPU

time of less than 10 minutes on an average 64-bit system. Contrarily, the
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transient of problem 4 required somewhat more than 6 hours to calculate on

the same computer. This shows that the presented Taylor–Adomian method

may be very efficient for the accurate solution of the fractionally damped

vibration equation, especially when damping is not very weak.

6. Conclusion

In this paper, the main goal was to present a method to solve the frac-

tionally damped, inhomogeneous 1-DOF vibration equation with initial con-

ditions. The Taylor–Adomian method has been proposed and tested on step-

function excited and harmonically excited cases. It has proven very efficient

in calculating the solution for a reasonably long time interval, practically

with an arbitrarily low error. This makes the method immediately usable

in providing quick reference results for other methods. The engineering ap-

plication may be limited, however, due to the necessity of high-precision

arithmetics and the fast increase of calculation time as the simulated time

interval gets longer.

Moreover, the analytical solution of the same equation (with a harmonic

excitation) has been calculated by the Adomian decomposition method.

This solution served as a reference for the Taylor–Adomian method.
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Parameters 1 1u 2 2u 3 4

m 1 1 1 1 1 1

α 1/2 1/2 1/2 1/2 1/5 1/5

ωn 10 10 10 10 10 10

η 0.5 0.5 0.05 0.05 0.5 0.05

f0 1 1 1 1 1 1

ωe 4π — 4π — 4π 4π

X0 0.25 0.25 0.25 0.25 0.25 0.25

V0 0 0 0 0 0 0

Table 1: Numerical parameters of the examples. Problems 1u and 2u use a step function

excitation.
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Figure 1: Solution curves for problems 1u and 2u.

Figure 2: Comparison of methods for problems 1u and 2u (α = 1/2, step function excita-

tion).

Figure 3: Solution of problems 1 and 2.

Figure 4: Comparison of methods for problems 1 and 2 (α = 1/2, harmonic excitation).

Figure 5: Solution of problems 3 and 4.

Figure 6: Comparison of methods for problems 3 and 4 (α = 1/5, harmonic excitation).

Figure 7: Calculation times for longer time intervals.
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